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The human gut microbiota is an ecosystem harboring trillions of microorganisms, en-
compassing bacteria, viruses, archaea, fungi, and protozoa [1]. Altogether, these organisms
participate in absorptive, metabolic, and immune functions in our intestines [2]. Changes
in the gut microbiota composition occur in gastrointestinal and extra-gastrointestinal
diseases [3,4]. Some metabolic diseases include diabetes and insulin resistance, obesity, hy-
pertension, dyslipidemia, and metabolic-associated fatty liver disease (namely, MAFLD) [5].
The demodulation of the gut microbiota is called “dysbiosis” and can be caused by antibi-
otic and pre- and probiotic usage [6,7]. These living organisms beneficially affect human
health [7]. Traditional culture-based techniques and more recent metagenomic assess-
ments have allowed the use of gut dysbiosis as a disease biomarker to study treatment
responses [8].

However, the products of microbial metabolism can significantly affect human health,
and research efforts must focus on their study and characterization [8]. The birth of
metabolomics, namely the profiling of metabolites in biofluids, cells, and tissues, has paved
the road toward a deeper and better understanding of human metabolic processes [9]. By
definition, metabolites include substrates, the products of the metabolism of cells, and
their crucial functions (e.g., energy production and storage, signal transduction, and apop-
tosis) [10]. Metabolites are usually produced by the human body, but they can also be
produced by microorganisms, xenobiotics, and dietary sources [11]. Metabolites’ functions
range from the regulation of epigenetic mechanisms to the maintenance of the pluripo-
tency of embryonic stem cells [12,13]. In addition, metabolites, such as ATP, acetyl-CoA,
NAD+, and Sadenosyl methionine (SAM), can also regulate the post-translational mod-
ification of protein activity [14]. Metabolic products can also maintain and/or affect the
cellular/extracellular environment of production such as in cancer cells and tissues [15].

Thus, the knowledge of metabolites and their entire composition, namely “metabolome”,
is crucial for maintaining health and managing disease in humans. Metabolomics is based
on two main methodologies that involve metabolite recovery and identification: untar-
geted and targeted mass spectrometry-based metabolomics. The first method measures the
metabolites present in an extracted sample without knowledge of the metabolomic mecha-
nisms behind it. The second one provides higher sensitivity and selectivity vs. untargeted
methods because metabolites are analyzed according to hypothesized pathways. Indeed,
integrating targeted analysis helps to validate the results from untargeted techniques [16].
The most recent informatics, stable isotope-assisted metabolomics, and big data integrative
analysis across different omics (namely, genomics, epigenomics, proteomics, and transcrip-
tomics) allow orthogonal metabolomics constructs that are the basis for metabolic processes
understanding. For example, this orthogonal approach has shown the role of bacterial
biofilms in cancer pathophysiology and the metabolic regulation of cell pluripotency. It
has provided data on new metabolic treatments for cardiovascular, pancreatic beta-cell
dysfunction, cancer, and ischemia-reperfusion injuries [17].
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The products of gut microbial metabolism are post-biotics. The fine interaction be-
tween the intestinal metabolome and humans is involved in disease pathogenesis and has
emerging strong therapeutic implications.

In this Special Issue, we want to highlight the effect of gut microbial products on
human health, with a special focus on probiotics’ metabolome as a promising treatment for
gastrointestinal and systemic diseases.
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