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Abstract: Objective: Iron deficiency (ID) is the most prevalent nutritional deficiency worldwide.
Low levels of serum ferritin (SF) could affect the thyroid gland and its functioning. The purpose of
this systematic review and meta-analysis is to summarize the main currently available evidence and
analyze data on the relationship between ID and thyroid function. Methods: This study included all
articles evaluating the relationship between ID and thyroid function. Quality assessment was per-
formed using Cambridge Quality Checklists. The search strategy included the following combination
of Medical Subjects Headings terms and keywords: “iron deficiency”, “thyroid function”, “thyroid
disease”, “thyroid dysfunction”, and “hypothyroidism”. A meta-analysis was performed to evaluate
whether thyroid stimulating hormone (TSH), free thyroxine (FT4), and free triiodothyronine (FT3)
levels differed between patients with ID and healthy controls without ID. For statistical comparison
between cases and controls, the mean difference (MD) was calculated, and a subgroup analysis of
pregnant and non-pregnant women was performed. Cochran’s Q testing and heterogeneity indices
(I2) were used to assess statistical heterogeneity. Sensitivity analysis and publication bias analy-
ses were also performed, both qualitatively and quantitatively. Finally, a meta-regression analysis
was performed to evaluate the correlation between serum TSH or FT4 levels and SF in the study
population. Results: Ten cross-sectional studies were identified and reviewed. Patients with ID
showed TSH (MD: −0.24 mIU/L; 95% CI −0.41, −0.07; I2 = 100%, p = 0.005), FT4 (MD: −1.18 pmol/L;
95% CI −1.43, −0.94; I2 = 99%, p < 0.000001), and FT3 (MD: −0.22 pmol/L; 95% CI −0.32, −0.12;
I2 = 99%, p < 0.00001) levels that were significantly lower. Subgroup analysis confirmed significantly
lower TSH, FT4, and FT3 levels in pregnant women. Non-pregnant women showed significantly
lower serum FT4 and FT3 levels but no difference in TSH values. Meta-regression analysis showed
that serum TSH and FT4 levels were positively correlated with SF levels. Our systematic review
of the literature found that ID significantly increases the prevalence of thyroid autoantibody (anti-
thyroglobulin antibodies and anti-thyroid peroxidase antibodies) positivity both individually and
collectively. Conclusion: Studies currently published in the literature indicate a possible relationship
between ID, thyroid function, and autoimmunity, especially in some patient groups. Data analysis
shows that thyroid hormone levels are lower in patients with ID and, in particular, in pregnant
women. Further studies are needed to understand the role played by iron in thyroid metabolism.

Keywords: iron deficiency; thyroid function; thyroid dysfunction; thyroid disease; hypothyroidism

1. Introduction

Iron is an essential nutrient required for various physiological functions. Iron defi-
ciency (ID) is a widespread nutritional disorder worldwide, affecting about two billion
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people, mainly pregnant women and women of childbearing age [1,2]. ID is a condition in
which the body lacks adequate amounts of iron. Iron is a key component of hemoglobin,
a protein present in red blood cells that carries oxygen from the lungs to different tissues
and organs in the body. It is also crucial for other enzymes and proteins involved in energy
production and cell function. This common deficiency can lead to adverse effects on the
thyroid gland, especially the function of the thyroid peroxidase enzyme [3,4]. Furthermore,
anemia due to ID is a common comorbidity in patients with thyroid dysfunction, affecting
nearly 5% of the population [5].

A growing body of evidence suggests that ID may play a significant role in the patho-
genesis of thyroid dysfunction. Several studies have reported a high prevalence of ID in pa-
tients with thyroid diseases, particularly hypothyroidism and thyroid autoimmunity (TAI),
which can impair the synthesis and function of thyroid hormones [6]. The production of
thyroid hormones is negatively affected by ID, and their deficiency reduces the proliferation
of erythrocyte precursors, both directly and through reduced secretion of erythropoietin
by the kidneys [7,8]. Additionally, ID can affect the hypothalamic–pituitary–thyroid axis,
leading to altered thyroid hormone levels and a decreased response to thyroid-stimulating
hormone. Iron is also essential for the activity of thyroid peroxidase, an enzyme that
catalyzes the iodination of tyrosine residues in thyroglobulin, a precursor protein for thy-
roid hormone synthesis [9]. Correlation between ID and hypothyroidism is likely due
to impaired thyroperoxidase (TPO) hemoprotein biosynthesis, as shown in a rat study
in which ID reduced TPO activity [4]. Furthermore, animal studies have shown that ID
can interfere with thyroxine deiodinase activity by reducing the conversion of thyroxine
(T4) to triiodothyronine (T3) and with the regulation of thyroid metabolism at the central
level [10,11]. Moreover, the interaction between thyroid hormones and iron is bidirectional
since, through the TRα receptor, TH directly stimulates erythropoiesis [12,13].

Despite growing interest in the relationship between ID and thyroid dysfunction,
scientific evidence is still inconclusive. Several studies have been conducted to evaluate the
association between iron status and thyroid function, but the results are conflicting. While
some studies suggest that ID is associated with an increased risk of thyroid dysfunction,
others have found no significant association.

A recent systematic review and meta-analysis show that the prevalence of overt and
subclinical hypothyroidism is higher in pregnant women and women of childbearing age
with ID who had higher thyroid-stimulating hormone (TSH) values and reduced free
thyroxine (FT4) values, with a possible increase in the risk of autoantibody positivity [14].
Therefore, a comprehensive and up-to-date systematic review of the literature and meta-
analysis is needed to provide a better understanding of the relationship between ID and
thyroid dysfunction in the general population. This study aims to summarize and critically
evaluate the available evidence on the association between iron status and thyroid function
in the general adult population, including the mechanisms underlying this association, the
prevalence of ID in patients with thyroid diseases, and the impact of iron supplementation
on thyroid function. In addition, this study aims to analyze currently available data on the
impact of serum ferritin values on thyroid hormones.

2. Methods
2.1. Search Strategy

The Meta-Analysis and Systematic Reviews of Observational Studies (MOOSE) guide-
lines [15] (Supplementary Table S1) and the Preferred Reporting Items for Systematic
Review and Meta-Analysis Protocols (PRISMA-P) [16] (Supplementary Table S2) were
employed to carry out our systematic review. A systematic search was performed from
April 2023 to July 2023, across the Pubmed and Scopus databases from the earliest avail-
able through July 2023, using Medical Subjects Headings (MeSH) indexes and keyword
searches. The string used included the entry term “iron deficiency*”, which was searched
in combination (AND) with the terms “thyroid function” OR “thyroid dysfunction” OR
“thyroid disease” OR “hypothyroidism”. The “LIMIT-TO (DOCTYPE, “ar”)” query was
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used to limit the retrieval of original studies only. The same combination of terms was
used for all databases. Abstracts of the retrieved articles were independently screened by
two researchers in duplicate (V.G. and R.A.C.). Disagreements were resolved by a third
person (A.E.C.).

2.2. Selection Criteria

This systematic review included all published articles evaluating the relationship
between ID and thyroid function. All eligible studies were selected following the PECOS
(population, exposure, comparison/comparator, outcomes, study design) [17] model (Table 1).
Specifically, all the studies reporting information on thyroid function in patients exposed to
ID, consisting of a decrease in extracellular iron with a lower-than-normal serum ferritin
(SF), were included. Only original articles in English language reporting complete data of
clinical relevance to the present review were included in the analysis. Duplicates have been
carefully checked and removed.

Table 1. Inclusion and exclusion criteria of the current systematic review, according to the PECOS
model [17].

Inclusion Exclusion

Population Adults, pregnant women
Patients with comorbidities or taking
drugs that affect thyroid function or

iron status, age < 18 years.

Exposure Iron deficiency -

Comparison Subjects without ID -

Outcome TSH, FT4, FT3, TPOAb, gAb -

Study Type
Cross-sectional study,

randomized controlled study,
case–control, cohort

In vitro, animal studies, case reports,
editorials, communications, reviews,

and meta-analyses
Abbreviations. FT3, free triiodothyronine; FT4, free thyroxine; ID, iron deficiency; SF, serum ferritin; TgAb,
antithyroglobulin antibodies; TPOAb, anti-thyroid peroxidase antibodies; TSH, thyroid-stimulating hormone.

2.3. Data Extraction

We collected information on the first author, year of publication, study design, age,
type of population (gender, pregnant or non-pregnant), diagnostic criteria for ID and SF
levels, and information on primary outcomes (TSH, FT4, FT3, TgAb, and TPOAb). For
analysis, TSH values were converted to mIU/L and FT4 and FT3 in pmol/L, if provided
in different units of measure, according to the conversion tables. For each parameter, the
number of patients/controls, mean value and standard deviation (SD), median value and
interquartile range (IQR) range, or median value and minimum and maximum values
were reported, depending on how the authors reported the data. For studies that express
data as median and IQR or as median and minimum and maximum, the formula by Wan
and colleagues [18] was used to estimate the mean and SD. The data were independently
extracted by V.G.

2.4. Quality Assessment

The quality of evidence (QoE) of the studies was evaluated by VG, by using the
Cambridge Quality Checklists [19], which consists of three checklists to identify high-
quality studies of (1) correlates, (2) risk factors, and (3) causal risk factors. The correlates
checklist evaluates the appropriateness of the sample size and the quality of the outcome
measurements. The risk factor checklist assigns high-quality scores to those studies with
appropriate time-ordered data. Finally, the causal risk factors checklist assesses the type of
study design. To draw confident conclusions about correlates, risk factors, and causal risk
factors, all three checklist scores must score high.

As no randomized control trials were included, no further evaluation was needed.
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2.5. Statistical Analysis

Quantitative data analysis was performed using Comprehensive Meta-Analysis Software
(Version 3) (Biostat Inc., Englewood, NJ, USA) and RevMan software v. 5.4 (Cochrane Col-
laboration, Oxford, UK). The mean difference (MD) was calculated for statistical comparison
of cases and controls, including subgroup analysis between pregnant and non-pregnant
women. Cochran’s Q testing and heterogeneity indices (I2) were used to assess statistical
heterogeneity. In particular, if I2 was less than or equal to 50%, the variation of the studies
was considered homogenous, and the fixed effect model was adopted to calculate the
pooled effect size. However, if I2 was greater than 50%, there was significant heterogeneity
between studies, and the random effect model was used. Sensitivity analysis and analysis
of publication bias were also performed. Publication bias was qualitatively analyzed by
the asymmetry of the funnel plot, which suggested some missing studies on one side of
the graph. For the quantitative analysis of publication bias, we used Egger’s intercept
test, which evaluated the statistical significance of publication bias. We also performed a
meta-regression analysis to investigate the correlation between serum TSH of FT4 levels
and SF in the study population. Statistical significance was accepted for p-values less than
or equal to 0.05.

3. Results

The search strategy mentioned above identified a total of 418 records. After 191 duplicates
were excluded, the remaining 227 articles were considered potentially relevant for this
review. After reading the abstracts, 199 articles were excluded because they were not
pertinent. Ten studies were conducted on animals, and one was an in vitro study. The full
text of the remaining seventeen articles were downloaded and read carefully: seven of
these were excluded because they did not include a control group or because data were
insufficient. In conclusion, ten studies were considered for this systematic review (Figure 1).

The main characteristics of the included studies are reported in Table 2. Nine of them
evaluated the association between ID and thyroid function in pregnant women or women
of childbearing age [20–28], and only one study was conducted on the general popula-
tion [29]. Among the included studies, they all evaluated different parameters regarding
thyroid function. All studies [20–29] measured blood levels of TSH and FT4 to evalu-
ate thyroid function, and four of them also evaluated serum FT3 levels [20,21,25,29]. Six
studies [21–24,26,27] evaluated the positivity of TPOAb in the blood of patients, and four
of these [21–24] evaluated the TgAb to determine the possible presence of autoimmune thy-
roiditis. For the diagnosis of ID, four studies [20,22,25,26] used ferritin values < 20 ng/dL, four
studies [21,23,27,29] used ferritin values < 15 ng/dL, and two studies [24,28] values < 12 ng/dL.
All studies used electrochemiluminescence immunoassay to measure blood levels of TSH,
FT4, FT3, TPOAb, TgAb, and SF. The reference ranges of thyroid parameters are reported
in Table 2.

3.1. Quality of Evidence of Included Studies

The QoE of ten studies included revealed that, out of a total score of fifteen, five studies
scored an eleven, four studies scored a ten, and only one study scored a nine (Table 3),
supporting the high quality of the majority of the studies.
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Table 2. Main characteristics of the studies included in the analysis.

Type of
Study Age (y) Type of

Population

Population (n)
Diagnostic

Criteria
for ID (SF)

Items and
Reference Range

TSH FT4 FT3 TPOAb TgAb

ID Controls
ID Controls ID Controls ID Controls ID Controls ID Controls

Wang
et al.,

2022 [20]
CSS 29

(25–33)

Chinese
Pregnant
women

387 1831 <20 ng/dL

TSH
(0.24–4.2 mIU/L),

FT4
(12–22 pmol/L),

FT3
(3.1–6.8 pmol/L)

1.54
(0.92–2.35)

0.93
(0.43–1.56)

13.23
(11.26–16.08)

16.58
(14.67–18.67)

4.15
(3.51–5.04)

4.79
(4.33–5.32) NR NR NR NR

Okuroglu
et al.,

2020 [21]
CSS 31.5 ± 8.4

Non-pregnant
women of

reproductive
ages

203 155 <15 ng/dL

TSH
(0.35–4.2 mIU/L),

FT4
(0.58–1.64 ng/dL),

FT3
(1.71–3.71 pg/mL),

AbTPO
(<5.6 IU/mL),

AbTg
(<10 IU/mL)

1.90 ± 0.97 1.74 ± 0.91 0.96 ± 0.11 0.97 ± 0.11 2.77 ± 0.42 2.81 ± 0.60 8.37% 3.87% 9.85% 7.10%

Zhang
et al.,

2020 [22]
CSS 28.3 ± 0.1

Chinese
pregnant
women

373 1219 <20 ng/dL

TSH
(0.27–4.2 mIU/L),

FT4
(12–22 pmol/L),

AbTPO
(<34 IU/mL),

AbTg
(<115 IU/mL)

1.85
(0.01–7.84)

1.69
(0.01–10.2)

13.94
(8.91–29.82)

14.63
(8.22–47.24) NR NR 3.8% 5.2% 4.6% 3.1%

Zhang
et al.,

2019 [23]
CSS 28.3 ± 3.6

Chinese
pregnant and
non-pregnant

women

638 8229 <15 ng/dL

TSH
(0.14–4.87 mIU/L),

FT4 (NR),
AbTPO

(<34 IUmL),
AbTg

(<115 IU/mL)

2.06
(1.17–3.09)

1.99
(1.14–3.05) 14.88 ± 2.32 16.05 ± 3.19 NR NR 8.9

(5–15.6)
8.21

(5–13.82)
12.33

(10–42.45)
11.35

(10–24.34)

Maldonado-
Araque

et al.,
2018 [29]

CSS 50 ± 17.1
Spanish adult
non-pregnant

population
523 3323 <15 ng/dL

TSH (µUI/mL),
FT4 (pmol/L),
FT3 (pmol/L)

1.98 ± 0.07 2.04 ± 0.04 14.83 ± 0.10 15.16 ± 0.07 4.91 ± 0.03 5.01 ± 0.02 NR NR NR NR

He et al.,
2018 [24] CSS 27.2 ± 4.5 Pregnant

women 69 140 <12 ng/dL

TSH
(0.27–4.2 mIU/L),

FT4
(12–22 pmol/L),

AbTPO
(<34 IU/mL),

AbTg
(<115 IU/mL)

3.25 ± 1.72 2.36 ± 1.48 14.26 ± 1.45 14.45 ± 1.54 NR NR 9.7
(9.3–14.3)

10.4
(9.6–14.5)

10
(10–15.95)

10.02
(9.2–15.09)
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Table 2. Cont.

Type of
Study Age (y) Type of

Population

Population (n)
Diagnostic

Criteria
for ID (SF)

Items and
Reference Range

TSH FT4 FT3 TPOAb TgAb

ID Controls
ID Controls ID Controls ID Controls ID Controls ID Controls

Fu et al.,
2017 [25] CSS 27 ± 3

Chinese
pregnant
women

932 832 <20 ng/dL

TSH
(0.98–2.26 mIU/L),

FT4
(8.85–12.25 pmol/L),

FT3
(4.06–5.06 pmol/L)

1.6 (1–2.3) 1.4
(0.7–2.2)

10.36
(8.8–12.2)

10.88
(8.9–13.44) 4.4 (3.9–5) 4.6

(4.2–5.2) NR NR NR NR

Li et al.,
2016 [26] CSS 28.5 ± 3.7 Pregnant

women 431 2150 <20 ng/dL

TSH
(0.1–2.5 mIU/L),

FT4
(11.5–18.8 pmol/L),

AbTPO
(<5.6 mIU/mL)

1.35
(0.71–2.4)

1.07
(0.6–1.67)

13.22
(11.95–14.84)

13.99
(13.12–15.07) NR NR 3 (23.6%)

(3–4.28)
3 (11.2%)

(3–3) NR NR

Veltri
et al.,

2016 [27]
CSS 30

(15–47)
Pregnant
women 674 1226 <15 ng/dL

TSH
(0.3–4 mIU/L),

FT4
(0.8–2 ng/dL),

AbTPO
(<60 kIU/L)

1.5
(0.0–9.6)

1.3
(0.0–30.5)

1.0
(0.7–2.2)

1.1
(0.6–3.1) NR NR 29 (10%)

(15–9704)
28 (6%)

(25–13,000) NR NR

Yu et al.,
2015 [28] CSS 28.9 ± 3.6

Chinese
pregnant and
non-pregnant

women

143 4249 <12 ng/dL

TSH
(0.14–4.87 mIU/L),

FT4
(12.4–20.7 pmol/L)

1.94
(1.2–2.73)

1.92
(1.12–2.85) 15.22 ± 2.61 16.06 ± 2.47 NR NR NR NR NR NR

Abbreviations: AbTg, antithyroglobulin antibodies; AbTPO, anti-thyroid peroxidase antibodies; CSS, cross-sectional study; FT4, free thyroxine; FT3, free triiodothyronine; ID, iron
deficiency; SF, serum ferritin; TSH: thyroid-stimulating hormone.
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Table 3. Quality of evidence assessment of the included studies (results of the Cambridge Quality
Checklist [19]).

Study Name Type of Study

Cambridge Quality Checklists

Checklist for
Correlates

Checklist for
Risk Factors

Checklist for
Causal Risk

Factors

Wang et al., 2022 [20] CSS 4 1 5

Okuroglu et al., 2020 [21] CSS 3 1 5

Zhang et al., 2020 [22] CSS 4 1 5

Zhang et al., 2019 [23] CSS 5 1 5

Maldonado-Araque et al., 2018 [29] CSS 5 1 5

He et al., 2018 [24] CSS 4 1 5

Fu et al., 2017 [25] CSS 5 1 5

Li et al., 2016 [26] CSS 5 1 5

Veltri et al., 2016 [27] CSS 5 1 5

Yu et al., 2015 [28] CSS 4 1 5
Abbreviations. CSS: cross-sectional study.
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3.2. Results of the Quantitative Synthesis
3.2.1. TSH

Ten studies, including 4395 patients and 23,354 controls, assessed serum TSH levels.
Our analysis showed that, overall, TSH was significantly lower in patients than in controls,
although interstudy heterogeneity was found (MD: −0.24 mIU/L; 95% CI −0.41, −0.07;
I2 = 100%, p = 0.005). Subgroup analysis revealed significantly lower TSH values in the
pregnant population (MD: −0.41 mIU/L; 95% CI −0.73, −0.09; I2 = 100%, p = 0.01), while
they were non-significantly different in non-pregnant subjects (MD: 0.01 mIU/L; 95% CI
−0.09, 0.11; I2 = 96%, p = 0.86) (Figure 2).
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intervals of the study results, with each end of the line representing the boundaries of the confidence
interval. The black diamond represents the point estimate and confidence intervals of the combined
studies. The left arrow indicates a study whose estimate point and confidence interval are lower
than −2. Fu et al., 2017 [25]; He et al., 2018 [24]; Li et al., 2016 [26]; Veltri et al., 2016 [27]; Wang et al.,
2022 [20]; Yu et al., 2015 [28]; Zhang et al., 2019 [23]; Zhang et al., 2020 [22]; Maldonado-Araque et al.,
2015 [29]; Okuroglu et al., 2020 [21].

The analysis showed the absence of publication bias as inferred by Egger’s test (intercept
8.12, 95% CI −37.7; 53.9; p = 0.69) and symmetry of the funnel plots (Scheme 1, panel A).
However, all studies were found to be sensitive enough to change the conclusion that serum
TSH levels are lower in patients than in controls (Scheme 1, panel B). Meta-regression
analysis showed that serum TSH levels correlated positively with SF. In this analysis, the
magnitude of mean serum levels in patients and controls increased as a function of their SF
values (Scheme 2).
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Scheme 1. Funnel plot (A) and sensitivity analysis (B) of the mean difference in serum TSH values
in patients and controls. In Panel (A), circles indicate the standard error plotted by the standard
difference in means of each study. Rhombus indicates a standard difference in means of zero. In
Panel (B), black boxes estimate the study results, and give a representation of the size of the studies.
horizontal lines represent the 95% confidence intervals of the study results, with each end of the
line representing the boundaries of the confidence interval. The blue diamond represents the point
estimate and confidence intervals of the combined studies. Fu et al., 2017 [25]; He et al., 2018 [24];
Li et al., 2016 [26]; Veltri et al., 2016 [27]; Wang et al., 2022 [20]; Yu et al., 2015 [28]; Zhang et al.,
2019 [23]; Zhang et al., 2020 [22]; Maldonado-Araque et al., 2015 [29]; Okuroglu et al., 2020 [21].



Nutrients 2023, 15, 4790 10 of 19Nutrients 2023, 15, x FOR PEER REVIEW 25 of 20 
 

 
Nutrients 2023, 15, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/nutrients 

 
Scheme 2. Meta-regression showing the influence of serum ferritin (SF) levels (moderator) on the 
mean difference of serum TSH levels in patients from the study population. The size of the circles 
indicates the size of the study. The red line represents linear predictions for mean difference of TSH 
as a function of the mean absolute increase in SF. The curved lines indicate the 95% confidence 
interval lines around the regression line.  

3.2.2. Free Thyroxin 
Ten studies, including 4395 patients and 23,354 controls, evaluated serum FT4 levels. 

FT4 was significantly lower in patients than in controls, despite interstudy heterogeneity 
(MD: −1.18 pmol/L; 95% CI −1.43, −0.94; I2 = 99%, p < 0.000001). By subgroup analysis, FT4 
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indicates the size of the study. The red line represents linear predictions for mean difference of TSH as
a function of the mean absolute increase in SF. The curved lines indicate the 95% confidence interval
lines around the regression line.

3.2.2. Free Thyroxin

Ten studies, including 4395 patients and 23,354 controls, evaluated serum FT4 levels.
FT4 was significantly lower in patients than in controls, despite interstudy heterogeneity
(MD: −1.18 pmol/L; 95% CI −1.43, −0.94; I2 = 99%, p < 0.000001). By subgroup analysis,
FT4 was lower in both pregnant women (MD: −1.43 pmol/L; 95% CI −1.81, −1.05; I2 = 98%,
p < 0.000001) and non-pregnant women (MD: −0.72 pmol/L; 95% CI −1.39, 0.06; I2 = 96%,
p = 0.03) (Figure 3).

The analysis showed the absence of publication bias as inferred by Egger’s test (in-
tercept −5.35, 95% CI −52.8; 42.1; p = 0.80) and symmetry of the funnel plots (Scheme 3,
panel A). No study was sensitive enough to alter the results (Scheme 3, panel B). In meta-
regression analysis, we found a positive correlation between serum FT4 levels and SF levels
in the study population. Indeed, the magnitude of mean serum FT4 levels in patients and
controls increased as a function of their SF levels (Scheme 4).
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Figure 3. Forest plot of mean difference in serum free thyroxin levels between patients and controls
and subgroup analysis in pregnant and non-pregnant women. Green boxes estimate the study results,
and give a representation of the size of the studies. Horizontal lines represent the 95% confidence
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interval. The black diamond represents the point estimate and confidence intervals of the combined
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2022 [20]; Yu et al., 2015 [28]; Zhang et al., 2019 [23]; Zhang et al., 2020 [22]; Maldonado-Araque et al.,
2015 [29]; Okuroglu et al., 2020 [21].

Nutrients 2023, 15, x FOR PEER REVIEW 27 of 20 
 

 
Nutrients 2023, 15, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/nutrients 

 
Scheme 3. Funnel plot (A) and sensitivity analysis (B) of mean difference in serum free thyroxin 
(FT4) levels in patients and controls. In Panel A, circles indicate the standard error plotted by the 
standard difference in means of each study. Rhombus indicates a standard difference in means of 
zero. In Panel B, black boxes estimate the study results, and give a representation of the size of the 
studies. horizontal lines represent the 95% confidence intervals of the study results, with each end 
of the line representing the boundaries of the confidence interval. The blue diamond represents the 
point estimate and confidence intervals of the combined studies.  Fu et al., 2017 [25]; He et al., 2018 
[24]; Li et al., 2016 [26]; Veltri et al., 2016 [27]; Wang et al., 2022 [20]; Yu et al., 2015 [28]; Zhang et al., 
2019 [23]; Zhang et al., 2020 [22]; Maldonado-Araque et al., 2015 [29]; Okuroglu et al., 2020 [21]. 

Scheme 3. Funnel plot (A) and sensitivity analysis (B) of mean difference in serum free thyroxin (FT4)



Nutrients 2023, 15, 4790 12 of 19

levels in patients and controls. In Panel (A), circles indicate the standard error plotted by the standard
difference in means of each study. Rhombus indicates a standard difference in means of zero. In
Panel (B), black boxes estimate the study results, and give a representation of the size of the studies.
horizontal lines represent the 95% confidence intervals of the study results, with each end of the
line representing the boundaries of the confidence interval. The blue diamond represents the point
estimate and confidence intervals of the combined studies. Fu et al., 2017 [25]; He et al., 2018 [24];
Li et al., 2016 [26]; Veltri et al., 2016 [27]; Wang et al., 2022 [20]; Yu et al., 2015 [28]; Zhang et al.,
2019 [23]; Zhang et al., 2020 [22]; Maldonado-Araque et al., 2015 [29]; Okuroglu et al., 2020 [21].
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Scheme 4. Meta-regression showing the influence of serum ferritin (SF) levels (moderator) on the
mean difference in serum free thyroxin (FT4) levels among patients in the study population. The size
of the circles indicates the sample size of the study. The red line represents linear predictions for the
mean difference in FT4 as a function of the mean absolute increase in SF. The curved lines indicate
the 95% confidence interval lines around the regression line.

3.2.3. Free Triiodothyronine

Four studies, including 2047 patients and 6143 controls, evaluated serum FT3 levels.
FT3 was significantly lower in patients than in controls, despite the presence of interstudy
heterogeneity (MD: −0.22 pmol/L; 95% CI −0.32, −0.12; I2 = 99%, p < 0.00001). Its levels
were lower in both pregnant (MD: −0.40 pmol/L; 95% CI −0.75, −0.04; I2 = 97%, p = 0.03)
and non-pregnant women (MD: −0.10 pmol/L; 95% CI −0.12, −0.07; I2 = 11%, p < 0.00001)
(Figure 4).

The analysis showed the absence of publication bias as inferred by Egger’s test (in-
tercept −6.9, 95% CI −312.2; 298.3; p = 0.93) and symmetry of the funnel plots (Scheme 5,
panel A). Three studies were found to be sensitive enough to alter the conclusion that FT3
is lower in patients than in controls [20,21,25] (Scheme 5, panel B).
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Figure 4. Forest plot of the mean difference in serum free triiodothyronine levels between patients
and controls and subgroup analysis in pregnant and non-pregnant women. Green boxes estimate the
study results, and give a representation of the size of the studies. Horizontal lines represent the 95%
confidence intervals of the study results, with each end of the line representing the boundaries of the
confidence interval. The black diamond represents the point estimate and confidence intervals of
the combined studies. Fu et al., 2017 [25]; Wang et al., 2022 [20]; Maldonado-Araque et al., 2015 [29];
Okuroglu et al., 2020 [21].
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In Panel (B), black boxes estimate the study results, and give a representation of the size of the studies.
horizontal lines represent the 95% confidence intervals of the study results, with each end of the
line representing the boundaries of the confidence interval. The blue diamond represents the point
estimate and confidence intervals of the combined studies. Fu et al., 2017 [25]; Wang et al., 2022 [20];
Maldonado-Araque et al., 2015 [29]; Okuroglu et al., 2020 [21].

3.3. Results of the Qualitative Synthesis

All studies showed a significant reduction in blood FT4 levels in patients with ID, and
only two studies [20,29] showed a significant reduction in plasma FT3 levels. Regarding
TSH levels, seven studies [20–22,24–27] reported a direct relationship with the severity
of ID; ID patients in these studies had higher values than the control group without ID.
However, three studies did not show significant differences in TSH levels between patients
with and without ID [23,28,29]. This may be due to the different populations included
across the studies. Indeed, some included non-pregnant women [23,28] and others included
the general population [29].

Regarding autoimmunity, in patients with ID, an increase in TPOAb positivity preva-
lence was reported in four studies [21,23,26,27], while TgAb positivity prevalence was
reported in two studies [21,22]. Okuroglu and colleagues reported an increase in the posi-
tivity prevalence of both autoantibodies in non-pregnant women of childbearing age [21].
Zhang Y. and collaborators are the only ones to report that ID is a risk factor for TgAb
positivity and not for TPOAb during the second trimester of pregnancy [22]. However,
in another study [23], the prevalence of isolated TPOAb positivity in the ID group was
significantly higher than the control group in non-pregnant women, while the prevalence
of isolated TgAb positivity was similar between the ID group and the control group, both
in pregnant and non-pregnant women. The difference could be due to the presence of
non-pregnant women in the second study. Li and colleagues, instead, showed greater
positivity prevalence for TPOAb in women with ID in early pregnancy than in the control
group [26]. Only one study [24] found no differences in TPOAb and TgAb levels in relation
to SF levels.

4. Discussion

ID is the most prevalent nutritional deficiency worldwide. The most affected popula-
tions are pregnant women and women of childbearing age. The World Health Organization
reports that ID is the leading cause of anemia in pregnant women (38.2%) and women of
reproductive age (29.4%) [31]. Several studies have shown that ID has negative effects on
thyroid function. Iron is an essential trace element for the biosynthesis and function of
thyroid hormones. In the body, iron is mainly contained in hemoglobin and myoglobin, but
a small part is present in various cytochromes and other hemoproteins, including thyroper-
oxidase (TPO), where it represents the central atom of the prosthetic groups in their active
site. Expressed inside thyrocytes, TPO is the key enzyme in thyroid hormone synthesis,
catalyzing the H2O2-dependent oxidative reaction of iodide ions to elemental iodine which,
in turn, will be incorporated into thyroglobulin to produce thyroid hormones [32].

The most important clinical indicator of ID is SF, which reflects the body’s iron stores.
Restoration of adequate SF concentrations promotes the recovery of normal thyroid function
in ID girls [33]. Furthermore, in patients with ID and subclinical hypothyroidism, combined
treatment with levothyroxine and iron supplements demonstrated better effects than either
factor alone [34,35].

Most studies in the literature related to ID and thyroid function have been conducted
on pregnant women and women of childbearing age, while only one study has been carried
out on large samples of the general adult population [29]. Subclinical hypothyroidism
ranges from 4% to 17% during pregnancy, and thyroid hormones play a crucial role in brain
development, especially during the first months of intrauterine life [36]. Impaired thyroid
function and TAI during pregnancy are associated with gestational diabetes mellitus,
blood hypertension, miscarriage, fetal dysplasia, and neurological deficits in children [37].
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Pregnant women are more vulnerable to ID as their needs increase due to the expansion
of the erythrocyte mass and growth of the fetus and placenta [38]. Zimmermann and
colleagues reported that an insufficient maternal iron reserve predicts lower blood total
thyroxin levels and higher TSH levels during pregnancy [39].

In this systematic review and meta-analysis, we collected studies regarding the corre-
lation between ID and thyroid function. A careful literature review collected cross-sectional
studies comparing SF levels and thyroid function markers, specifically, TSH, FT4, FT3,
TPOAb, and TgAb, in the general population of adults, pregnant women, or women of
childbearing age.

Wang and colleagues, in their study of Chinese pregnant women with ID or ID anemia,
observed that serum FT3 and FT4 values had a significant downward trend in the ID and ID
anemia groups, with lower levels in the second group compared with the control group. In
addition, significantly higher TSH values have been reported in pregnant women with ID or
ID anemia. Finally, compared with the control group, the rate of hypothyroidism was higher
in both these groups of patients. Using canonical correlation analysis, SF and hemoglobin
values were positively correlated with FT3 and FT4 and negatively correlated with TSH,
thus providing further evidence of the correlation between iron status and thyroid function.
This was further validated by ROC curve analysis using selected variables from Lasso’s
model to predict the level of FT4, where the accuracy was good [20].

Another study of Chinese women in the first trimester of pregnancy shows that
the serum TSH level in women with SF < 20 ng/dL was significantly higher than in
the SF 20–100 ng/dL and SF > 100 ng/dL groups. Conversely, the blood FT4 level in
women with SF < 20 ng/dL is significantly lower than in groups with SF > 20 ng/dL.
Furthermore, the relationship between urinary iodine concentration (UIC) with iron status
and thyroid function was evaluated. Observations showed a positive and significant
association between UIC and SF and between UIC and FT3 when UIC is less than 249 µg/L.
In addition, observations showed a negative and significant association between UIC and
SF and between UIC and FT3 levels when UIC is greater than 250 µg/L. These data indicate
that more than adequate iodine nutritional status is associated with reduced SF and FT3
concentrations [25]. These results are in line with other studies where UIC correlates
positively with serum TSH during pregnancy [40,41].

In contrast to the two previous studies, Yu and colleagues reported that both pregnant
and non-pregnant women with ID had an increased risk of isolated hypothyroxinemia,
with no significant differences in serum TSH levels [28]. The difference in results may be
explained by the different iodine status, the presence of non-pregnant women in the study
by Yu and colleagues, and the use of different cut-offs to define ID. Another explanation
could be the lack of TAI assessment in these studies [20,25,28].

A study on a large sample of subjects without thyroid diseases, representative of the
Spanish adult population, shows that subjects with SF levels < 30 mL/dL were more likely
to have low FT4 and FT3 levels than subjects with SF ≥ 30 mg/dL, confirming a possible
association between ID and hypothyroxinemia. However, mean TSH concentrations did
not show significant changes [29].

Okuroglu and coworkers, in their study, support the association between ID and TAI.
In the ID group, positivity for TPOAb plus TgAb was significantly higher than in the
control group [21]. Zhang and colleagues found lower FT4 levels in pregnant and non-ID
Chinese women than in the control group, but the median TSH levels were similar in both
the ID and control groups. Regarding TAI, the prevalence of isolated TPOAb positivity
was higher in the ID group than in women without ID. After adjusting for confounding
factors in multivariable logistic regression, ID remained associated with isolated TPOAb
positivity in both pregnant and non-pregnant women. However, ID was not associated
with isolated TgAb positivity [23]. These results are in line with two previous studies in
which the prevalence of positivity for TPOAb was higher in women with ID during early
pregnancy and in which SF levels were directly proportional to FT4 levels and inversely
proportional to TSH levels [26,27].
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The mechanism by which ID is associated with TPOAb but not TgAb positivity
remains unclear. It has been hypothesized that ID may produce post-translational changes
in TPO, leading to the generation of new epitopes or the exposure of previously hidden
epitopes and thus increasing the immunogenicity of TPO. Another hypothesis is that the
decrease in TPO activity resulting from ID causes an increase in TAI [27].

Zhang et al. focused on the association of TAI and ID during the second trimester of
pregnancy in Chinese women. Unlike other studies, they were the first to report that ID
was a risk factor only for increased TgAb levels and not for TPOAb [22]. As previously
mentioned, ID reduces the activity of heme-containing enzymes including myeloperoxidase
(MPO). Women with ID may exhibit increased MPOAb which, in turn, may cross-react
with AbTPO and, consequently, lead to increased thyroid autoantibody positivity [42]. At
present, the mechanisms by which SF deficiency increases TgAb levels is not known. It
is hypothesized that following SF deficiency, the decrease in FT4 results in a reduction of
feedback inhibition on TSH, thereby increasing its levels. Since TSH promotes TG mRNA
and TG antigen expression, this may lead to increased TgAb production [43].

Only one study [24] has excluded a correlation between TAI and ID in second-trimester
pregnant women with normal urinary iodine levels, thus emphasizing an important role of
this micronutrient in the pathogenesis of TAI [44].

Analysis of data on TSH and free thyroid hormones showed that their serum levels
were significantly lower in ID patients than in controls, with lower values in pregnant
women than in non-pregnant women. The behavior of TSH is curious: it goes in the
same direction as FT4. This could be explained by the heterogeneity of the examined
population, as serum TSH levels were lower in pregnant women than in the general
population. However, the FT4 values should be more reliable than the TSH levels since the
significance of the latter is lost in the sensitivity analysis. Meta-regression analysis shows
that mean serum TSH and FT4 levels in patients and controls increase as a function of SF
values, indicating a possible relationship between iron status and thyroid function.

ID may also be associated with an increased risk of developing TAI, particularly
in pregnant women, and should be included in the screening of women planning to
have a child. However, most of the studies considered do not take into account iodine
status, and some of them are conducted in areas with mild iodine deficiency. Also, other
parameters should be considered. First, the role of inflammation on SF, particularly during
pregnancy, as well as the role of other hormones that might affect thyroid function and
iron status. Inflammation hinders the interpretation of iron biomarkers, particularly serum
ferritin and hepcidin. In fact, several pro-inflammatory cytokines increase the synthesis
of ferritin and hepcidin with a consequent increase in iron trapping within cells. In case
of acute inflammation, serum ferritin levels of 50 ng/mL or greater may indicate ID.
Therefore, inflammation reduces the predictive values of ferritin and hepcidin in the case
of ID [45]. Recent studies have shown a correlation between hepcidin levels and the risk of
developing subacute and chronic autoimmune thyroiditis. A reduction in hepcidin levels
has been observed in patients with Hashimoto’s thyroiditis in whom euthyroidism has
been reverted [46]. Thus, it is possible that hypothyroidism results in increased hepcidin
with a consequent reduction in iron absorption. Testosterone is negatively associated with
serum ferritin. In obese hypogonadal elderly men receiving testosterone replacement
therapy, serum ferritin levels significantly decreased, suggesting a regulatory function of
testosterone on ferritin synthesis. Indeed, in obese patients, decreased testosterone levels
can lead to an increase in serum ferritin [47,48]. Insulin resistance and metabolic syndrome
also appear to positively correlate with serum ferritin levels [49]. Studies conducted in
pregnant women did not consider the role of human chorionic gonadotropin (hCG) on TSH
levels. In fact, hCG has structural similarities with TSH, allowing it to bind to TSH receptors
at the thyroid level, stimulating the secretory activity of the gland. This explains the slight
increase in serum free thyroxine levels during the first weeks of pregnancy, accompanied
by a reduction in serum TSH concentration [50]. Finally, the different studies considered
different SF cut-offs for the diagnosis of ID. However, as indicated in the guidelines, all
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studies report SF values <20 ng/dL as the cut-off for the diagnosis of ID, and the lower
limit of normal for most laboratories is between 15 and 30 ng/dL [51].

This systematic review and meta-analysis has some limitations. First, the lack of
studies conducted on the general population. Most of the studies are performed on
pregnant women and this could affect the results. Second, the reviewed studies considered
different SF cut-offs for the diagnosis of ID. Furthermore, most studies in the literature that
include a control group are cross-sectional, so we do not know the results of prospective
or longitudinal studies. Finally, many of the studies analyzed do not consider the iodine
status of the patients examined, which as is known influences thyroid function. In addition
to iodine, other parameters such as inflammation and the action of other hormones affect
iron status and thyroid function and could therefore influence the results.

In conclusion, ID may adversely affect thyroid function and autoimmunity, especially
in some groups, such as pregnant women and women of childbearing age. The articles
analyzed in this systematic review and meta-analysis are cross-sectional studies, and it was
not possible to distinguish randomness between ID and thyroid function. The relationship
between trace elements and thyroid disorders is still unclear, and more research is needed
to clarify this issue and improve our understanding of how trace elements mediate thyroid
function and metabolism. Prospective randomized controlled trials are needed to clarify
the importance of iron’s nutritional status on thyroid health, including in the general
population or in other patient groups.
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