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Abstract: Background: Evidence from preclinical studies has found a correlation between the devel-
opment of type 2 diabetes (T2D) and vitamin D deficiency. However, evidence from randomized
controlled trials (RCTs) revealed inconclusive results on vitamin D supplementation. We explored
the effect of vitamin D on inflammation and dyslipidemia in T2D. Methods: We comprehensively
searched for RCTs evaluating the effect of vitamin D in T2D on PubMed. Data were analyzed using
Review Manager 5.3 and reports, such as standardized mean difference (SMD) and 95% confidence
intervals (CI) at a 5% significant level using a random effect model. Results: This study revealed a
significant reduction in tumor necrosis factor-alpha (TNF-α) SMD = (−0.51, 95%CI (−0.93, −0.09);
p = 0.02), high sensitivity C-reactive protein (hs-CRP) SMD = (−1.06, 95%CI (−1.67, −0.45); p < 0.05)
in vitamin D compared to placebo. Additionally, interleukin-6 (IL-6) exhibited a marginal effect
SMD = (−0.52, 95%CI (−1.05, 0.01), p = 0.05). Furthermore, a significant reduction in the level of
triglycerides SMD = (−0.65, 95%CI (−1.11, −0.18), p < 0.05) was observed, concomitant to a sig-
nificantly increased high-density lipoprotein (HDL) level SMD = (0.53, 95%CI (0.08, 0.98), p = 0.02).
However, no statistically significant changes were observed in total cholesterols SMD = (−0.16,
95%CI (−0.57, 0.24), p = 0.43) and low-density lipoprotein (LDL) SMD = (−0.06, 95%CI (−0.37, 0.24),
p = 0.67). Conclusions: These findings suggest that vitamin D supplementation may be beneficial in
ameliorating inflammation and dyslipidemia in T2D patients.

Keywords: vitamin D; inflammation; dyslipidemia; type 2 diabetes

1. Introduction

Type 2 diabetes mellitus (T2D) is a chronic disease associated with an increased
mortality rate [1] due to impaired pathways that regulate homeostatic and inflammatory
responses. A recent report by the International Diabetes Federation (IDF) indicates that
537 million people are estimated to have diabetes worldwide, which is anticipated to rise
to 783 million by 2045 [2]. This is alarming given the association between T2D and the
risk of cardiovascular diseases (CVD), resulting in a financial burden on the healthcare
system [3,4].

Although glucose-lowering pharmacological agents [5] are widely used in T2D, the
death rate is continuously increasing due to secondary complications associated with
diabetes [5]. Moreover, the T2D population reportedly dies from CVD more frequently
than healthy individuals [6]. T2D is associated with obesity, and a correlation exists among
body weight, insulin resistance, dyslipidemia, and hypertension [6–8]. Hyperglycemia and
persistent inflammation in T2D contribute to vascular damage [9–11]. This further promotes
the progression of CVD. Other studies have shown an increased risk of CVD and secondary
complications amongst T2D patients who rely on pharmacological drugs for extended
periods [12–14]. Thus, this is the motivation for exploring different pharmacological agents
to find one with potent antihyperglycemic and hypolipidemic potential.
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Other studies have explored the beneficial impact of natural antioxidants on glucose
control, inflammation, and lipid metabolism in metabolic conditions [15–17]. This is crucial
as poor glucose tolerance in T2D has been attributed to an exacerbated pro-inflammatory
response and endothelial dysfunction brought on by oxidative stress. There has consistently
been a significant interest in exploring the pathways and mechanisms by which dietary
antioxidant compounds protect against diabetes-related complications due to their potential
effects on inflammation and oxidative stress [18].

Many dietary compounds [19], including vitamin D, are widely used for distinct
antioxidant potential. Vitamin D, also called calciferol [20,21], is a membrane antioxidant
and a member of a fat-soluble vitamin that alleviates inflammation by inhibiting nuclear-
factor-kappa-β (NF-κβ) activity [22,23]. The direct stimulation of pancreatic β-cells
to release insulin [24], anti-inflammatory [25] effects to reduce chronic inflammation
brought on by insulin resistance, and downregulation of elevated parathyroid hormone
levels [26] that inhibit insulin secretion [27] are some of the protective mechanisms of
vitamin D that have been proposed. In addition to being present in dietary supple-
ments, a small amount can be found in oily fish, red meat, egg yolk, liver, and fortified
cereals [21].

The previous meta-analysis confirmed the beneficial effects of vitamin D in regulat-
ing blood glucose; however, the improvement was minimal [28]. This effect might be
attributed to vitamin D’s unique property in alleviating oxidative stress and inflamma-
tion [29]. Although two previous quantitative studies conducted in 2018 have shown that
vitamin D supplementation in T2D patients can reduce inflammation [30,31] and lipid
profiles [32], the results are inconsistent, and the markers evaluated were not common
in both these reviews. Notably, the above studies did not focus on these parameters
simultaneously to explore the effect of vitamin D on T2D. This led us to comprehensively
and systematically review and meta-analyze the evidence from randomized controlled
trials (RCTs) simultaneously to evaluate [32] the potential benefits of vitamin D in all
these parameters. This information is important for understanding the health benefits
of this dietary antioxidant in order to reduce the number of diabetic individuals who
succumb to CVD complications associated with T2D. Therefore, in this study, we aimed
to evaluate the overall effect of vitamin D supplementation on inflammatory markers
and lipid profiles in T2D patients.

2. Materials and Methods
2.1. Study Design and Registration

This meta-analysis was conducted according to PICO guidelines [33] and reported
per the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines [34]. The protocol accompanying this review has been registered with the
International Platform of Registered Systematic Review and Meta-Analysis Protocols (IN-
PLASY), registration number (INPLASY202260022), and further published [35].

2.2. Adapted Search Strategy and Information Sources

Two independent researchers (RM and KM) identified the eligible studies indexed in
the PubMed database using the following MesH terms and Booleans: (“vitamin D” OR “cal-
ciferol” OR “1,25-Dihydroxycholecalciferol”) AND (“Type 2 diabetes mellitus” OR “Type 2
diabetes” OR “hyperglycemia” (Supplementary Table S1). The third researcher, WNP, was
invited for arbitration if RM and KM disagreed. The last updated search was conducted on
21 June 2023. References of relevant studies were screened manually to identify potentially
eligible studies that might have been missed on PubMed. An exact search strategy on
PubMed was updated on 21 June 2023 and attached in Supplementary Table S1.
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2.3. Study Selection Procedure

The eligibility criteria followed a PICO guideline [26]: population (P)-adult type 2
diabetes patients, Intervention (I)-vitamin D; comparator (C)-patient on placebo treatment
or patient without treatment; outcomes (O)-lipid profile and inflammatory markers, study
design-randomized controlled trials (RCTs). We selected the recent trial where the author
conducted multiple trials using the same sample size. We excluded studies conducted
in children, not on diabetes or using vitamin D supplementation in combination with
other treatments, experimental models of diabetes, reviews, letters and commentaries, case-
control, and cross-sectional studies. The flow diagram in Figure 1 was created following
the PRISMA guide.
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2.4. Data Extraction, Quality, and Certainty of Evidence Assessment

The following data items were extracted independently by RM and KM: first author
and year of publication, the country where the study was conducted, type of study design,
population size and the number of patients, description of participants, gender distribution,
baseline age of recruited participants, the form of vitamin D, dose, duration of intervention,
and outcome measures. Subsequently, RM and KM independently evaluated the study
quality using the Jadad scale [36]. This technique considers five domains for evaluating
the quality of RCTs in which three or more scores indicate excellent quality. The overall
certainty of the evidence obtained from this meta-analysis was evaluated according to
the Grading of Recommendations Assessment, Development, and Evaluation (GRADE)
guideline [37]. This takes into account the high risk of bias, imprecision, indirectness, hetero-
geneity, publication bias, and effect size, and these were assessed using the GRADEprofiler
tool (https://www.gradepro.org/ accessed on 14 August 2023) and RevMan software
(version 5.4). Overall, evaluation results were presented as “very low”, “low”, “moderate”,
or “high” risk, presented as a summary of findings in Table S4 of the Supplementary File.
Any disagreements were resolved through discussion with a third independent researcher
(WNP) and re-evaluating the study or domain in dispute.

2.5. Subgroup, Sensitivity Analysis, and Publication Bias

Subgroup analyses [38] were conducted to investigate the source of heterogeneity.
Briefly, this was performed by subgrouping studies based on the dosage of vitamin D and
duration of intervention, and this was classified as low- and high-dose, short- and long-
term, respectively. To test the stability of the analyzed results, we conducted a leave-out
one-study sensitivity analysis to recalculate the effect size of all outcomes. Lastly, for the
risk of publication bias, funnel plots and the Egger regression test were used to graphically
present and statistically assess the potential publication bias [39]. An Eggers test p-value
less than 0.05 is classified as potential evidence of bias, while p > 0.05 signifies no bias.

2.6. Data Synthesis and Statistical Analysis

All extracted data were analyzed using Review Manager [Computer program],
Version 5.4, The Cochrane Collaboration, 2020, and metaUN web tool (http://softmed.
hacettepe.edu.tr/metaHUN/) accessed on 20 October 2023. For this meta-analysis,
continuous data were extracted from RCTs as a change in mean and standard de-
viation (SD); however, in case a change in mean and SD was not reported, we cal-
culated the mean difference between the baseline (pretest) and final results (post-
test) (∆Mean = (Mf − Mb)) and further estimated change in SD by using the formula:

∆SD =
√

(SDb)2+(SDf)
2−2(r×SDb×SDf) outlined by Cochrane guidelines and other re-

searchers, where r, a correlation coefficient of 0.7, was used in both groups in accordance
with the previous reports [40–42]. In cases where non-parametric data were reported (me-
dian, range, or interquartile range (IRQ), we used Hozzo et al., 2005 [43] or SD = IQR

1.35 [44]
accordingly to estimate mean and SD. On the other hand, if the standard error of the
mean (SEM) was reported, we estimated SD using the equation SEM = SD√

n [45]. All data
are presented as standardized mean differences (SMD) and 95% confidence intervals (CI),
partly due to different units of measurement used in the trials. Heterogeneity between
studies was determined using the I2 statistic [46] (I2 ≥ 50%) was considered significant.
A random-effect model was applied for a statistically significant heterogeneity [36]. To
test the stability of the analyzed results, we conducted a leave-out one-study sensitivity
analysis to recalculate the effect estimates. For converting vitamin D from microgram
(µg) to an International Unit (IU), we assumed that 1 IU equals 0.025 µg.

https://www.gradepro.org/
http://softmed.hacettepe.edu.tr/metaHUN/
http://softmed.hacettepe.edu.tr/metaHUN/
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3. Results
3.1. Comprehensive Search and Information Sources

Our search from the main database, PubMed, yielded about 172 randomized con-
trolled trials, and through hand screening of relevant references, three additional trials
were further identified. Study selection was made independently by KM and RM; where
there was disagreement, we sought intervention from a third researcher, WNP, for her
independent opinion and further discussed with her to reach a conclusion based on the
study in question. The selection procedure was a two-step process, initially screening tri-
als through titles, abstracts, and keywords followed by a full-text screening for eligibility.
From 165 records, hundred twenty-seven records were excluded based on the following
reasons: (1) about 57 had no outcome of interest, (2) eight study protocols, (3) ten trials
without control, (4) three irrelevant designs, (5) 32 irrelevant population (pre-diabetes,
diabetic neuropathy, gestational diabetes, and chronic kidney diseases), (6) 24 different
interventions (metformin, and statin), (7) eleven trials presented data in figures or did
not report change after a period of intervention. Therefore, 27 trials from PubMed were
found relevant in addition to 3 from the citation list. Hence, this systematic review
and meta-analysis consisted of evidence from 30 trials with sufficient data pooled for
meta-analysis on different effect measures. A detailed selection procedure is presented
as the PRISMA flow diagram in Figure 1.

3.2. General Characteristics of Included Randomized Controlled Trials

The general overview of included randomized controlled trials (RCTs) is shown in
Table 1. In brief, all included studies were RCTs published in peer-reviewed journals
between 2010 and 2022. The participants recruited from these trials in the intervention
group were 2310 who received vitamin D as treatment. Although all included trials were on
T2D, one trial also considered patients who were T2D and obese [47]. Briefly, the vitamin D
group patients ranged from 8 to 703 participants.

These RCTs were conducted in 14 countries, with at least ten trials conducted
from Iran [48–57], three from the United States of America [58–60], Canada [61–63],
and Italy [64–66], respectively; at least one from each of the following countries: Aus-
tralia [67], China [68], Denmark [69] India [70], Israel [71], Korea [72], Mexico [73],
Singapore [74], Switzerland [75], and United Arab Emirates [47]. The mean age of
the included participants was 57.80 ± 7.01 years. Regarding gender distribution, 1132
(49.1%) males and 1178 females (50.9%) were on vitamin D treatment. The vitamin D
was administered at different doses from as low as 10 IU (0.25 µg) to 300,000 IU (7500 µg)
of vitamin D. Duration of intervention ranged from a short period (3 weeks) to a longer
period (5 and half years). Different markers of inflammation and lipid profiles were
determined from these studies.
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Table 1. Characteristics of included randomized controlled trials.

Author, Year Study Design,
Country

Population and
Sample Size

Intervention
Group, n.

Male, n (%)

Mean Age of
Intervention Group

(Years)

Vitamin D, Dosage, and
Duration of Intervention

Effect on Lipids and
Inflammatory Markers

Hu et al., 2022 [68]
Randomized controlled

trial (RCT);
China

T2D patients, 220 115;
32 (27.8) 66.05 ± 9.35

Oral dose of 800 IU (two
capsules) of vitamin D3 for

30 months.

Vitamin D supplementation
significantly decreased total

cholesterol (TC) and CRP.

Hoseini et al.,
2022 [57]

Randomized, single-blinded,
placebo-controlled

clinical trial;
Iran

T2D patients, 20 10;
10 (100) 49.10 ± 1.23

50,000 IU of Vitamin D
capsules per week for

eight weeks.

Vitamin D supplementation
significantly reduced tumor

necrosis factor-alpha
(TNF-α) and CRP.

Limonte et al.,
2021 [58]

Randomized double-blinded
placebo-controlled trial;

USA
T2D patients, 1312 703;

376 (53.5) 67.4 ± 7.0 2000 IU vitamin D3 per
day for five years.

Vitamin D supplementation
showed no significant changes in

interleukin (IL)-6 and CRP
compared to the placebo group.

Barale et al.,
2020 [65]

Open-label
randomized-controlled

pilot study;
Italy

T2D patients, 30 16;
11 (68.8) 71.6 ± 3.5 500 IU oral cholecalciferol

once a week for one year.

Vitamin D supplementation
showed no significant difference
in lipid profiles compared to the

placebo group.

Hajj et al., 2020 [76]
Randomized controlled

double-blind study;
Lebanon

T2D patients, 88 45;
23 (51) 66.9 ± 4.1

10,000 IU cholecalciferol
three times per week for

six months.

Vitamin D supplementation
significantly reduced CRP and

TNF-α levels compared to
baseline data. No significant

changes were observed in terms
of IL-6 when compared to

baseline data.

Imanparast et al.,
2020 [56]

Randomized
placebo-controlled trial;

Iran
T2D patients, 92 23;

11 (47.8) 53.63 ± 12.29 50,000 IU of vitamin D3
per week for four months

Vitamin D supplementation
significantly decreased TC and

TNF-α levels, with no significant
changes in LDL, HDL, and

triglyceride (TG) levels compared
to the placebo group.
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Table 1. Cont.

Author, Year Study Design,
Country

Population and
Sample Size

Intervention
Group, n.

Male, n (%)

Mean Age of
Intervention Group

(Years)

Vitamin D, Dosage, and
Duration of Intervention

Effect on Lipids and
Inflammatory Markers

Meng et al.,
2020 [59]

Double-blinded randomized
placebo-controlled trial

USA
T2D patients, 127 56;

43 (76.8) 65 ± 8.0 4000 IU per day of vitamin
D3 for 24 weeks.

Vitamin D supplementation
showed no significant difference

in serum LDL and HDL-c
compared to the placebo.

Mirzavandi et al.,
2020 [55]

Randomized, controlled
clinical trial;

Iran
T2D patients, 50 25;

5 (20) 46 ± 1.0

Two intramuscular
injections of a

200,000 IU vitamin D
supplement at
0 and 4 weeks.

Vitamin D supplementation led to
a significant decrease in the levels
of CRP and TG in comparison to

baseline data.

Dadrass et al.,
2019 [54]

Randomized,
placebo-controlled,

double-blinded clinical trial;
Iran

T2D patients, 24 12;
12 (100) 53.83 ± 6.61 50,000 IU per 2 weeks for

three months

Vitamin D supplementation
significantly decreased IL-6 and
TNF-α without change in CRP

compared to placebo.

Omidian et al.,
2019 a [52]

Randomized double-blinded
placebo-controlled trial;

Iran
T2D patients, 66 32;

19 (59.4) 49.7 ± 6.5 4000 IU vitamin D daily
for 12 weeks.

Vitamin D supplementation
significantly increased TG levels

compared to baseline data.

Omidian et al.,
2019 b [53]

Parallel randomized
double-blind

placebo-controlled clin-
ical trial;

Iran

T2D patients, 47 24;
10 (41.6) 51.3 ± 4.7 4000 IU vitamin D daily

for 12 weeks.

Vitamin D supplementation
significantly decreased IL-6 and

MCP-1 levels compared to
baseline data.

Wenclewska et al.,
2019 [77]

Randomized controlled trial;
Poland T2D patients, 92 48;

14 (29) 63.43 ±1.57 2000 IU of vitamin D3 per
day for three months.

Vitamin D supplementation
increased HDL compared to

baseline data.

Angellotti et al.,
2019 [60]

Randomized, double-blind,
placebo-controlled

clinical trial;
USA

T2D patients, 114 66;
49 (71) 60.1 ± 8.4 4000 units of vitamin D3

for 48 weeks.

Vitamin D supplementation
revealed no significant in CRP,

with a significant reduction
in TG levels.
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Table 1. Cont.

Author, Year Study Design,
Country

Population and
Sample Size

Intervention
Group, n.

Male, n (%)

Mean Age of
Intervention Group

(Years)

Vitamin D, Dosage, and
Duration of Intervention

Effect on Lipids and
Inflammatory Markers

Fazelian et al.,
2018 [51]

Randomized double-blind
placebo-controlled

clinical trial;
Iran

T2D patients, 51 26;
0 (0) 48.5 ± 7.58

one oral pearl
of 50,000 IU vitamin D3 for

16 weeks.

Vitamin D supplementation
significantly reduced CRP and

increased IL-10 levels.

Upreti et al.,
2018 [70]

Parallel randomized,
placebo-controlled trial;

India
T2D patients, 60 30;

15 (50) 48.3 ± 9.8

60,000 IU weekly for six
weeks, followed by once

every four weeks
for 24 weeks.

Vitamin D supplementation led to
a significant difference in total

cholesterol compared to the
placebo group.

Barchetta et al.,
2016 [64]

Randomized, double-blind,
placebo-controlled trial;

Italy
T2D patients, 65 26;

18 (50) 57.4 ± 10.7 2000 IU cholecalciferol per
day for 24 weeks.

Vitamin D supplementation
showed a significant difference in
LDL, HDL, and TG without any

significant difference
in CRP levels.

Dalan et al.,
2016 [74]

Parallel randomized,
double-blind, placebo-con-

trolled trial;
Singapore

T2D patients, 61 31;
14 (45) 52.2 ± 8.2

4000 IU vitamin D (oral
cholecalciferol) and

2000 IU for 16 weeks.

Vitamin D supplementation
showed no significant effect on

lipid profiles and CRP in
comparison to baseline data.

Sadiya et al.,
2015 [47]

Randomized, double-blind
clinical trial;

United Arab Emirates

T2D patients with
obesity, 82.

43;
9 (20.9) 49 ± 8.0

Vitamin D (6000 IU) per
day, followed by 3000 IU

vitamin D3 daily for
six months.

Vitamin D supplementation
showed no significant differences

in lipids and CRP compared
to placebo groups.

Muñoz-Aguirre
et al., 2014 [73]

Randomized, double-blind,
placebo-

controlled trial;
Mexico

T2D patients, 104. 52;
0 (0) 56.1 ± 5.1 4000 IU of vitamin D daily

for six months.

Vitamin D supplementation
revealed no significant changes in
LDL, and TC levels significantly

decreased TG compared
to the placebo.
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Table 1. Cont.

Author, Year Study Design,
Country

Population and
Sample Size

Intervention
Group, n.

Male, n (%)

Mean Age of
Intervention Group

(Years)

Vitamin D, Dosage, and
Duration of Intervention

Effect on Lipids and
Inflammatory Markers

Gagnon et al.,
2014 [67]

Randomized,
double-blinded,

placebo-controlled trial;
Australia

T2D patients, 80. 35;
10 (28.6) 53.8 ± 11.9 2000 IU of vitamin D3 for

six months.

Vitamin D supplementation
showed no difference in
inflammatory markers
compared to placebo.

Jehle et al.,
2014 [75]

Prospective, randomized,
double-blind, placebo-con-

trolled pilot;
Switzerland

T2D patients, 55. 29;
10 (34.5) 66.9 ± 3.1

A single 300,000 IU
intramuscular injection of
vitamin D3 for six months.

Vitamin D supplementation
revealed no significant difference

in levels of CRP compared to
placebo groups.

Kampmann et al.,
2014 [69]

Randomized, double-blind,
placebo-controlled trial;

Denmark
T2D patients, 16. 8;

6 (75) 61.6 ± 4.4 11,200 IU cholecalciferol
per day for ten weeks

Vitamin D supplementation
resulted in no significant

difference in HDL, LDL, TC, TG,
CRP, TNF-α, IL-6, and IL-8

compared to placebo groups.

Maggi et al.,
2014 [66]

Randomized, double-blind,
placebo-controlled

clinical trial;
Italy

T2D patients, 30 14;
9 (64) 69 ± 4.5

Single oral dose of 300,000
IU of Vitamin D3

for 24 weeks.

Vitamin D supplementation led to
no significant difference in TNF-α

levels compared to the
group on placebo.

Ryu et al., 2014 [72]

Prospective, randomized,
double-blind-

ed, placebo-controlled trial;
Korea

T2D patients, 158 79;
NR 54.8 ± 7.6

1000 IU of vitamin D3 with
a combined 100 mg of

calcium twice daily
for 24 weeks.

Vitamin D supplementation
showed no significant difference

in lipid profiles and inflammatory
markers compared
to placebo groups.

Tabesh et al.,
2014 [50]

Parallel- randomized
placebo-

controlled clinical trial;
Iran

T2D patients, 118 29;
15 (51.7) 50.2 ± 6.6 50,000 IU vitamin D3 per

week for eight weeks.

Vitamin D supplementation
showed no significant effect on
serum levels of HDL, LDL, and

TG compared to a placebo group.
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Table 1. Cont.

Author, Year Study Design,
Country

Population and
Sample Size

Intervention
Group, n.

Male, n (%)

Mean Age of
Intervention Group

(Years)

Vitamin D, Dosage, and
Duration of Intervention

Effect on Lipids and
Inflammatory Markers

Akbarzadeh et al.,
2013 [49]

Randomized
double-blind

placebo-controlled trial;
Iran

T2D patients, 70 35;
35 (100) 53.8 ± 8.9

Two tablets of Calcitriol
(0.25 µg 1,25-dihydroxy
cholecalciferol) (≈10 IU)

per day for 12 weeks.

Vitamin D supplementation
showed no significant effect on

the marker of inflammation,
including CRP, IL-6, and IL-18

levels, compared to baseline data.

Breslavsky et al.,
2013 [71]

Randomized, double-blind,
placebo-controlled trial;

Israel
T2D patients, 47 24;

11 (45.8) 66.8 ± 9.2 1000 IU Vitamin D daily
for 12 months.

Vitamin D supplementation had
no significant effect on lipid

profile and CRP compared to the
placebo group.

Neyestani et al.,
2012 [48]

Randomized,
double-blinded
controlled trial;

Iran

T2D
Patients, 60

30;
NR. 51.5 ± 5.4 500 IU vitamin D3 and 150

calcium for 12 weeks.

Vitamin D supplementation
significantly decreased CRP, IL-1β,

and IL-6 compared to placebo.

Punthakee et al.,
2012 [62]

Randomized, double-blind
placebo-controlled trial;

Canada
T2D patients, 1332 607;

362 (59.6) 66.7 ± 6.7 1000 IU daily for five and a
half years.

Vitamin D supplementation
showed no significant effect on

HDL, LDL, TG, and TC in
comparison to placebo.

Witham et al.,
2010 [61]

Parallel, randomized,
placebo-

controlled trial;
Canada

T2D patients, 95 37;
13 (35) 64.27 ± 10.27

A single dose of 100,000 IU
vitamin D3 or 200,000 IU
vitamin D3 for 16 weeks.

There was no significant
difference in TC levels between

the vitamin D and placebo groups.

T2D: type 2 diabetes, RCT: randomized controlled trial, HDL: high-density lipoprotein, LDL: low-density lipoprotein, TNF-α: tumor necrosis factor-alpha, IL-6: interleukin 6, CRP:
C-reactive protein.
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3.3. The Methodological Quality of Included RCTs

The overall quality of included RCTs was excellent, with a JADAD median and range
score of 4 (1–5). Based on the domains, randomization was rated as 2 (1–2), blinding
1.5 (0–2), and the account of all patients was 1 (0–1). Additional details about the method-
ological quality of these RCTs are presented in Supplementary Table S2.

3.4. Effect of Vitamin D on Markers of Inflammation
3.4.1. Effect of Vitamin D on High Sensitivity-C-Reactive Protein (hs-CRP) in T2D Patients

The level of hs-CRP was determined in 11 RCTs [49,51,58,67,68,71,72,74–76,78] with
a sample size of 1676. The overall changes in hs-CRP were either extracted or estimated
from baseline and post-treatment results. The analyzed data revealed a significant effect
of vitamin D on hs-CRP in T2D patients compared to placebo. This is demonstrated by a
significant decrease in the level of circulating hs-CRP (SMD = −1.06, 95%CI (−1.67, −0.45);
p < 0.05). We observed a significant statistical heterogeneity amongst the studies (I2 = 95%,
p < 0.05) (Figure 2A).
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Figure 2. Effect of vitamin D on pro-inflammatory markers, (A) high sensitivity-C-reactive protein,
(B) Interleukin-6, (C) Tumor necrosis factor-α in T2D patients compared to matched-placebo. Std:
standard mean difference, CI: confidence intervals. Data are reported as standard mean difference
and 95% confidence intervals with a p-value set at <0.05. Akbarzadeh et al., 2013 [49]; Breslavsky
et al., 2013 [71]; Dalan et al., 2016 [74]; Daldras et al., 2019 [54]; Fazelian et al., 2018 [51]; Gagnon
et al., 2014 [67]; Hajj et al., 2020 [76]; Hoseini et al., 2022 [57]; Hu et al., 2022 [68]; Jehle et al., 2014 [75];
Limonte et al., 2021 [58]; Ryu et al., 2014 [72]; Neyestani et al., 2008 [48]; Omidian et al., 2019 (b) [53];
Maggi et al., 2014 [66]; Imanparast et al., 2020 [56].

3.4.2. Effect of Vitamin D on Interleukin-6 (IL-6)

We found that only six relevant trials [48,49,53,54,58,67,76] with a sample size of
1301 determined the level of IL-6 following vitamin D supplementation in T2D. Our results
showed the beneficial effects of vitamin D on IL-6, which was demonstrated by a marginal
decrease in its circulating levels (SMD= −0.52, 95%CI (−1.05, 0.01, p = 0.05). However,
statistical heterogeneity was noted across these RCTs (I2 = 90%, p < 0.05) (Figure 2B).
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3.4.3. Effect of Vitamin D on Tumor Necrosis Factor-Alpha (TNF-α)

The inflammatory biomarker, TNF-α, was determined in 6 trials [48,54,56,66,67,76]
with a sample size of 321. Of interest is that vitamin D exhibited potential benefits on TNF-α
as shown by a significant decrease in TNF-α when compared to placebo (SMD = −0.51,
95%CI (−0.93, −0.09); p = 0.02). However, moderate statistical heterogeneity was observed
(I2 = 68%, p < 0.05) (Figure 2C).

3.5. Effect of Vitamin D on Lipid Profiles (Triglycerides and Total Cholesterol)

From our relevant trials, only 19 [47,50,52,54–57,60,62,64,65,67,70–74,76,77] with
a sample size of 2300 that determined triglycerides had enough data to be pooled
for meta-analysis. Our effect estimates demonstrated a significant effect of vita-
min D on triglyceride. This is revealed by a significant decrease in triglyceride
(SMD = −0.65, 95%CI (−1.11, −0.18), p < 0.05) with a high level of statistical het-
erogeneity (I2 = 95%, p < 0.05) (Figure 3A). In contrast, total cholesterol was reported in
22 trials [47,50,52,54–57,60,62,64,65,67,68,70–74,76,77] with a sample size of 2575 be-
tween the two groups. Our pooled evidence shows that vitamin D had no significant
statistical difference in total cholesterol when T2D patients were given either vitamin D
or matched placebo drugs. However, a moderate decrease was observed (SMD = −0.16,
95%CI (−0.57, 0.24), p = 0.43) accompanied by a significant heterogeneity (I2 = 94%,
p < 0.05) (Figure 3B).

3.6. Effect of Vitamin D on Lipid Profiles (HDL and LDL)

High-density lipoprotein was determined in 21 trials [47,50,52,54–57,59,60,62,64,
65,67,70–74,76,77] with a sample size of 2430. Our pooled effect estimates showed a
significant increase in HDL following vitamin D treatment in T2D patients compared
to matched placebo (SMD = 0.53, 95%CI (0.08, 0.98), p = 0.02). Of concern was a high
statistical heterogeneity amongst these trials (I2 = 95%, p < 0.05) (Figure 4A). Similarly,
low-density lipoprotein was reported in 21 trials [47,50,52,54–57,59,60,62,64,65,67,70–
74,76,77] with a sample size of 2430. Our analysis showed a slight decrease in LDL
levels; however, this was not statistically significant (SMD = −0.06, 95CI (−0.37, 0.24),
p = 0.67, I2 = 89%, p < 0.05) (Figure 4B).
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Figure 3. Effect of vitamin D on lipid profile, (A) triglycerides, (B) total cholesterol in type 2 diabetes.
Std: standard mean difference, CI: confidence intervals. Data are reported as standard mean difference
and 95% confidence intervals with a p-value set at p < 0.05. Angellotti et al., 2018 [60]; Barale et al.,
2020 [65]; Barchetta et al., 2016 [64]; Breslavsky et al., 2013 [71]; Dadras et al., 2019 [54]; Dalan et al.,
2016 [74]; Gagnon et al., 2014 [67]; Hajj et al., 2020 [76]; Hoseini et al., 2022 [57]; Hu et al., 2022 [68];
Imanparast et al., 2020 [56]; Kampmann et al., 2014 [69]; Mirzavandi et al., 2020 [55]; Muñoz-Aguirre
et al., 2014 [73]; Omidian et al., 2019 (a) [52]; Punthakee et al., 2012 [62]; Ryu et al., 2014 [72]; Sadiya
et al., 2015 [47]; Tabesh et al., 2014 [50]; Upreti et al., 2018 [70]; Wenclewska et al., 2019 [77]; Withan
et al., 2010 [61].

3.7. Subgroup Analysis

Subgroup analysis was conducted for all effect measures based on gender distri-
bution dose and duration of vitamin D intervention. We classified the doses as low or
high, the intervention duration as short- or long-term, and gender as male, female, both,
or unreported. The overall results are presented in the Supplementary File as Table S3.
Briefly, our results showed no significant changes in heterogeneity (I2 remained constant
or changed minimally) following subgroup analysis. For instance, the dosage, dura-
tion, and gender subgroup test revealed no major change in heterogeneity (I2 > 50%)
on hs-CRP (Supplementary Table S3). For IL-6, the subgroup on dosage and gender
distribution revealed minimal heterogeneity (I2 = 31.2%) and (I2 = 13.9%), respectively
(Supplementary Table S3). Test for subgroup analysis on TNF-α showed a decrease in
heterogeneity following subgroup on dosage and gender (Supplementary Table S3). In-
terestingly, the subgroup based on the duration of intervention revealed no evidence of
heterogeneity (I2 = 0%), which was associated with the longer duration of vitamin D
supplementation (Supplementary Table S3). Following subgroup analysis, on duration
of intervention, a longer duration showed no evidence of heterogeneity in total choles-
terol (I2 = 0%) and triglyceride (I2 = 0%) (Supplementary Table S3). Similarly, HDL and
LDL duration and dosage seem to reduce heterogeneity to minimal, with long vitamin D
supplementation resulting in zero heterogeneity (I2 = 0%) (Supplementary Table S3).
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Figure 4. Effect of vitamin D on lipid profiles, (A) high-density lipoprotein (HDL), (B) low-density
lipoprotein (LDL). Std: standard mean difference, CI: confidence intervals. Data are reported as
standard mean difference and 95% confidence intervals with p set at p < 0.05. Angellotti et al.,
2018 [60]; Barale et al., 2020 [65]; Barchetta et al., 2016 [64]; Breslavsky et al., 2013 [71]; Dadrass et al.,
2019 [54]; Dalan et al., 2016 [74]; Gagnon et al., 2014 [67]; Hajj et al., 2020 [76]; Hoseini et al., 2022 [57];
Imanparast et al., 2020 [56]; Kampmann et al., 2014 [69]; Meng et al., 2020 [59]; Mirzavandi et al.,
2020 [55]; Muñoz-Aguirre et al., 2014 [73]; Omidian et al., 2019 (a) [52]; Punthakee et al., 2012 [62]; Ryu
et al., 2014 [72]; Sadiya et al., 2015 [47]; Tabesh et al., 2014 [50]; Upreti et al., 2018 [70]; Wenclewska
et al., 2019 [77].

3.8. Sensitivity Analysis

Sensitivity was performed using the leave-one-study-out approach to evaluate the
stability of the effect size across all outcomes. Results are presented in
Supplementary Table S4–S10. For hs-CRP, exclusion of a trial by Fazelian [51] due to
low weight led to SMD = −0.58, 95%CI (−0.19, −0.24), p = 0.03, I2 = 94%
(Supplementary Table S4). We found that for IL-6, removing one study [54] due to
the small sample size resulted in a change in effect size from original to SMD = −0.25,
95%CI (−0.68, 0.18), p = 0.26, I2 = 87% (Supplementary Table S5), for TNF-α, ex-
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clusion of [54] resulted in SMD = −0.42, 95%CI (−0.87, 0.02), p = 0.06, I2 = 70.5%
(Supplementary Table S6). For triglycerides and total cholesterol, a study with a small
sample size was excluded [57], and the effect size changed to (SMD = −0.06, 95%CI
(0.20, −0.32), p = 0.77, I2 = 94%) (Supplementary Table S7) and SMD = −0.04, 95%CI
(−0.43, 0.36), p = 0.85, I2 = 94% (Supplementary Table S8) respectively. Lastly, when
the same study [57] was excluded for both HDL and LDL, there was a change in effect
size SMD = 0.68, 95%CI (0.39, 0.97), p < 0.05, I2 = 95% (Supplementary Table S9) and
SMD = 0.02 (−0.17, 0.21), p = 0.91, I2 = 89% (Supplementary Table S10), respectively.

3.9. Publication Bias

The publication bias was assessed visually and graphically through a funnel plot sym-
metrical shape (Supplementary Figures S1 and S2). For inflammatory markers, asymmetri-
cal plot visualization was noted on IL-6 and hs-CRP, which suggests evidence of publication
bias (Supplementary Figure S1A,B). The Eggers regression test further supports this, IL-6 (Z
score = −3.21, p < 0.05), hs-CRP (Z-score = −7.74, p < 0.05). Interestingly, there was no evi-
dence of publication bias on hs-CRP and TNF-α graphically (Supplementary Figure S1C)
and statistically TNF-α (Z score =−0.49, p = 0.62). The visual examination of the funnel plot
indicates the presence of publication bias for lipid profiles (Supplementary Figure S2A–D).
This was also corroborated by Egger’s regression test total cholesterol (Z score = −6.84,
p < 0.05), triglycerides (Z score = −5.88, p < 0.05), HDL (Z score = −2.23, p = 0.03) and LDL
(Z score = −2.31, p = 0.02). One of the factors contributing to the observed publication
bias is the disproportionate publication of studies from Iran compared to other countries.
This can be attributed to the high prevalence of vitamin D deficiency among the Iranian
population, suggesting a reliance on vitamin D supplementation in this region as opposed
to other countries.

3.10. Certainty of Evidence

We further evaluated certainty by GRADING evidence gathered in this review using
GRADEprofiler. The results are presented in Supplementary Table S11. In brief, our results
were rated high-quality for TNF-α, IL-6, triglyceride, and total cholesterol, moderate for
CRP and HDL, and low for LDL.

4. Discussion

We gathered evidence from 30 RCTs to simultaneously evaluate the effect of vitamin
D on inflammatory markers and lipid profiles in type 2 diabetic patients. This meta-
analysis included trials with at least 2310 T2D patients on vitamin D supplementation
and revealed vitamin D’s potential to ameliorate inflammation. This is demonstrated by
a significant reduction in circulating hs-CRP and TNF-α. A marginal potential effect was
also observed on IL-6 following vitamin D supplementation. These results suggest that
vitamin D supplementation in T2D may be beneficial in alleviating inflammatory-associated
complications. Moreover, our findings are supported by Gu et al., 2022 [79]. Our results
are corroborated by Calton et al., 2015, who demonstrated an anti-inflammatory effect
of vitamin D through evidence from an in vitro study [80]. These researchers assessed
monocyte chemoattractant protein-1 (MCP-1), IL-6, and IL-8 as markers of inflammation,
which were reduced after 1,25(OH)2, cholecalciferol, and 25(OH)D treatment. This meta-
analysis demonstrated the ameliorative effect of vitamin D on inflammation by reducing the
level of CRP and TNF-α. Notably, our study indicated a marginal decrease in IL-6 (p = 0.05)
in T2D following vitamin D supplementation. However, it is noteworthy that a prior
meta-analysis by Yu et al., 2018, revealed no significant effect of vitamin D supplementation
on TNF-α and IL-6 despite supporting our findings on the observed significant decrease
in hs-CRP [31]. Despite being conducted in T2D, a limitation of the prior meta-analysis
lies in its sample size, comprising only 13 studies. Furthermore, the intervention group
encompassed studies using combined supplementation, such as calcium and vitamin K,
which could influence the overall efficacy of vitamin D. For instance, Jorde has reported a
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negative correlation between vitamin D and calcium intake with the serum level of vitamin
D [81].

Conversely, another study showed no significant effect of vitamin D on CRP and
TNF-α serum levels. However, the same study revealed a significant increase in the
serum IL-6 [82]. Increased IL-6 observed in this study implies that vitamin D promoted
inflammation. This further suggests that vitamin D exhibited no anti-inflammatory effects
among the included studies. These conflicting results may be attributed to a different
form of vitamin D, dosage, duration of intervention, and the main aspect in terms of
population, as evidence was pooled from studies where patients had T2D, human immune-
deficiency virus (HIV), pre-diabetes, and non-alcoholic fatty liver diseases. For example,
HIV independently is associated with chronic inflammation [83]. Also, non-alcoholic fatty
liver disease is an inflammation of the liver due to fat accumulation in the hepatocytes [84].
An existing meta-analysis by Chen and his team in 2014 reported a significant decrease in
CRP levels following vitamin D administration [85]. Notably, this meta-analysis evaluated a
group of patients with various metabolic conditions ranging from obesity, pregnant women,
T2D, coronary artery disease, polycystic ovary syndrome, insulin-resistant condition, or
bedridden older patients in addition to healthy participants contrary to our focus, which is
strictly on T2D. All these conditions independently may trigger an inflammatory response,
and thus, the effect observed might not necessarily be due to vitamin D but be attributed
to these conditions. Another qualitative study synthesized by Agbalalah et al., 2017 [86],
reported no benefit of vitamin D supplementation in adult patients, and this study was
based on a wide range of conditions, including HIV, chronic kidney disease (CKD), and T2D.
Although this study reported null findings, this can be due to the fact that HIV is associated
with increased immune activation, ongoing HIV replication, and immune dysfunction,
which contributes to chronic states of inflammation [83].

Similarly, CKD activates NF-κβ and Toll-like receptor pathways, producing inflamma-
tory molecules that exacerbate inflammation [87]. Hence, our results suggest that vitamin
D can inhibit the production of pro-inflammatory markers, including TNF-α, IL-6, and hs-
CRP. These markers promote an inflammatory response. Therefore, vitamin D, by reducing
their production, may ameliorate inflammation. Some of the mechanisms by which vitamin
D regulates inflammation are mediated by signaling pathways, including cyclooxygenase
suppression of NF-κβ. These regulate inflammatory gene expression and mitogen-activated
protein kinase (MAPK) activation, mediating inflammatory responses [88]. Therefore, by
inhibiting p38 MAPK, vitamin D can suppress the production of pro-inflammatory cy-
tokines, such as TNF-α and IL-6 in macrophages [89]. Inhibition of p38 gene expression in
macrophages activates MAPK phosphatase-1 (MKP1), which dephosphorylates p38 and
thus reduces p38 activation. Vitamin D and its receptor complex can interact with NF-κβ,
or the glucocorticoid receptor, which results in anti-inflammatory effects [88]. Likewise,
vitamin D modulates T-cells through its receptors. This action inhibits the differentiation of
T-cells into pro-inflammatory subsets and thus promotes the development of regulatory
T-cells, which exhibit anti-inflammatory properties [90,91].

Secondly, in terms of the effects of vitamin D on lipid profiles, we found that vitamin
D administration can ameliorate dyslipidemia, as shown by a significant decrease in
triglycerides, concomitant to an increased HDL. Increased triglyceride levels in the body
are associated with atherosclerosis and increased risk of heart failure. Our findings are
supported by these trials [55,60,63,64,73,77]. However, some studies disagree with our
findings despite being conducted in T2D [56,59,62,69,71,72,92,93]. It is important to note
that reducing triglycerides and increasing HDL, especially in T2D patients, may curb
secondary complications associated with T2D. Although there was a notable reduction in
total cholesterol and LDL in our current study, this was statistically not significant in the
current analysis. These findings are partly supported by Qi et al., 2022, who reported no
effect of vitamin D on lipid profile in general; however, this meta-analysis was conducted
in patients with metabolic syndromes [94] and might not be comparable to our findings.
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This is partly due to different underlying mechanisms, severity, individual responses, and
management approaches.

The ameliorative effect of vitamin D on cholesterol levels is attributable to its potential
to influence insulin-gene expression, the transcription activity on vitamin D receptor
(VDR), downregulate activation of sterol regulatory element binding protein-2 (SREBP-2),
inhibition of 3-hydroxy-3-methyl glutaryl-coenzyme-A reductase expression, a cofactor for
the synthesis of cholesterol with subsequent reduction in cholesterol level [95]. Preclinical
evidence also corroborates findings observed in clinical studies by inhibiting SREBP-2
expression [96]. Another animal study also demonstrated vitamin D’s role in maintaining
lipid profile by regulating lipogenic genes through downregulating SREBP [97]. In an
experimental study, active vitamin D reduced triglycerides in differentiated adipocytes,
increased fatty acid β-oxidation, and reduced de novo fatty acid synthesis [98].

Despite the well-designed method used in this systematic review and meta-analysis,
the limitations remain; for example, this study included all trials despite different doses and
duration of the intervention. Secondly, there was high heterogeneity across the included
trials; however, subgroup analyses according to these confounding factors, such as dosage,
duration, and gender, proved to have no significant effect on other parameters except TNF-α,
total cholesterol, and HDL (I2 = 0%). In addition, sensitivity analysis was performed to
evaluate the stability of our effect size and revealed no major changes except a study with a
small sample size across all outcome measures. Of interest with this current study is that the
sample size used was sufficient as about 30 trials with 2310 T2D patients on vitamin D were
included in a meta-analysis. This is a powered sample size and sufficient to make a conclusive
statement and recommendation about the efficacy of vitamin D as an anti-inflammatory and
anti-dyslipidemic agent in adults with T2D. The overall quality of the included trial was
excellent (83%), although two trials individually across all domains were poor (7%), and three
were fair (10%) in overall quality. Our certainty of the evidence was high for IL-6, TNF-α,
triglyceride, and total cholesterol, moderate for both hs-CRP and HDL, and low for LDL.

Furthermore, the methodology followed in this study was rigorous and adhered
to established guidelines of PRISMA. To avoid potential inconsistencies and biases in
the selection, extraction, quality assessment, and evidence grading, a minimum of three
researchers were involved in each phase. By involving multiple researchers, we ensured
that the findings were reliable, thus strengthening the overall validity of the outcomes of
this study.

5. Conclusions and Future Perspectives

The evidence obtained in this meta-analysis provides valuable insights into the poten-
tial benefits of vitamin D supplementation among T2D patients. Specifically, the results sug-
gest that vitamin D supplementation can have anti-inflammatory and anti-hyperlipidemic
effects on T2D. After supplementation, a reduction in TNF-α, IL-6, and hs-CRP levels
demonstrates its anti-inflammatory effect, while the decrease in triglycerides and increase
in HDL levels demonstrate its anti-hyperlipidemic properties. However, it is important to
note that while such benefits were observed, this study found no statistically significant
effect of vitamin D supplementation on total cholesterol and LDL amongst these adult T2D
patients. This suggests that vitamin D supplementation might not significantly impact these
lipid parameters in T2D. The results also raise interesting questions for future research,
which needs to focus on proper methodology and powered sample size trials to further
investigate the effects of vitamin D supplementation on lipids profiles in T2D patients.

Moreover, exploring different doses of vitamin D, at high and low, with different
duration of intervention could provide insights into the optimal dosing and duration of
vitamin D for maximum benefits in T2D. Furthermore, the safety of vitamin D should
be considered when exploring the long-term effects in this population. Therefore, future
trials should also focus on assessing the safety profile of different doses and durations of
vitamin D supplementation to ensure that it does not cause adverse effects, especially when
administered over extended periods.
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