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Drzymała-Czyż, S. Selenium in

Infants and Preschool Children

Nutrition: A Literature Review.

Nutrients 2023, 15, 4668. https://

doi.org/10.3390/nu15214668

Academic Editors: Renata

Markiewicz-Żukowska and
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Abstract: Selenium (Se), an essential trace element, is fundamental to human health, playing an
important role in the formation of thyroid hormones, DNA synthesis, the immune response, and
fertility. There is a lack of comprehensive epidemiological research, particularly the serum Se
concetration in healthy infants and preschool children compared to the estimated dietary Se intake.
However, Se deficiencies and exceeding the UL have been observed in infants and preschool children.
Despite the observed irregularities in Se intake, there is a lack of nutritional recommendations
for infants and preschool children. Therefore, the main objective of this literature review was to
summarize what is known to date about Se levels and the risk of deficiency related to regular
consumption in infants and preschool children.
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1. Introduction

Selenium (Se) is a naturally occurring element essential to human health in trace
amounts but is harmful in excess. However, there is a narrow range between dietary
deficiency and toxic levels, and thus it is necessary to carefully control Se intake, especially
in infants and children [1,2].

Globally, serum Se concetration is highly variable and dependent on the environment
and eating habits [3,4]. Few epidemiological studies have reported human serum Se
concentrations and dietary intake estimates and the frequency of global Se deficiency
or excessive consumption has not been determined. However, Se deficiency is a health
concern in some areas of China [5,6], Africa, especially sub-Saharan African countries such
as Ethiopia or Malawi [3,7,8], and the Andean regions of South America [9]. Se deficiency
has also been observed in Hungary [4], Switzerland [10], Poland [11], and some areas in
Russia [12].

Furthermore, premature infants and patients fed only with parenteral and enteral
nutrition without Se supplementation are particularly vulnerable to Se deficiency [13].
Additionally, children with food allergies, phenylketonuria, or other diet-related diseases
may be at risk of Se deficiency due to their diet being restricted from many Se-rich prod-
ucts [14,15].

Excessive selenium intake by children and infants is rare [16,17] and often caused by
excessive consumption of Se supplements or Brazil nuts [17,18]. According to the European
Food Safety Authority (EFSA), there is no reported risk with the current levels of Se intake
in European countries from food (excluding food supplements) in toddlers and children,
and selenium intake arising from the natural content of foods does not raise reasons for
concern [19].

We believe that there is a risk of Se deficiency in infants and preschool children related
to their daily consumption. Therefore, the main objective of this literature review was
to summarize what is known to date about Se levels and the risk of deficiency related to
regular consumption in infants and preschool children.
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Methodology

Relevant articles regarding Se in the diet of infants and children were retrieved from
PubMed, Scopus, Web of Science, Embase, and Cochrane Library using the following
keywords: “selenium” and “food products” and “healthy children” or “selenium” and
“food products” and “healthy infants”. An additional search was performed for selenium
content” and “healthy children” or “selenium content” and “healthy infants”. Duplicate
articles and studies in languages other than English or adults were excluded.

Only studies on infant and preschool children (age: birth–5 years) were included in
the analysis. The analysis took into account the type of study, country, age group, gender,
demographic characteristics, Se intake, sources of Se in the diet, and serum Se levels.

All available studies were included in the analysis, without time limits, theoretically
since 1973, but after narrowing the search with exclusion terms, 18 manuscripts were finally
included, 5 of which were before 2000 (one work from 1982, 1995, 1996, 1998, and 1999,
respectively). The reference lists of retrieved articles were screened manually to find the
potentially relevant literature (Figure 1).
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2. Selenium in the Human Body
2.1. Main Function of Selenium in the Human Body

The biological functions of Se depend on its chemical form. In humans, Se effects are
mostly through its incorporation into selenoproteins [20] such as antioxidant properties,
formation of thyroid hormones, DNA synthesis, the immune response, and fertility [21,22].
Se is an important component of glutathione peroxidases (GPx), thioredoxin reductases
(TrxR), and iodothyronine deiodinases (IDD) [23]. Furthermore, Se is involved in the regu-
lation of T lymphocytes, B lymphocytes, NK cells, and neutrophils [24]. It has immune and
anti-cancer properties [25] and is essential for testosterone biosynthesis and the formation
and normal development of spermatozoa [26]. It also plays a crucial role in the develop-
ment of the fetus, infant, and child. Some studies showed that Se deficiency in pregnancy
can lead to an increased frequency and severity of early and late gestosis, fetal hypotrophy,
hypoxia, and increased risk of miscarriage [27].

2.2. Symptoms of Selenium Deficiency and Excess

Schwarz and Foltz first showed that Se is an active component of yeast factor 3 and
prevents necrotic liver degeneration in rats [28]. In humans, Se deficiency causes several
serious diseases, such as Keshan and Keshan–Beck disease, thyroid, cardiovascular or
fertility disorders [23,26]. Keshan disease is an endemic cardiomyopathic disorder that
mainly affects children and women of childbearing age in some endemic areas of China
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where the soil is poor in Se. It is manifested by acute heart failure or chronic moderate
to severe heart enlargement and can lead to death [29–31] but can be prevented by Se
supplementation [32]. Kashen–Beck disease is an endemic chronic osteoarthritic disease
causing deformity of the affected joints in agricultural regions of eastern Siberia, northern
Korea, and central regions of China [33]. This disease usually affects children aged 5–15
and the symptoms include joint pain, morning joint stiffness, impaired elbow flexion and
extension, enlarged joints, and limited movement [34,35].

Se deficiency is also related to some thyroid disorders such as the iodine deficiency
disorder goitre, cretinism, Hashimoto’s thyroiditis, and Graves’ disease. Se deficiency
reduces thyroid hormone synthesis as it decreases the function of selenoproteins, in partic-
ular IDD, which are responsible for the conversion of thyroxine (T4) to triiodothyronine
(T3) [29,31,36–38]. Increased cardiovascular disease mortality has also been associated with
Se deficiency [39], probably related to the reflection of sub-optimal GPx4 activity in the
prevention of LDL oxidation, with subsequent uptake by endothelial cells and macrophages
in arterial blood vessels [40].

Se plays a significant role in the reproductive system [41,42]. A mild Se deficiency
can lead to impaired immune function, such as cell oxidation, degeneration, and dam-
age to immune system organs, resulting in reduced immunity and consequently various
diseases [4].

Se deficiency in humans is mainly characterised by peripheral myopathy with muscle
weakness and pain, cardiomyopathy with an enlarged heart, arrhythmias and chronic
congestive heart failure, elevated transaminase and creatine kinase activities, and whitening
of nail beds [43]. Other clinical manifestations of Se deficiency in infants and children
are growth retardation, alopecia with pseudo-albinism, erythrocyte macrocytosis, and
hypothyroidism [43–46]. Additionally, Se deficiency in children has negative effects on
growth and brain development [47,48]. In premature infants, Se supplementation can
reduce the incidence of sepsis but further research is still needed [49]. Se plays an important
role in fetal development [50,51] and there is an association between lower maternal Se
levels and the delivery of small-for-gestational-age children, suggesting that Se deficiency is
a possible risk factor for intrauterine growth retardation [52]. Some studies have shown an
inverse correlation between Se levels and the risk of preeclampsia, with Se supplementation
during pregnancy reducing the incidence of preeclampsia [53]. It is also worth emphasizing
that reduced Se levels are also observed in patients with phenylketonuria (due to a diet
limiting Se-rich products) [54], cystic fibrosis [55,56], renal failure [57] or autoimmune
diseases (increased antioxidant stress) [58].

Se is not an innocuous micronutrient and in excess, is a highly toxic agent [59]. How-
ever, globally overt Se toxicity in humans is much less common than deficiency [29,60]. Se
toxicity in humans depends on the chemical form, concentration, time of exposure, and
several compounding factors [29]. Acute or chronic Se poisoning (selenosis) may lead to
gastrointestinal problems, poor dental health, a metallic taste in the mouth, tingling and
inflammation of the nose, the typical garlic odor of the breath, diseased nails, and nail
loss, dermatitis and skin discolouration, loss of hair fluid in the lungs, pneumonia, lack
of mental alertness, peripheral neuropathy, and gastric disorders [29,61,62]. The acute
selenium intoxication due to the intake (in the nine cases) of nuts of the Lecythis ollaria tree
in a Se-rich soil area of Venezuela resulted in vomiting and diarrhoea followed by hair and
nail loss and the death of a 2-year-old boy [62].

Population studies in Se-rich soil areas showed elevated urinary Se levels but no defi-
nite links to clinical symptoms of selenosis. However, a higher incidence of gastrointestinal
problems, poor dental health, diseased nails, and skin discolouration were reported [61].
Other studies conducted in China in the 1960s observed an association between the con-
sumption of plants with a high Se content (grown on soil containing >300 mg kg−1 Se) and
hair and nail loss, disorders of the nervous system, respiratory system, skin, poor health
teeth, garlic breath, and paralysis [63]. Currently, the main risk of Se poisoning may be the
uncontrolled intake of Se supplements [64].
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Moreover, poor vitamin E status increases Se toxicity and the nutritional need for the
element, whereas sulphate counteracts the toxicity of selenate but not of selenite or organic
Se and increases Se urinary excretion [29]. Currently, the molecular mechanism of the toxic
effect of Se is unclear [65].

2.3. Selenium Dietary Requirement in Infants and Preschool Children

Current recommendations for daily Se intake are based on levels maximising the
activity of plasma GPx. Based on the EFSA recommended intakes of Se for infants were
extrapolated from the estimated Se intake with breast milk of younger exclusively breast-
fed infants and taking into account differences in reference body weights. For children, the
intakes were extrapolated from the adequate intake (AI) for adults by isometric scaling and
application of a growth factor [65]. The estimated Se adequate intake of infants from birth
is 12 µg/day and increases with age to 20 µg/day for children aged 4–6. Detailed adequate
intake and upper level depending on age is presented in Table 1 [19,65].

Table 1. Recommended adequate intake and upper level of Se for infants and preschool children.

Age AI µg/Day UL µg/Day

0–6 months 12 45 *

7–11 months 15 55

1–3 years 15 70

4–6 years 20 95
* According to the EFSA, the upper level (UL) was extrapolated for infants from 4–6 months when there was no
data for younger infants.

The WHO-FAO-IAEA recommended Se intake (World Health Organization–Food and
Agricultural Organization of the United Nations–International Atomic Energy Agency)
based on epidemiologic evidence derived from areas of China endemic or non-endemic for
Keshan disease are presented in Table 2 [66].

Table 2. The WHO-FAO-IAEA recommended Se intakes (µg/day).

Age Group Assumed Weight
(kg)

Average Normative
Requirement of Se (µg/Day) Recommended

Nutrient Intake
(RNI) of SePer kg Body

Weight/Day Total/Day

0–6 months 6 0.85 5.1 6

7–12 months 9 0.91 8.2 10

1–3 years 12 1.13 13.6 17

4–6 years 19 0.92 17.5 22

3. Main Dietary Selenium Sources in Infants and Preschool Children
3.1. Selenium in Dietary Products

Se in the diet may occur in organic or inorganic form, with the most common Se
compounds in the diet being selenomethionine, selenocysteine, Se-methylselenocysteine,
and selenite [67–69]. Selenomethionine is the predominant Se species found naturally
in foods such as cereals, nuts (especially Brazil nuts), legumes, and yeast. The dietary
sources of selenocysteine are of animal origin, especially meat [70], while the sources
of Se-methylselenocysteine are vegetables belonging to the Brassica (broccoli, Brussels
sprout) and Allium (garlic and onion) species [71,72]. Selenite occurs naturally in food
in small amounts and the main source of inorganic Se compounds in the human diet is
supplementation [73]. Inorganic Se is also observed in some foods (e.g., cabbage) and
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drinking water [74–76]. It is worth noting that the Se concentration in food products varies
and depends on the origin and culinary processing [77].

3.2. Breast Milk and Infant Formula

Human breast milk is the main source of Se for infants but the Se concentration and
form varies and depends on the mother’s diet. Se in breast milk is secreted as organic
compounds, either in proteins or amino acids [78], and does not contain an inorganic
Se form. There are up to nine selenoproteins, mainly glutathione peroxidase (in the
largest quantity) and selenocysteine, selenocystine, and selenomethionine, respectively [79].
In European countries, the average Se concentrations in mature breast milk are around
15–20 µg/L [80–83], which meets the daily AI requirement for this element in infants.
However, in some cases, the Se content in breast milk is insufficient [80,81]; therefore,
future research should verify whether infants meet the recommended Se intake and assess
the influence of the concurrent diet of lactating mothers on the Se content of their milk,
especially in mothers on a diet poor in Se-rich products. Table 3 presents Se content in
human milk and infant formula.

Formula is the basis of nutrition for infants who cannot be breastfed. These are special
preparations that are supposed to resemble breast milk as closely as possible. The Se
content in formula for infants is varied. According to the Delegated Regulation (EU), the
Se level is between 3.0 and 8.6 µg per 100 kcal regardless of the type of formula (infant
formula, follow-on formula, and formula for special medical purposes) [84,85]. At the
same time, the United States Food and Drug Administration (FDA) recommends levels
between 2.0 and 7.0 µg per 100 kcal [86]. The EFSA Panel on Nutrition notes that exclusively
formula-fed infants being fed formula with the currently highest permitted concentration
of selenium as 8.6 µg per 100 kcal will consume an average of 43 µg/day Se using mean
formula intakes in the first half year of life of 500 kcal/day as a basis. However, infants
with increased nutritional needs consuming the maximum energy of about 700 kcal/day
would have a Se intake of 60 µg/day. Therefore, infants aged 4–6 months and 7–11 months
who are predominantly fed formula with the highest Se concentration may exceed the
UL of 45 µg/day and 55 µg/day, respectively, when such milk is their only source of
nutrition [19]. There is a need for studies evaluating the Se intake of infants exclusively
formula-fed.

Only the inorganic form of Se is currently permitted in infant formula milk in most
countries, except for Australia and New Zealand, which allow the use of selenomethio-
nine [87]. In the European Union, the possible Se forms occurring in infant formula and
follow-on formula are sodium selenate and sodium selenite. Additionally, food for special
medical purposes includes sodium hydrogen selenite or Se-enriched yeast [88]. The FDA
does not recommend a particular selenium form for infant formula [78].

Table 3. Se content in breast milk and infant formula.

Food Source Average Content Comments

Breast milk 2.2–3.0 µg/100 kcal * Se content depends on the maternal diet
Infant formula 3.0–8.6 µg/100 kcal According to the Delegated Regulation (EU)

2.0–7.0 µg/100 kcal According to the FDA
* Taking into account that 100 mL of breast milk has 67 kcal [89].

3.3. Main Dietary Selenium Sources after Weaning in Children

After weaning, the main Se sources besides human milk and formula are fish, meat,
eggs, dairy products, and cereals (Table 4) [90]. Consumption of these food products should
fully cover the demand for this element.
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Table 4. Main Se sources in children aged 1 year and older.

Food Source Average Content µg/g Average Se Content µg/per Serving
(Serving Size)

Fish [75] 0.4–4.3 20–215 µg [50 g]
Meats (mussels) [75] 0.03–0.45 1.5–22.5 µg [50 g]
Yolk from egg [91] 0.12–0.42 1.2–4.2 µg [10 g–1⁄2 piece]

Cereals [92] 0.01–0.55 0.75–41.25 µg [75 g]
Broccoli [93] 0.02 1 µg [50 g]

Cow’s milk [94] 0.01–0.02 0.5–1 µg [50 mL]
Gouda cheese [94] 0.08 1.2 µg [15 g–1 one slice]

Yoghurt [94] 0.02 1 µg [50 g]

3.3.1. Fish Products

Fish are a very good source of Se in the human diet but the content depends on the
species, place of catch, and method of culinary processing [95,96]. Marine fish have a higher
Se content compared to freshwater fish [95]. Examples of marine fish include tuna, bluefish,
red snapper, and sardine, with freshwater fish including pike (northern), bass (largemouth),
and walleye [75,97,98]. Additionally, Se concentration in fish depends on the origin, e.g.,
Se concentrations in tuna from Spain and Portugal are 0.92 ± 0.01 µg/g [98], from New
Jersey is 0.43 ± 0.04 µg/g [99], and from Japan is 0.75 µg/g [100]. It is worth noting marine
fish accumulate relatively high levels of Se which are strongly correlated with the mercury
content in several organs, including muscle tissue [97,101]. However, some studies showed
that Se counteracts mercury, especially methylmercury toxicity [101,102]. The mechanism
of the observed relationship between mercury and selenium is not fully known.

The Se content in fish from different locations varies greatly, ranging between
60–630 ng/g, with a high Se content observed in fish from New Zealand and Australia [96].
The fish preparation process affects the Se, with cooking in water reducing Se by 36–
46% [103] but mussels retrain Se when boiled or fried [95].

Food safety in children’s nutrition should be taken into account, as the risk of heavy
metals and other chemical and biological hazards will be of key importance in fish con-
sumption. Therefore, fish from a verified source and after prior heat treatment (reducing the
pathogenic microorganism) should only be served [104]. Barone et al. suggested that chil-
dren should consume fish in moderation because a large consumption pattern, especially of
swordfish and tuna, might be of health concern regarding the mercury content. However,
all analysed fish mercury levels were not above the European Community regulatory limits
in their study [105].

According to the European Society for Pediatric Gastroenterology Hepatology and
Nutrition (ESPGHAN) recommendations, fatty marine fish are generally recommended for
infants after weaning, such as Atlantic herring, farmed Norwegian salmon, sprat, sardines,
farmed trout, flounder, cod, Atlantic mackerel, and hake. Infants should not be given
predatory fish such as swordfish, shark, king mackerel, tuna, and tilefish. Fish should be
given in small portions, no more than 1–2 times a week, observing the child’s reaction
(e.g., any allergic reactions) [106].

3.3.2. Meat, Eggs and Milk Products

Meat, eggs, and milk products are rich in Se, although its amount is lower than in
fish. However, due to the high consumption of these products in many countries, they are
an equally valuable source of this element. The average Se content in these products is
presented in Table 4.

The Se concentration in meat varies, depending on the Se content in the food consumed
by animals [107]. It also depends on the type of meat, being higher in pork (0.14–0.45 µg/g)
than in lamb (0.03 µg/g) or beef (0.08–0.2 µg/g) [108]. A high Se content is also observed
in offal (0.17–0.30 µg/g) [109].
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The Se content in eggs is influenced by the Se level in the animal diet [110]. The
average Se content in a whole egg is about 0.17 ug/g, which means that eating one egg
(55 g) will allow the consumption of 9.35 µg of Se [94]. Some studies showed that eggs
from hens fed natural Se contained more Se than those from hens fed selenite [111]. Other
studies evidenced that hens fed barley had a significantly higher concentration of Se in the
egg yolk and egg white in comparison with those receiving sodium selenite [112]. Hens
fed from organic sources of Se produce eggs containing 10 to 29 µg of Se [113].

The Se content in milk and dairy products is much lower (Table 4) but since they are a
natural source of calcium, their consumption in humans should be increased. According
to Yanardag et al., Se content in dairy products varies and depends on origin: in butter
(0.03–0.22 µg/g), coffee cream (0.03–0.25 µg/g), cheeses (0.02–0.29 µg/g), and milk powder
(0.06–0.10 µg/g). Additionally, they observed that Se-rich sources were proteinaceous foods
such as white cheese [114]. Moreover, the Se content in milk varies widely depending on
the season, with higher Se levels in summer than in winter; however, this difference does
not translate into increased consumption of Se [96].

Regarding children’s nutrition, meat, eggs, milk and dairy products are valuable
sources of nutrients for the developing body, so they should be part of the daily diet, which
makes them an important source of Se in the diet.

3.3.3. Frutis and Vegetables

Fruits and vegetables contain low concentrations of Se but some are a valuable source
of Se-methylselenocysteine with important health benefits, including vegetables from the
Brassica and Allium species.

Brassica species can accumulate Se because they can replace Se in proteins but this
accumulation is limited by the Se concentration in the soil [93,115]. It has been shown that
Brassicaceae family can accumulate up to 300-fold more Se in their tissues when grown in
Se-rich soil. In Gui et al.’s study was evidenced Se contents in Broccoli florets were signifi-
cantly higher under Se yeast treatments (300-fold) and under selenite treatments (50 fold)
than under non-selenized treatments [116]. The Se concentrations in broccoli, brussels
sprouts, and cabbage grown in non-Se-enriched soil are 0.01–0.03 µg/g, 0.004–0.06 µg/g,
and 0.001–0.02 µg/g, respectively [117]. Additionally, these vegetables, apart from se-
lenium compounds, i.e., Se-methylselenocysteine and seleno glucosinolates, are rich in
flavonoids [118].

Allium species can also accumulate Se through the metabolic absorption of sulphur [119].
The average Se content in garlic is 0.15 µg/g and onion is 0.12 µg/g [120,121]. However,
the enrichment of crops causes the Se content in allium species to be much higher and
amounts to 68–1355 µg/g and 96–601 µg/g (in dry mass), respectively [69,122,123]. Addi-
tionally, Allium species are rich in various active compounds, especially organosulfur and
polyphenols [124,125]. Allium vegetables are a good source of selenium, although due to
limited consumption by young children, it may not significantly affect the selenium content
in their diet.

The Se content of other vegetables and fruits is low and does not increase the Se intake
in the diet. However, they are a valuable source of antioxidants and vitamins necessary for
proper development.

3.3.4. Brazil Nut

Brazil nuts are the one of richest known food sources of Se and are obtained from
the Bertholletia excelsa tree from South America [126,127]. The average Se content ranges
from 2 to 20 µg/g [128]. However, the content in individual nuts varies significantly
(0.03–512 µg/g) [129] depending on the Se content and bioavailability in the soil [130,131].
The Se concentration of Brazil Nuts from the Brazilian Amazon basin varies from in the
Mato Grosso state (2.4 µg/g) and in the Acre state (3.0 µg/g) to in the Amazonas state
(66.1 µg/g) and Amapa state (51.2 µg/g) [131]. Additionally, Brazil nuts are a good source
of nutrients including protein, fibre, minerals, and vitamins, and therefore have a variety of
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potential health benefits [132,133]. However, due to the possible high Se content, children
should not consume Brazil nuts in excess (1 Brazil nut contains approximately 50 µg) [69].
It should also be emphasized that even though Brazil nuts are a good source of Se, care
should be taken to avoid the possible toxic effects associated with a chronically high radium
(Ra) and barium (Ba) intake. Of note is that the toxic values of Ba (sub-acute exposure to Ba
can cause muscle weakness) [134,135] and Ra taken with food are not clearly defined but
Ba toxicity has been reported with ingestions as small as 200 mg Ba/kg/day [136,137].

3.3.5. Cereals and Yeast

Cereal products are not particularly rich in Se (0.01–0.55 µg/g) but they can increase
the dietary Se content due to their daily consumption [92]. The difference in the Se content
of whole wheat (mean = 0.13 µg/g) and white bread (mean = 0.09 µg/g) is not statistically
significant, although whole wheat bakery products are much richer in Se [96].

Regarding gluten-free flour, the richest source is amaranth (0.5 µg/g), followed by
native buckwheat flour (0.41 µg/g) and corn flour (0.46 µg/g), with the lowest Se content
in rice flour (0.14 µg/g). Interestingly, Adams et al. found no long-term changes in the
distribution of Se concentrations in wheat grains over 17 years in regions around the United
Kingdom [138].

Fertilisers are useful to increase the cereal Se content. This beneficial effect was
observed in the Finnish national Se supplementation programme, where the Se content
increased on average 15 fold [139,140].

The Se content in bakery products can also be increased by adding yeast, as the
commercial dried product contains 2.5 mg Se/g (range 1–2.4 mg Se/g); however, yeast con-
sumption is low [141]. The addition of Se-rich yeast to bakery products could significantly
improve future Se intake [142].

4. Bioavailability of Selenium

Se bioavailability is dependent on many factors, of which the main factor is the
chemical form of this element. As previously mentioned, organic compounds are more
bioavailable than inorganic (selenomethionine and selenocysteine > 90%, selenate and
selenite > 50% absorbed) [143,144]. Additionally, it can be affected by some other compo-
nents of the food matrix [145–147]. The major food ingredients affecting bioavailability
are carbohydrates, proteins, fat and dietary fibre, and minor food components including
vitamins, toxic metals, and oligoelements [148].

The carbohydrate content in fish, shellfish, and seaweed increased Se bioavailabil-
ity [149] because the carbohydrates form micelles which can enhance the partition of
hydrophobic molecules in the aqueous solution [148,150]. Se bioavailability decreases with
increasing protein content in fish, shellfish, and seaweed samples [151].

Some studies in animal models have shown increased Se bioavailability with an
increase in the proportion of polyunsaturated fatty acids in the diet [152]. However, other
studies showed that the resulting differences in fatty acid composition in the human diet,
with a higher content of polyunsaturated fat acids, do not influence Se absorption [153].
In vitro studies suggest that the fat content has no effect on Se bioavailability in fish and
shellfish [151]. Shen et al. showed that removing fat from milk significantly increased Se
bioavailability, possibly due to the better protein digestibility of skimmed milk [154].

Se is most easily absorbed in the presence of vitamins A, D, and E. They increase
Se bioavailability, while heavy metals (especially mercury) and fibre decrease it [155,156].
Dietary sulphur (especially from methionine) may compete with Se for absorption. Table 5
summarises Se bioavailability depending on food ingredients.
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Table 5. Bioavailability of Se depending on food ingredients.

Food Ingredients Effect on Bioavailability

Proteins ↓ Se bioavailability with increasing protein content in fish and
seafood

Fats
↑ Se bioavailability with increase polyunsaturated fatty acid
in diet—animal model study
↑ Se bioavailability with reducing the fat content in milk

Carbohydrates ↑ Se bioavailability—analysed in fish and seafood

Dietary fibre ↓ Se bioavailability

Vitamins A, D, and E ↑ Se bioavailability

Sulphur ↓ Se bioavailability sulphur in diet may compete with Se for
absorption

Additionally, parameters related to the human body, i.e., Se status, age, sex, or lifestyle
factors may influence on bioavailability of Se [143].

5. Selenium Intake in Elimination Diets

In healthy, normally developing children, the Se concentration will depend primarily
on the diet. However, in children in whom it is necessary to introduce certain dietary
restrictions related to a disease (e.g., phenylketonuria, food allergies), meeting the demand
for Se may be insufficient.

Phenylketonuria diets are low in protein products, with no Se-rich products such
as fish, meat, eggs, and whole grains. Therefore, phenylketonuria patients often have
low serum Se levels. In Okano et al.’s study, the serum Se concentration in all analysed
patients with PKU (n = 11) in the ages of 4–38 years was lower than the reference value
and amounted to 56.6 ± 21.2 µg/L [157]. The Se concentration and GPx activity in the
plasma and erythrocytes of 87 patients participating in the German collaborative study of
phenylketonuria (mean age 9.7 years) were negatively correlated with the quality of dietary
management (mean plasma phenylalanine value). However, despite the low Se levels, the
children did not show any clinical symptoms of deficiency [54]. Another study assessed
54 children aged 4 to 10 years with phenylketonuria before and after the use of a mixture of
amino acids with Se. Se supplementation through protein preparations for phenylketonuria
effectively improved the nutritional status of Se [158]. Moreover, according to a Chanoine
study, in patients with isolated Se deficiency (e.g., in patients with phenylketonuria on
a low-protein diet), the metabolism of peripheral thyroid hormones was disturbed, but
no changes in thyrotropin concentration or clinical symptoms of hypothyroidism were
observed, which suggests that these patients are euthyroid. Although this statement may
be questionable because euthyroidism should be defined on the basis of FT4/FT3 and
other clinical parameters, it is suggested that Se supplementation is recommended for
patients following a diet low in natural protein. Se supplementation may be indicated
to optimise GPx activity in tissues and prevent potential damage caused by oxidative
stress [46]. Therefore, Se supplementation is recommended in patients following a diet low
in natural protein [159,160].

Recently, attention has been paid to the occurrence of Se deficiency in food allergic children
(IgE mediated). This may be related to both an appropriate elimination diet (allergies to fish,
cow’s milk protein, etc.) as well as an increased immune response [161–164].

In animal model studies, oral Se supplementation may modulate allergic reactions to
cow’s milk protein by reducing specific antibody responses [164]. Kamer et al. reported
that children with allergies had decreased Se concentrations and GPx, which increased after
an elimination diet, suggesting that Se may play a role in the pathogenesis of food allergies.
Additionally, this observation indicates the need to monitor trace elements content in the
diet of children with food allergies [163].
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6. Selenium Dietary Intake in Infant and Preschool Children—Overview of Available
Studies

There are few publications describing the Se intake of preschool children. Up to
now, there are three studies assessing Se intake in preschool children [18,165,166] and
three studies in infants [165,167,168] (Table 6). This may be due to many factors, such as
Se is often omitted in studies on dietary intake which focus mainly on macronutrients
and elements that have long been associated with problems with children’s development,
e.g., calcium or iron. Obtaining a 24 h food questionnaire may also be problematic, as this
requires a lot of parental involvement and the amounts consumed by the child may be
difficult to determine.

Depending on the region, the problem of Se intake is varied. In Brazil, children
consumed so much Se that the amounts were considered potentially toxic, whereas the
intake was insufficient in the Philippines and Malawi [18,165,168]. Improving intake to
adequate could be achieved by adding one additional serving of a product such as eggs or
milk to the diet [165–167]. This proves that providing children with the basic amounts of
recommended food products can easily prevent deficiencies.

Research also shows that some infant milk formulas do not contain the right amounts
of Se to ensure adequate daily intake; however, these studies are from 1982 [167]. Currently,
the Se content in infant milk formula is strictly defined by the Delegated Regulation (EU)
and FDA [84–86].
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Table 6. Summary of available studies examining the Se dietary intake in infant and preschool children.

Study Type of Study Country Patients Observations

Martens et al., 2015
[18] interventional Brazil

129 children: 41 received 15–30 g of Brazil
nuts 3 day/w and 88 did not receive nuts
age: 4.7 ± 0.9 (3.1–6.3) years old in study
group; 4.5 ± 1.2 (2.1–6.6) in control
sex: both

Median (range) Se intake in the supplemented group: 155.30 (98.7–195.3) µg/day
Median (range) Se intake in the control group: 44.40 (33.9–53.20) µg/day

Given the EAR for Se of 17 µg/day for 1–3-year-olds and 23 µg/day for
4–8-year-olds, the children consumed excess Se even without supplementation
with nuts
Se intake was considered highly probable toxic in the group that received nuts

Mak et al., 2020
[165] interventional the Philippines

A total of 2642 children in given age groups:

792 children
age: 1–2 years
sex: both

1136 children
age: 3–4 years
sex: both

714 children
age: 5 years
sex: both

mean Se daily intake: 30.2 µg (23% of children had inadequately low Se intake)
after supplementing 1 serving (180 g) of powdered milk: 31.2 µg/day
after supplementing 1 serving (180 g) of YCM (young children’s milk formula):
35.5 µg/day

mean Se daily intake: 45.9 µg (8% of children had inadequately low Se intake)
after supplementing 1 serving (180 g) of powdered milk: 46.9 µg/day
after supplementing 1 serving (180 g) of PCM (preschool children’s milk):
50.8 µg/day

mean Se daily intake: 51.7 µg (4% of children had inadequately low Se intake)
after supplementing 1 serving (180 g) of powdered milk: 52.8 µg/day
after supplementing 1 serving (180 g) of PCM (preschool children’s milk):
57.1 µg/day

In all groups, adding a portion of YCM/PCM significantly improved plasma Se
levels; therefore, meeting the guidelines for daily diary recommendations can
significantly decrease the number of children with inadequately low Se intake

Caswell et al., 2021
[166] interventional Malawi

660 children (8% underweight, 1% wasted)
age: 7.4 ± 1.2 months
sex: both

Mean (SD) estimated usual intake of Se 19.7 ± 0.2 µg/day

Children received 1 additional egg per day
Baseline intake was adequate in most children (1% prevalence of inadequacy) but
the intervention reduced the prevalence of inadequacy and improved the intake of
fat, protein, vitamin A, riboflavin, vitamin B12, and choline
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Table 6. Cont.

Study Type of Study Country Patients Observations

Smith et al., 1982
[167] observational USA

28 children
age: 3 months
sex: both

group I (n = 8) received human milk only
group II (n = 20) received formula (Enfamil)

mean Se intake in group I: 10.08 ± 2.96 µg/day
mean Se intake in group II: 7.22 ± 1.26 µg/day

Formula-fed infants had significantly lower daily Se intake than breastfed and did
not meet the recommendation of the National Research Council of 10–14 µg
Se/day
Correlation between intake and plasma levels showed that not only the amount of
Se in formula but also its bioavailability should be taken into consideration

Flax et al., 2014
[168]

randomized
controlled trial Malawi

526 children of HIV-infected mothers
age: 2–6 weeks old
sex: both

mean Se intake at 2nd–6th week of life: 10.1 ± 8.2 µg/day
mean Se intake at 24th week of life: 7.7 ± 5.7 µg/day

According to the WHO-recommended Se intake, 39% of infants did not achieve
sufficient Se intake at 2–6 weeks or 24 weeks postpartum. The mean BMI of
mothers was <23 kg/m2
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7. Serum Selenium Concentration in Infant and Preschool Children—Overview of
Available Studies

Table 7 presents thirteen studies examining the serum Se concentrations in infant
and preschool children. The Se concentration in serum varied according to area, with Se
deficiency in children from Malawi and a Se excess in children from Brazil [18,168,169].
This implies that the food consumed on a daily basis in a given region has a significant
impact on the children’s Se status. Serum Se levels could be increased by the biofortification
of a widely consumed food product [170].

For comparison, age-specific reference intervals based on the 2.5 and 97.5 percentiles
of data derived from a healthy pediatric population for Se concentrations in serum are
presented in Table 8 [1].

There have also been several results describing Se concentrations in newborns from
birth through the first period of life, showing that the Se concentration is low and varies
depending on the months of life [18,168,171–173]. In most of the analysed studies, mean Se
concentrations in serum were low, but well within the reference intervals shown in Table 8.
Only Zyambo et al.’s study had lower values, but it was within a group of children with
severe acute malnutrition [170].

It is worth noting that most of the deficiencies can be easily modified by administering
supplements enterally. However, it is important to select the appropriate dose and form,
which affects its bioavailability. Nonetheless, the most effective way to maintain the correct
level of Se in children is breastfeeding [174,175].
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Table 7. Summary of available studies examining the serum Se concentrations in infant and preschool children.

Study Country Patients Observations

Zyambo et al., 2022
[170] Zambia

269 children: with severe acute malnutrition (n = 19),
with stunting (n = 164), and children without stunting
(n = 86), received Se supplementation
Age: 15 (4–23) months
Sex: both

The median Se levels were 32.37 µg/L (21.32–62.38) among unstunted children, 45.01 µg/L
(41.85–64.74) among stunted children, and 71.85 µg/L (47.37–89.22) among severely
malnourished children

Se deficiency is widespread in Lusaka province and could in part be related to
socio-economic status, therefore supplementation or agronomic biofortification is needed

Martens et al., 2015 [18] Brazil

129 children: 41 receiving 15–30 g of brazil nuts 3d/w
and 88 that did not receive nuts
age: 4.7 ± 0.9 (3.1–6.3) years old in the study group;
4.5 ± 1.2 (2.1–6.6) in control
sex: both

Plasma Se concentration in supplemented children: 107.29 ± 27.15 (73–172) µg/L
Plasma Se concentration in controls: 83.56 ± 23.32 (47–142) µg/L

Plasma Se levels of supplemented children were significantly higher than in the control
group but the Se concentration was higher than the accepted cutoff (>84–100 µg/L) for both
groups
Se supplementation of Brazilian children is not necessary and could even lead to Se
poisoning

Darlow et al., 1995 [49] New
Zealand

15 children
age: 0–5 days
sex: both

Plasma Se concentration: 39.69 ± 3.16 µg/L
After 1 month of feeding with standard formula: 21.32 ± 0.79 µg/L
After 3 months of feeding with standard formula: 31.58 ± 3.16 µg/L

There was a significant drop in plasma Se levels between birth and the first month of life but
compared to a group of infants supplemented with Se 17 µg/L to resemble breast milk
composition, there were no differences in growth parameters or thyroid function

Perez-Plazola et al.,
2023 [169] Malawi

387 children
age: 7 (1.2) months
sex: both

Plasma Se at baseline was 47.41 (28.48) µg/L and 50.59 (28.58) µg/L

The children had inadequate plasma Se concentrations given the minimal cutoff of 70 µg/L
for optimal body functioning
The provision of one additional egg per day for 6 months did not increase plasma Se levels,
which is thought to happen because of high rates of stunting and underweight status in
those children

Flax et al., 2014 [168] Malawi
526 children of HIV-infected mothers
age: 2–6 weeks old
sex: both

Plasma Se: 55.6 ± 16.3 µg/L at 2–6 weeks and 61.0 ± 15.4 µg/L at 24 weeks

The children did not have adequate plasma Se levels at any time
The Se concentrations correlated with baseline tertile, being the lowest (40.1 ± 9.3) for low
tertile, medium (57.0 ± 3.9) for middle tertile, and the highest (73.9 ± 7.5) for high tertile
Maternal plasma Se levels and breast milk Se concentrations correlated with infant plasma Se
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Table 7. Cont.

Study Country Patients Observations

Olmez et al., 2004 [176] Turkey
131 children: 88 with acute gastroenteritis, 43 healthy
age: 2–24 months
sex: both

Control group: 74.36 ± 10.65 µg/L
Study group: 62.41 ± 13.06 µg/L on admission and 81.73 ± 17.10 µg/L 7–10 days after the
end of symptoms

Children suffering from gastroenteritis had significantly lower plasma Se levels on
admission than healthy children but higher after the end of symptoms
Se levels did not correlate with the severity of the symptoms

Gibson et al., 2011 [177] Zambia
476 children
age: 6 months
sex: both

Baseline serum Se concentrations: 48.95 (47.37, 50.53) µg/L, and 49.75 (47.37, 52.11) µg/L

Plasma Se levels were defined as below adequate for maximal activity of plasma GPx and
selenoprotein P (~78.96–94.75 µg/L)
Children with higher baseline plasma Se showed a better response to Se fortification,
probably because of the decreased expression of selenoproteins in children with low Baseline
plasma Se

Daniles et al., 1996 [174] Australia

38 preterm infants fed parenterally with or without Se
supplementation
age: <7 days
sex: both

Baseline plasma Se: 28(3) µg/L and 27(3) µg/L

Baseline plasma Se levels were inadequate
Se supplementation with 3 µg/kg/day prevented health deterioration but did not achieve
levels similar to breastfed infants

Christodoulides et al.,
2011 [178]

United
Kingdom

44 children with intractable epilepsy
divided into 2 age groups (2–3 and 4–6)
age: 2–6 years
sex: both

Baseline mean plasma Se levels:
2–3-year-old group 75.80 (15.00) µg/L
4–6-year-old group 77.38 (20.53) µg/L (further divided into male and female groups with
concentrations of 64.74 (45.80–89.22) µg/L and 63.96 (45.01–82.90) µg/L, respectively)

Plasma Se levels were within the range of GOSH reference (39.48–102.65 µg/L for
2–4-year-olds and 55.28–134.23 µg/L for 4–17-year-olds)
The children were either on a classical ketogenic diet or MCT ketogenic (the main fat source
is MCT fatty acids) and there were no significant differences in plasma Se levels between
these two groups
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Table 7. Cont.

Study Country Patients Observations

Bogye et al., 1998 [171] Hungary
36 preterm infants (mean gestational age 27 weeks)
age: one day
sex: both

Baseline serum concentration in the control group: 34.4 (20.4) µg/L
Serum concentration after 14 days: 26.1 (16.6) µg/L

Baseline serum concentration in the study group: 36.1 (12.8) µg/L
Serum concentration after 14 days of supplementation (4.8 mg yeast–Se containing 5 µg Se
daily with nasogastric drip): 43.5 (7.9) µg/L

Se concentration in the control group decreased during the first 14 days of life and increased
significantly in the supplemented study group
There were no side effects and the intervention was considered safe

Linday et al., 2002 [179] USA
39 children undergoing placement of tympanostomy
tube for frequent ear infections and/or persistent
middle ear effusion

Serum Se concentration: 110.54 ± 16.58 µg/L

There was no difference in plasma Se concentrations from published values
Cod liver oil and multivitamins containing Se were proposed as antioxidants to prevent free
radical-induced lipid peroxidation that could lead to otitis media
The intervention improved the time of antibiotic therapy and symptom re-occurrence

Strauss et al., 2010 [175] USA
15 children with maple syrup urine disease
age: 0–36 months
sex: both

Baseline Se concentration: 56.7 (10.9) µg/L

Baseline plasma Se in studied children was inadequate
Supplementation of 4–9 µg/kg/day raised plasma Se levels, but they remained lower than
in the healthy population (83.4 (11.0) µg/L vs. 110–160 µg/L normal)

Li et al., 1999 [172] Austria,
Slovenia

25 neonates—5 Austrian, 20 Slovenian
age: 0 (umbilical cord blood at the time of delivery)
sex: both

Austrian neonates: 42 ± 6 µg/L
Slovenian neonates: 34 ± 7 µg/L

All infants had plasma Se levels lower than their mothers, which is consistent with previous
findings
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Table 8. Reference intervals (2.5 and 97.5 percentiles) from a healthy pediatric population for serum
Se concentrations [1].

Age Serum Se Concentrations (µg/L)

<1 month 15–107
1–2 months 15–100
2–4 months 10–93
4–12 months 13–116

1–5 years 34–129

8. Concluding Remarks—Nutritional Recommendation for Infants and Preschool
Children Regarding Selenium Intake

The current literature review indicates a significant problem with meeting the Se needs
of preschool children and infants [18,157,165,168,170,174,177]. Table 9 summarises the
dietary recommendations that should contribute to improving the serum Se concentration
in this age group.

Table 9. Dietary Se recommendations for infants and young children.

Infants

• Breastfeeding is recommended until at least 6 months; however, the diet of breastfeeding women should include products rich
in Se. Nonetheless, no studies confirming the correlation between the Se concentration in the mother’s diet and the Se content
in the milk have been published [27,79–81,180];

• In the case of infants who cannot be breastfed, it is recommended to use a milk formula (Se content regulated by the EU and
FDA). However, in infants with increased energy demand and the use of milk with the highest permitted Se concentration
(8.6 µg/100 kcal) and feeding exclusively with this milk (in infants over 4 months), the UL value may be exceeded [19].

Expanding Diet

• Introduce Se-rich products into the child’s diet: meat, fish, eggs, cereals, Brassica vegetables;
• For children with allergies, products with a high Se content, i.e., fish and meat should be replaced with other Se-rich products

(eggs, cereals, Brassica vegetables) or consider supplementation;
• It is recommended to monitor serum Se and introduce Se supplementation in children with phenylketonuria [54,158,163].

Dietary Recommendation from 1 to 3 Years Old

• The diet should be varied and rich in products containing Se;
• Children should not consume Brazil nuts in excess (1 Brazil nut has around 50 µg) *;
• Se-containing supplements in toddlers and children should be used with caution, based on individual needs [18,19,69].

* The average Se content in Brazil nuts is assumed to be 10 µg/g, and one nut has an average of 5 g [69].

9. Summary

The main focus of this article is to provide an all-encompassing account of the signifi-
cance of selenium in the diet of young children (infants and preschoolers). It is important
to note that the existing literature on selenium can be categorized into two distinct groups:
(1) descriptions of dietary sources, bioavailability, physiological functions, and deficiency
symptoms, and (2) cross-sectional examinations of selenium levels in particular populations.
Our research takes a comprehensive approach to this issue. The population under study,
namely children aged up to 5–6 years, is of particular significance due to two seemingly
opposing reasons: these children are at higher risk of selenium deficiency owing to food
allergies or selective feeding, while, conversely, they may also suffer from overdosage due
to smaller requirements and food fortification. To the best of our knowledge, this is the
first piece of research to concentrate specifically on the difficulties encountered by this
group. However, this study’s scope is constrained by the absence of a meta-analysis, which
precludes statistical interpretation of the aggregated results.

Currently, there is a lack of epidemiological studies regarding serum selenium con-
centration, especially compared with estimated dietary intake of selenium in infants and
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preschool children. Therefore, there is a lack of nutritional strategies for infants and young
children regarding selenium intake.

Selenium deficiency is very common in areas with low selenium soil, including highly
developed countries in most of Europe. It may contribute to a developmental disorder,
hypothyroidism, and lowering the immune response. Therefore, screening of the Se content
in infants and children in the context of possible deficiencies may be necessary. This will be
of particular importance in children with an increased risk of deficiency, i.e., patients with
phenylketonuria or food allergies. However, due to the awareness of possible selenium
deficiency, it is worth monitoring the levels in patients with symptoms of deficiency,
e.g., thyroid problems.

10. Conclusions

Due to possible Se deficiencies in infants and preschool children, epidemiological studies
are needed to determine Se intake and serum Se concentrations in these population groups.
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