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Public health nutrition occupies a paramount position in the overarching domains of
health promotion and disease prevention, setting itself apart from nutritional investigations
concentrated at the individual level. While the latter delves deep into the nuances of
individual dietary needs, metabolic responses, and genetic predispositions, public health
nutrition aims to understand and influence the dietary behaviors of entire populations.
Such research spans a gamut of areas: from examining the intricate interplay of food supply
and the broader food environment [1,2] and analyzing the implications of government
interventions such as soda taxes and healthy food subsidies [3,4], to evaluating how
economic conditions and climate change impact food access and choices [5,6]. In an
increasingly globalized world, the challenges of accurately measuring dietary intakes at a
large scale are also being addressed with innovative methodologies and tools [7,8]. The
collective aim of these endeavors is not merely to ensure that individuals eat healthily but
to create an environment where the healthier choice becomes easier for everyone.

Artificial intelligence (AI) has witnessed an unprecedented acceleration in capabilities
and adoption in recent years. This rapid advancement, driven by innovations in machine
learning algorithms and the exponential growth in computational power, has permeated
and reshaped a myriad of human activities and social sectors [9]. In the domain of public
health and nutrition, AI’s potential is being realized in various innovative ways. AI algo-
rithms have been instrumental in mapping and analyzing food environments, identifying
areas with limited access to nutritious foods, often termed “food deserts” [10]. Machine
learning models have also been utilized to predict the effects of potential policy interven-
tions, such as how specific taxation or subsidies might impact population dietary habits [11].
At a larger scale, AI has assisted in monitoring global food supply chains, ensuring food
safety, and predicting potential disruptions due to climate change [12,13]. With the vast
amount of data now available, ranging from satellite imagery of agricultural regions to so-
cial media discussions on dietary habits, AI provides tools to synthesize and interpret these
data in ways that can inform public health nutrition strategies and interventions [14–16].

The potential applications of AI in public health nutrition are vast, and the current
body of research may only scratch the surface of what is achievable. The richness of data
and the evolving capabilities of AI offer a myriad of possibilities that are waiting to be
explored. We encourage our fellow researchers to think beyond the traditional boundaries
and explore innovative ways to harness the power of AI in promoting healthier diets and
improving nutritional health at the population level. Imagine a world where AI-driven
models predict the nutritional needs of entire regions based on climate, soil quality, and
socio-economic factors, helping policymakers prioritize food production and distribution.
Consider the potential of AI tools that can monitor global food trends, identify emerging
patterns, and give public health officials a head start in formulating interventions, or
even the possibility of AI systems collaborating across countries to harmonize nutritional
guidelines, ensuring that a consistent message reaches all populations.

However, with great power comes great responsibility. There are significant concerns
with AI technology that cannot be overlooked. Data privacy is paramount, and we must
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ensure that any AI-driven initiative in public health respects individual and community
rights. Bias is another major concern; algorithms are only as good as the data on which they
are trained, and any bias in that data can lead to biased outcomes that could exacerbate
existing health disparities. We encourage the community not only to leverage AI’s strengths
but also to develop innovative ways to mitigate its potentially harmful effects. This is an
era of collaboration between technology and public health, and together, we can ensure
that AI serves as a force for good in promoting nutritional health worldwide.
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