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Abstract: The rapid increase in sugar consumption is associated with various negative metabolic and
inflammatory effects; therefore, alternative sweeteners become of interest. The aim of this study was
to investigate the metabolic effects and safety aspects of acute D-allulose and erythritol on glucose,
insulin, ghrelin, blood lipids, uric acid, and high-sensitive C-reactive protein (hsCRP). In three study
visits, 18 healthy subjects received an intragastric administration of 25 g D-allulose or 50 g erythritol,
or 300 mL tap water (placebo) in a randomized, double-blind and crossover order. To measure the
aforementioned parameters, blood samples were drawn at fixed time intervals. Glucose and insulin
concentrations were lower after D-allulose compared to tap water (p = 0.001, dz = 0.91 and p = 0.005,
dz = 0.58, respectively); however, Bayesian models show no difference for insulin in response to
D-allulose compared to tap water, and there was no effect after erythritol. An exploratory analysis
showed that ghrelin concentrations were reduced after erythritol compared to tap water (p = 0.026,
dz = 0.59), with no effect after D-allulose; in addition, both sweeteners had no effect on blood lipids,
uric acid and hsCRP. This combination of properties identifies both sweeteners as excellent candidates
for effective and safe sugar alternatives.

Keywords: D-allulose; erythritol; sweeteners; glycemic control; ghrelin; blood lipids; uric acid;
hsCRP; healthy subjects

1. Introduction

Fructose is typically found in fruits, sucrose, honey and high fructose corn syrup
(HFCS). The excessive consumption of foods and beverages containing HFCS or sucrose
are, however, associated with various risk factors such as insulin resistance, elevated blood
lipids and uric acid, as well as an increase in systemic inflammation [1–4]. These negative
metabolic effects lead to an increased risk of non-communicable diseases such as obesity,
diabetes mellitus type 2 (T2DM), cardiovascular diseases (CVD) and hyperuricemia [5–8].
From a preventive perspective, HFCS and sucrose consumption should be reduced; there-
fore, there is growing interest in the use of efficacious and safe alternative sweeteners.

D-allulose and erythritol, two naturally occurring sweeteners, are interesting alter-
natives. Both sweeteners have a sweetness of around 60–80% relative to sucrose and are
associated with several positive health effects.

It was shown that D-allulose, a C3 epimer of D-fructose, does not affect blood glucose
in response to an oral glucose tolerance test (OGTT) in healthy humans [9]. More impor-
tantly, Franchi et al. [10] have reported that an acute intake of D-allulose in combination
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with 50 g of sucrose leads to a dose-dependent reduction in glucose and insulin concentra-
tions compared to sucrose alone. In addition, several studies have found that D-allulose
reduces postprandial blood glucose concentrations compared to either maltodextrin, a tea
without D-allulose, or fructose in healthy participants and participants with prediabetes
as well as T2DM [11–13]. Similar to fructose, D-allulose stimulates the release of gastroin-
testinal (GI) satiation hormones such as cholecystokinin (CCK), glucagon-like peptide-1
(GLP-1), and peptide tyrosine tyrosine (PYY), thereby modulating appetite [14–16]. In mice,
it was shown that a central injection of D-allulose inhibited ghrelin-responsive neurons in
the arcuate nucleus (ARC) in the hypothalamus [17]. Whether D-allulose affects orexigenic
ghrelin concentrations in humans is currently unknown. Furthermore, it was shown that
D-allulose, compared to sucralose, reduces body mass index (BMI) including abdominal
and subcutaneous fat areas in a 12–week trial including participants that are overweight
and participants with obesity, with no adverse effect on blood lipids [18]. Administer-
ing D-allulose to patients with high low-density lipoprotein (LDL) cholesterol levels for
48 weeks did not increase blood lipids or high-sensitive C-reactive protein (hsCRP) [19].
Finally, daily intake of D-allulose in tea with a standard meal over 12 weeks did not affect
uric acid concentrations [12].

Whether an acute intragastric administration of 25 g of pure D-allulose is efficacious
and safe in regulating glucose, insulin and ghrelin concentrations, as well as blood lipids,
uric acid and hsCRP has not been investigated.

Erythritol, for its part, is a four-carbon sugar alcohol with the formula C4H10O4
and occurs naturally in fruits, vegetables and fermented food and drinks [20]. Erythritol
does not affect glucose and insulin concentrations and seems to have protective effects
on endothelial function in patients with T2DM [21–24]. Although erythritol provides
zero calories, it induces the release of CCK, GLP-1 and PYY that is similar to glucose and
sucrose [22,23]. A recent study indicates that ghrelin concentrations are suppressed in
response to oral erythritol in healthy participants [25]. In a pilot dose-ranging study, acute
ingestion of erythritol did not affect blood lipid and uric acid concentrations [23]. Based
on toxicological and safety data, erythritol is generally recognized as safe (GRAS) by the
Food and Drug Administration (FDA) in the United States for its intended use in foods [26].
However, the effect of erythritol on hsCRP is not known.

The aim of this study is to investigate the metabolic effects of acute intragastric admin-
istration of 25 g D-allulose or 50 g erythritol on glucose, insulin and ghrelin concentrations
as well as to assess safety aspects of both alternative sweeteners on blood lipids, uric
acid and hsCRP concentrations. The rationale for the intragastric administration of the
solutions was to bypass oro-sensory exposure. We hypothesized that glucose and insulin
concentrations will be similar, and ghrelin will be reduced in response to D-allulose and
erythritol compared to tap water, respectively.

2. Subjects and Methods
2.1. Approval

The Ethics Committee of Northwestern-and central Switzerland (EKNZ): 2019-01111
approved the trial. The trial was conducted in accordance with the current version of
the Declaration of Helsinki, the guidelines of Good Clinical Practice (GCP) issued by the
International Council on Harmonisation (ICH) and the Swiss law and Swiss regulatory
authority’s requirements. All participants gave their informed consent for inclusion before
inclusion in the study. The study was registered at ClinicalTrials.gov (NCT04027283).

2.2. Subjects

Twenty-one subjects were recruited via advertisement at the local university. Subjects
were eligible for the study when meeting all of the subsequent inclusion criteria: age
between 18−55 years, BMI of 19.0–24.9 kg/m2 and normal eating habits (no diets, no dietary
changes). Exclusion criteria were medical or drug abuse including alcohol dependence,
acute or chronic infection or illness, illnesses affecting the GI tract, pre-existing consumption
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of D-allulose and/or erythritol more than once a week, pregnancy and involvement in
another study with an investigational drug within 30 days preceding and/or during the
current study.

2.3. Design and Procedure

The study used a double-blind, placebo-controlled, cross-over design and was con-
ducted between September 2019 and September 2020. Part of the results and the sample
of this study were reported elsewhere [14]. Each subject took part in three separate study
visits as follows: 25 g D-allulose, 50 g erythritol or 300 mL tap water (placebo). The
solutions were dissolved in 300 mL tap water. The rationale for the doses was chosen
for the primary outcome of this study (GI satiation hormone release) and was based on
the following considerations as previously described [14]: 50 g erythritol induces CCK,
GLP-1, and PYY release reliably without GI side effects and corresponds to around 33.5 g
of sucrose typically found in sweet beverages [22]. The effect of D-allulose on GI satiation
hormones was not investigated before in humans. The recommended maximal single
dose–where no GI side effects are observed–is 25 g [27]. The order of the study visits was
randomized and counterbalanced among subjects. The study visits took place at least three
days apart and after a 10-h overnight fast. All study visits started at ~0830 in the morning
and, upon arrival, a cannula was inserted into a forearm vein for blood collection. Next,
a nasogastric feeding tube (external diameter of 8 French) was inserted into the stomach.
The rationale for intragastric administration of the solutions was to bypass oro-sensory
exposure (e.g., taste and intensity) directly affecting brain mechanisms that may influence
physiological/endocrine responses [28,29].

After taking blood samples in a fasting state (t = −10 and −1 min), subjects received
one of the solutions (at t = 0 min) via the nasogastric feeding tube over two minutes.

More blood samples were taken at t = 15, 30, 45, 60, 90, 120 and 180 min for the
analysis of glucose, insulin and ghrelin, and at t = 30, 60, and 120 min, for analysis of blood
lipids, uric acid and hsCRP (Figure 1). Blood pressure and heart rate were measured at
the beginning and at the end of each study visit. The subjects, including the personnel
performing the study visits and blood analysis, were blinded regarding the content of the
administered solutions.
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Figure 1. Study timeline: Intragastric administration of the solutions at t = 0 min to 18 healthy subjects
in a randomized, double-blind, crossover order, in three different study visits after an overnight fast.
The red tubes indicate blood sample collection.

2.4. Blood Sample Collection and Processing

Blood samples for glucose, insulin and ghrelin were collected on ice into tubes con-
taining EDTA (6 µmol/L blood) and a protease-inhibitor cocktail (complete, EDTA-free,
1 tablet/50 mL blood, Roche, Mannheim, Germany). Blood lipids, uric acid and hsCRP
blood samples were collected on ice into serum tubes. After centrifugation (4 ◦C at 3000 rpm
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for 10 min), the samples were processed into different aliquots (for the ghrelin samples,
150 µL of 1N hydrochloric acid was added) and stored at −80 ◦C until analysis.

2.5. Materials

D-allulose was purchased from Tate & Lyle (Decatur, IL, USA) and erythritol from
Mithana GmbH (Zimmerwald, Switzerland).

2.6. Laboratory Analysis

Plasma glucose and insulin were measured with an enzymatic assay from Beckman-
Coulter and an electrochemiluminescence immunoassay (ECLIA) (Rothen Medizinische
Laboratorien AG, Basel, Switzerland), respectively. The intra- and inter-assay variability
is below 0.7% and 0.9% (glucose) and below 4.3% and 5.3% (insulin). The appropriate
range of the assays are 0.6 to 45 mmol/L (glucose) and 0.4 to 1000 µU/mL (insulin).
Plasma octanoylated ghrelin was measured by a radioimmunoassay with 125l [Tyr24] human
ghrelin [1–23] as a tracer and a rabbit antibody against human ghrelin [1–8] (final dilu-
tion 15/100000), which does not cross-react with desoctanoylated ghrelin, as described
previously in more detail [30]. Serum blood lipids, uric acid and hsCRP were measured with
enzymatic assays from Beckman-Coulter (Rothen Medizinische Laboratorien AG, Basel,
Switzerland). The intra- and inter-assay variability is below 0.7% and 0.8% (cholesterol),
below 2.26% and 2.71% (LDL), below 0.85% and 1.92% (HDL), below 1.06% and 1.76%
(triglycerides), below 1.55% and 2.44% (uric acid) and below 5% and 7.5% (hsCRP). The
appropriate range of the assays are 0.5 to 18.0 mmol/L (cholesterol), 0.3 to 10.3 mmol/L
(LDL), 0.05 to 4.65 mmol/L (HDL), 0.1 to 11.3 mmol/L (triglycerides), 89 to 1785 µmol/L
(uric acid) and 0.2 to 80.0 mg/L (hsCRP).

2.7. Statistics

The sample size calculation to detect a difference between GI hormones in response
to both alternative sweeteners compared to tap water was previously reported [14]. For
the metabolic effects (glucose, insulin and ghrelin) and safety aspects (blood lipids, uric
acid and hsCRP) parameters, no sample size calculations were performed. However, in a
sensitivity power calculation, the sample size of 18 participants yields 80% power to detect
a medium effect size (Cohen’s d = 0.65) for the comparison of D-allulose and erythritol with
tap water using a one-tailed paired t-test with Holm multiple testing correction (α = 0.0375).
The one-tailed test is justified by the directional nature of our hypothesis regarding the
effects on ghrelin (see below).

Statistical analysis was conducted using SAS 9.4 (SAS Institute, Cary, NC, USA). Data
is presented as the mean ± SEM unless otherwise stated. A two-tailed p-value < 0.05
was considered significant and Cohen’s dz for paired t-tests was presented for effect sizes.
Kolmogorov-Smirnov testing and quantile-quantile plots were used to assess normality;
for instance, if necessary, natural logarithmic transformations of the data were used to
normalize distributions. The visit number was included to control for putative order effects
in all models. The metabolic and safety outcome variables were analyzed using linear
mixed models on changes from baseline (average of pre-infusion time point(s) for the
metabolic parameters) and absolute values for the safety aspect parameters. “Solution” and
“time” were included as within-subject independent variables in the models (including
their main effects and the interaction). The metabolic outcome models controlled for
baseline values. To follow up on significant main or interaction effects, planned contrast
analyses were performed to test the specific hypotheses, with stepdown Bonferroni (Holm)
correction for multiple testing.

To test the hypotheses that glucose and insulin concentrations, in response to D-allulose
and erythritol, will be similar to tap water and that ghrelin will be reduced in response
to D-allulose and erythritol compared to tap water, respectively, we compared the post-
infusion glucose, insulin and ghrelin concentration changes from the baseline between tap
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water and D-allulose or erythritol. We did not formulate any a priori hypotheses about the
safety outcomes.

Given our hypothesis about glucose and insulin concentrations being similar for the
two solutions compared to tap water, we complemented our frequentist statistical analysis
with Bayesian analyses in two complementary ways. First, we ran Bayesian equivalents of
the abovementioned linear mixed model analyses for these two outcomes using SAS PROC
BGLIMM with 10,000 burn-in samples followed by 100,000 Markov chains. A weakly
informative normal prior (µ = 0, σ = 2) was used for the fixed effects coefficients, while an
uninformative uniform prior with upper limit 1000 was used for the variance parameter of
the covariance matrix for the random substance effect, to downplay the role of a relatively
informative prior on the posterior distribution. Diagnostics (trace, autocorrelations and
density plots and effective sample sizes) were used to confirm Markov chain convergence.
Second, to the best of our knowledge, Bayes factors were not implemented in the context
of the Bayesian linear mixed model analysis outside the context of Bayesian model se-
lection [31], and we calculated Bayes factors in a one-way repeated measures ANOVA
analysis with the AUC of glucose or insulin concentrations as the dependent variable
and the solution as the sole independent variable as implemented in the JASP 0.16.4.0
software [32].

Since the AUC of total serum ghrelin was not significant in the study by
Sorrentino et al. [25] between erythritol and aspartame consumption, but time points t = 20,
30, and 45 min after erythritol consumption were, we further explored the time points t = 30
and 45 min of ghrelin concentrations in response to D-allulose and erythritol, compared to
tap water, in the current study.

3. Results

Twenty-one subjects were randomized. There were three drop-outs (one subject with-
drew due to knee surgery and two withdrew for personal reasons). A total of 18 subjects
(5 males and 13 females, mean ± SD (range), age: 24 ± 4 (19–35) years and BMI 21.9 ± 1.7
(19.1–24.3) kg/m2 completed the three study visits. Complete data sets from all 18 subjects
were available for analysis.

3.1. Plasma Glucose

D-allulose decreased plasma glucose, whereas erythritol had no effect compared to
tap water (Figure 2A). The main effect of the solution and the solution-by-time interaction
effect were significant ((F (2, 41) = 8.86, p = 0.001) and (F (12, 166) = 3.20, p = 0.0004), respec-
tively). Planned contrast analyses show that plasma glucose was lower after D-allulose
vs. tap water, but not after erythritol vs. tap water (p = 0.001, dz = 0.91 and p = 0.787,
respectively). These results were corroborated by Bayesian linear mixed model analysis,
showing a difference between D-allulose and tap water (estimate ± standard deviation
(SD): −0.202 ± 0.078, highest probability density (HPD) interval −0.356 − −0.048), but not
between erythritol and tap water (−0.018 ± 0.055, −95% HPD 0.12–0.097).

The Bayesian repeated measures ANOVA on the AUC yielded moderate evidence in
favor of a difference between the three solutions in the omnibus test (BF10 = 7.50, R2 = 0.42
[0.26–0.57]), as well as for the D-allulose vs. tap water post-hoc comparison (BF10 = 4.14).
Moderate evidence was found in favor of erythritol being no different from tap water
(BF10 = 0.243) (Figure 3A).

3.2. Plasma Insulin

D-allulose decreased plasma insulin, whereas erythritol had no effect compared to
tap water (Figure 2B). The main effect of the solution was significant (F (2, 37) = 6.15,
p = 0.005). The solution-by-time interaction effect was not significant (F (12, 170) = 0.59,
p = 0.848). Planned contrast analyses show that plasma insulin was lower after D-allulose
vs. tap water, but not after erythritol vs. tap water (p = 0.005, dz = 0.58 and p = 0.320,
respectively). The difference between D-allulose and tap water was not confirmed in a
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Bayesian linear mixed model analysis (0.020 ± 0.755, −95% HPD 1.457–1.495); however,
the lack of difference between erythritol and tap water was corroborated (0.027 ± 0.756,
95% HPD −1.444–1.521).

The Bayesian repeated measures ANOVA on the AUC yielded moderate evidence in
favour of a difference between the three solutions in the omnibus test (BF10 = 4.77, R2 = 0.41
[0.25–0.56]), with the evidence for the D-allulose vs. tap water and erythritol vs. tap water
post-hoc comparisons being inconclusive (BF10 = 1.06 and 0.42, respectively) (Figure 3B).
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3.3. Plasma Octanoylated Ghrelin

D-allulose and erythritol had no effect on ghrelin compared to tap water (Figure 4).
Neither the main effect of the solution nor the solution-by-time interaction effect were
significant ((F (2, 39) = 2.14, p = 0.132) and (F (12, 156) = 0.86, p = 0.591), respectively). None
of the planned contrast analyses were significant. However, further exploration of the
time points at 30 min and 45 min post D-allulose and erythritol administration show a
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decrease of ghrelin in response to erythritol at 30 min (p = 0.026, dz = 0.59), with no effects
in response to D-allulose (p = 1).
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Figure 4. Ghrelin concentrations in response to intragastric administration of solutions containing
25 g D-allulose, 50 g erythritol or tap water to 18 healthy subjects. Data are expressed as mean ± SEM,
and changes from baseline values are shown.

3.4. Serum Total Cholesterol

D-allulose and erythritol had no effect on total cholesterol compared to tap water. The
main effect of the solution was not significant (F (2, 26) = 0.03, p = 0.967). The solution-
by-time interaction effect was significant (F (6, 83) = 3.28, p = 0.006). None of the planned
contrast analyses were significant.

3.5. Serum LDL Cholesterol

D-allulose and erythritol had no effect on LDL cholesterol compared to tap water. The
main effect of the solution was not significant (F (2, 21) = 0.12, p = 0.886). The solution-
by-time interaction effect was significant (F (6, 40) = 2.99, p = 0.016). None of the planned
contrast analyses were significant.

3.6. Serum HDL Cholesterol

D-allulose and erythritol had no effect on HDL cholesterol compared to tap water. The
main effect of the solution was not significant (F (2, 21) = 0.58, p = 0.568). The solution-
by-time interaction effect was significant (F (6, 85) = 3.66, p = 0.003). None of the planned
contrast analyses were significant.

3.7. Serum Triglycerides

D-allulose and erythritol had no effect on triglycerides compared to tap water. Neither
the main effect of the solution nor the solution-by-time interaction effect were significant
((F (2, 29) = 0.61, p = 0.550) and (F (6, 81) = 2.08, p = 0.064), respectively). None of the
planned contrast analyses were significant.



Nutrients 2023, 15, 458 9 of 13

3.8. Serum Uric Acid

D-allulose and erythritol had no effect on uric acid compared to tap water. The main
effect of the solution was not significant (F (2, 17) = 0.08, p = 0.925). The solution-by-time
interaction effect was significant (F (6, 35) = 9.91, p = 0.001). None of the planned contrast
analyses were significant.

3.9. Serum hsCRP

D-allulose and erythritol had no effect on hsCRP compared to tap water. Neither
the main effect of the solution nor the solution-by-time interaction effect were significant
((F (2, 23) = 0.51, p = 0.606) and (F (6, 83) = 1.21, p = 0.309), respectively). None of the
planned contrast analyses were significant.

4. Discussion

This study aimed to investigate the metabolic effects and safety aspects of the acute
intragastric administration of either 25 g D-allulose or 50 g erythritol on glucose, insulin,
ghrelin, blood lipid, uric acid and hsCRP concentrations. The results show that: (i) glu-
cose and insulin concentrations did not increase in response to D-allulose and erythritol,
compared to tap water; (ii) ghrelin concentrations decreased in response to erythritol (ex-
ploratory analysis), but not to D-allulose, compared to tap water; (iii) blood lipids, uric
acid and hsCRP were not affected in response to D-allulose and erythritol compared to
tap water.

The linear mixed model analysis shows that glucose and insulin concentrations were
lower in response to D-allulose, but not erythritol, compared to tap water. However, both
Bayesian models did not show evidence of a difference in insulin concentrations in response
to D-allulose compared to tap water. The results of D-allulose and erythritol on glucose and
insulin concentrations are therefore in line with previous human studies and support the
anti-diabetic effects (i.e., no increase in glucose or insulin concentrations) [9–13,22,23,33].
In contrast to the intragastric administration of 25 g of D-allulose given in isolation in
our study, these previous studies used oral doses between 2.5–10 g with the addition
of either maltodextrin [11], an OGTT [13] or an oral sucrose load [10] assessing post-
prandial blood glucose and insulin concentrations. To date, however, the mechanisms
underlying the anti-diabetic effects of D-allulose and erythritol are not clear. A study in rats
has suggested hepatic glucokinase changes in response to a rare sugar syrup containing
D-allulose for 10 weeks as a possible mechanism for the reduction of post-prandial blood
glucose [34]. However, it merits further investigation if this mechanism applies to pure
and acute D-allulose administration. For erythritol, ameliorated insulin-mediated muscle
glucose uptake and reduced intestinal glucose absorption was proposed as a mechanism in
diabetic rats [35]. However, chronic intake of erythritol had no effect on intestinal glucose
absorption in a recent human study [36]. At least for now, acute ingestion of both natural
sweeteners seems to be a helpful alternative compared to sugar, especially for patients with
obesity or T2DM.

Anorexigenic and orexigenic hormones play an important role in regulating appetite
and satiation. Common mediators are CCK, GLP-1, PYY and ghrelin [37]. Unlike the
other hormones, ghrelin is known as a “hunger hormone” and promotes food intake and
increases gastric emptying [38,39]. It was shown that ghrelin concentrations were not
affected in response to acute or chronic (2 weeks) artificial low-caloric sweeteners such
as sucralose or aspartame [25,40,41]. We observed a similar acute effect in this study for
D allulose. In contrast the exploratory analysis, erythritol induced a reduction of ghrelin
at time point 30 min. The finding for erythritol is in line with the acute pilot study from
Sorrentino et al. [25]. Moreover, the results of ghrelin in response to both alternative
sweeteners reflect the gastric emptying rates recently reported, with no effect in response to
D-allulose and a slowing down in response to erythritol [14]. Thus far, the results from the
study in mice by Rakhat et al. [17], where a reduction in ghrelin-responsive neurons in the
ARC was reported in response to D-allulose, are not translatable to humans. The sample
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size of the current study was rather small and further studies are needed to investigate the
effects of D-allulose and erythritol on orexigenic hormones.

The potential side effects associated with high sugar intake, especially fructose, are
changes in blood lipids, uric acid or hsCRP [1,3].

For both sweeteners, we and others show that D-allulose and erythritol have no
clinically relevant effects on blood lipids [18,19,23,33]. Our findings are in line with these
studies. However, more long-term studies with D-allulose and erythritol in different
patients are needed to investigate the effects on blood lipids on long-term safety.

High uric acid concentrations and inefficient excretion thereof are often associated
with hyperuricemia. Besides purine-rich food, other factors such as high fructose or alcohol
consumption can trigger this metabolic disease [6,8,42,43]. Since D-allulose is a stereoisomer
of fructose, we examined uric acid concentrations. Our finding for acute administration
of D-allulose is in line with the study by Hayashi et al. [12] where no effect was found on
uric acid during a 12-week period. Of note, the administered dose in the current study
was 10 g higher and without the influence of any other nutrients. No effects on uric acid
were observed in response to erythritol. This is in line with a recent dose-ranging study
where the highest dose of erythritol (50 g) had no effect on uric acid concentrations [23].
However, further studies are needed to test if chronic consumption of D-allulose and
erythritol influence uric acid concentrations.

CRP is an acute-phase protein biomarker indicating inflammatory processes in the
body [44], whereas the hsCRP is specific to CVD [45]. It was reported that acute and chronic
fructose consumption increased hsCRP, possibly leading to systemic inflammation [1,46].
Our results for D-allulose are in line with the study by Tanaka et al. [19] who examined the
long-term effects of D-allulose in participants with high LDL cholesterol levels on hsCRP
and found no increase during the 48-week trial. To the best of our knowledge, no studies
have investigated the effects of erythritol on hsCRP, and in the current study, no acute effect
on hsCRP was found. This suggests that the acute administration of both sweeteners does
not cause pro-inflammatory effects in the body.

Some limitations need to be considered. First, the design of this acute trial does not
allow the investigation of chronic effects of D-allulose and erythritol. Second, additional,
at this stage not identified side effects could occur under long-term treatment. Third, the
study involved the intragastric administration of two alternative sweeteners by bypassing
oro-sensory cues, which may limit translational inferences that can be drawn from the ‘real-
life’ consumption of sweeteners (especially over the longer term). Fourth, a comparison of
D-allulose and erythritol to a sucrose solution would be informative.

In conclusion, this study shows that the acute intragastric administration of the
two alternative sweeteners D-allulose and erythritol, has beneficial physiological effects
regarding glycemic control and ghrelin, and exhibits a clinically favorable safety profile
with respect to blood lipids, uric acid and systemic inflammation. This combination of
properties identifies D-allulose and erythritol as excellent candidates for effective and safe
sugar alternatives.
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