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Abstract: Glutamate, the main excitatory neurotransmitter in the central nervous system, is impli-
cated in both the initiation of migraine as well as central sensitization, which increases the frequency
of migraine attacks. Excessive levels of glutamate can lead to excitotoxicity in the nervous system
which can disrupt normal neurotransmission and contribute to neuronal injury or death. Glutamate-
mediated excitotoxicity also leads to neuroinflammation, oxidative stress, blood-brain barrier per-
meability, and cerebral vasodilation, all of which are associated with migraine pathophysiology.
Experimental evidence has shown the protective effects of several nutrients against excitotoxicity.
The current review focuses on the mechanisms behind glutamate’s involvement in migraines as well
as a discussion on how specific nutrients are able to work towards restoring glutamate homeostasis.
Understanding glutamate’s role in migraine is of vital importance for understanding why migraine is
commonly comorbid with widespread pain conditions and for informing future research directions.
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1. Introduction

Migraine is a common neurological disorder with prevalence rates ranging from
9–16% worldwide [1]. This disorder primarily occurs during the most productive years
of adulthood, from age 20 to 50 years [2]. According to the latest report from the Global
Burden of Disease study, migraine is the primary cause of disability among people less than
50 years of age [3]. In 2016, the annual cost of healthcare utilization and lost productivity
associated with migraine in the US was estimated at $36 billion [4]. Migraine is associated
with a wide spectrum of comorbidities including gastrointestinal, psychiatric, cardiac, and
cerebrovascular disorders, which can increase the physiological burden [5]. Despite the
profound impact of migraine, it is still underdiagnosed and undertreated [6,7].

The pathophysiological mechanism underlying migraine is not completely understood.
However, activation and sensitization of meningeal nociceptors in the trigeminovascular
(TG) system are widely accepted as a key pathway in the initiation of a migraine attack [8].
The TG system is comprised of sensory neurons that originate from the trigeminal ganglion
that innervate cerebral blood vessels including the dura mater, the outermost layer of the
meninges [9].

Evidence supports the role of glutamate neurotransmission in both the activation
and perpetuation of migraine [10,11]. Peripheral release of glutamate is involved in the
generation of migraine pain through N-methyl-D-aspartate (NMDA) receptors found in
the meningeal afferents of the trigeminal nerve [12]. High glutamatergic activity also leads
to increased cerebral excitability and resultant cortical spreading depression (CSD) that
can cause nociception in the dura mater [10,13]. Interestingly, in addition to the direct
effect of glutamate in the activation of trigeminal nociceptors and the contribution to CSD
development, it is also contributing to pain sensitization as well. Previous reports have
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indicated that the production and release of the vasodilatory neuropeptides calcitonin gene-
related peptide (CGRP) and substance P (SP) can be induced by increased glutamatergic
neurotransmission [14,15]. Perivascular release of these neuropeptides can eventually lead
to a phenomenon called “neurogenic inflammation” which is believed to be an underlying
element leading to sensitization of trigeminal meningeal nociceptors [16]. Central sensiti-
zation has been observed in migraine and can lead to contact allodynia (i.e., pain from a
stimulus that does not ordinarily cause pain) [17]. Central sensitization is an augmentation
of membrane excitability through upregulation of glutamatergic neurotransmission, which
contributes to pain hypersensitivity in many pain conditions [18]. The NMDA glutamate
receptor is pivotal for both the initiation and maintenance of central sensitization, and thus,
in reverse, is also thought to be the key in stopping this process [19]. A high concentration
of glutamate in the synaptic cleft can lead to excitotoxicity, which is the over-excitation
of neurons which leads to apoptosis, or cell death [20]. Excitotoxicity causes oxidative
stress and inflammation in the central nervous system (CNS). The reinforcing properties be-
tween excitotoxicity, oxidative stress, and neuroinflammation (the “neurotoxic triad”) have
been implicated in neurologic disorders including chronic pain and migraine [21]. Thus,
disorders such as migraine may benefit from interventions targeting glutamate specifically.

Therefore, in the current review, we aim to combine existing knowledge about the
role of glutamate in migraine pathogenesis along with information on nutrients that are
protective against glutamate excitotoxicity, and then end with a proposed dietary treatment
for migraine management.

2. Glutamatergic Neurotransmission

Glutamate is the main mediator of excitatory neurotransmission in the brain. It has
two types of receptors, ionotropic and metabotropic [22]. Ionotropic glutamate receptors
(iGluRs) are ligand-gated channels subcategorized into NMDA, the α-amino-3-hydroxy-5-
methyl-4-isoxazole propionate (AMPA), and the kainic acid (KA) receptor, which all have
fast excitatory effects. Metabotropic receptors (mGluRs) are G-protein-coupled receptor
channels. Eight metabotropic receptors have been characterized (mGluR1-8) and fall into
three groups (group I-III) based on their similarity regarding second messenger systems
and pharmacology, with group I being associated with slow excitation, and groups II and
III being more associated with slow inhibition [22].

Glutamate receptors are found throughout the body; therefore, dysregulation of the
glutamatergic system can impose a broad range of effects [22]. In the nervous system,
glutamate is implicated in crucial aspects of normal brain function including synapto-
genesis, learning, cognition, and memory [23,24]. As mentioned above, the iGluRs are
involved in fast synaptic responses to glutamate, while the mGluRs play a role in slow
neuromodulatory signaling [25]. Although these receptors have local and functional vari-
ability, glutamate excitotoxicity targets both families of receptors [25]. Excitotoxicity results
from the excessive synaptic release of glutamate and the consequent accumulation of high
concentrations of free calcium (Ca2+) in the cytosol [26] which is mediated by NMDA recep-
tors [26]. However, AMPA and KA receptors can also contribute to Ca2+ overload through
their partial permeability to Ca2+ [26]. The mGluRs function in two ways, by directly in-
creasing cytosolic Ca2+ levels via the facilitation of Ca2+ release from the intracellular stores,
and indirectly by promoting NMDA receptor migration to the cell membrane [27]. Excito-
toxicity is one of the leading causes of neuronal damage and death, and this process has
been implicated in a variety of neurological diseases including schizophrenia, Alzheimer’s,
Parkinson’s, multiple sclerosis (MS), epilepsy, chronic pain, and migraine [28–33].

3. Physiological and Anatomical Evidence Related to the Role of Glutamate
in Migraine

Figure 1 illustrates the mechanisms involving glutamate in the pathogenesis of mi-
graine (which is reviewed in detail in this section).
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Figure 1. Mechanisms explaining the role of glutamate in migraine pathogenesis.

3.1. Role of Glutamate in Nociception

The trigeminal system (in addition to C1 and C2 fibers) comprises all of the nociceptive
neurotransmission within the head [34]. C1 and C2 fibers refer to the first and second cervi-
cal spinal nerves that, along with second-order neurons of the trigeminal nucleus caudalis,
comprise the trigeminocervical complex [8]. Nociceptive signals from the meninges and
cervical roots are sent to higher-order brain regions including the brainstem, hypothala-
mus, basal ganglia, and thalamus [8]. Projection of trigeminovascular thalamic neurons to
different areas of the cortex contributes to pain perception as well as migraine-associated
symptoms [8]. Glutamate has a well-known role in the transmission of nociceptive signals
from primary sensory afferents to second-order neurons in the brainstem [35].

Interestingly, evidence from preclinical studies has shown that all types of glutamate
receptors are characterized and found in the trigeminal system [36–39]. In line with these
findings, other studies have also indicated that the administration of glutamate leads to
hyperalgesia [40,41] while inhibition of glutamate blocks its nociceptive effects [42]. An
interesting in vivo experiment explored the role of peripherally released glutamate in
the generation of migraine pain by using trigeminal neurons from animal models [12].
They found that glutamate and aspartate (another amino acid with a similar structure
that also functions as a neurotransmitter) can activate NMDA receptors on peripheral
sensory trigeminal ganglion neurons in meningeal nerve terminals and that they can
induce excitation of meningeal afferents implicated in the generation of migraine pain [12].
Thus, glutamate can lead to trigeminal nociception in two ways: (1) via signal transmission
from primary meningeal nerves to higher brain regions, which results in cortical excitability,
and (2) via activation of NMDA receptors in tissues located outside of the blood-brain
barrier (BBB), which consequently leads to trigeminal nociception [12].

3.2. Role of Glutamate in Cortical Spreading Depression

Glutamate is also proposed as a key player in the initiation of CSD, which is an expand-
ing wave of depolarization (activation of neurons) followed by a wave of hyperpolarization
(inactivity of neurons while concentration gradients re-set) across the cortex [43,44]. Preclin-
ical evidence supports the role of CSD in stimulating trigeminal neurons [45]. Local release
of glutamate by neurons is assumed to trigger CSD [46]. CSD is recognized as the biological
reason for migraine aura which has been further confirmed with the observation of CSD
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waves in migraine aura patients [47]. The latest version of the International Classification of
Headache Disorders (ICHD) (Third edition) defines migraine aura as an “early symptom of
an attack, believed to be the manifestations of focal cerebral dysfunction, typically lasting
20–30 min and precedes the headache” [48]. Visual aura is, by far, the most prevalent type
of aura [49].

3.3. Role of Glutamate in Central Sensitization

The intensity and duration of headache attacks are attributed to the development of
central sensitization [50]. Central sensitization is defined as abnormal amplification in
central nociceptive processing because of increases in membrane excitability as well as
reduced inhibition [50]. Central sensitization is observed in both chronic and episodic
migraine [51]. Excitotoxicity is considered a major player in the onset and continuation
of central sensitization [15]. This is thought to occur via the upregulation of NMDA
and AMPA receptors on the primary afferent neurons, with a subsequent reduction in the
threshold for neuronal activation, which contributes to the onset of central sensitization [52].
Higher levels of glutamate in plasma have been observed in both chronic and episodic
migraine patients as compared to healthy controls, with no significant difference between
chronic and episodic migraineurs [53]. Cutaneous allodynia, which is highly prevalent
in migraine patients, is a clinical manifestation of central sensitization [54]. Interestingly,
cutaneous allodynia has been associated with response to preventive treatment, with severe
occurrence being associated with decreased response to treatment [55–57]. This evidence
supports the important role of central sensitization in migraine pathophysiology.

3.4. Role of Glutamate in Disruption of the Blood-Brain Barrier (BBB)

The integrity of the BBB guarantees a unique environment for the CNS by controlling
what substances can enter and leave the CNS [58]. Therefore, disruption of the BBB
allows the influx of potentially toxic substances into the brain. BBB permeability can
occur via the overactivation of NMDA receptors which causes excitotoxicity [59], but other
events such as head trauma [60], infection [61], neurotoxic exposures [62], high stress [63],
neuroinflammation [64], and oxidative stress [65] can also lead to permeability of the
BBB. The contribution of neuroinflammation and oxidative stress, which are tightly tied to
excitotoxicity, will be described in more detail below.

Increased glutamatergic neurotransmission in migraine leads to the sustained secre-
tion of vasoactive substances including CGRP and SP [66]. These neuropeptides contribute
to vasodilation, plasma protein extravasation, mast cell activation, and the release of proin-
flammatory cytokines, resulting in a phenomenon called neurogenic inflammation [16],
which, as mentioned above, can lead to BBB permeability [67].

In neurons, the influx of excess Ca2+ into the cell following the activation of glutamate
receptors eventually leads to the production of free radicals (atoms missing an electron)
which are called reactive oxygen species (ROS) and reactive nitrogen species (RNS) [68].
Further support for this idea is provided by electron paramagnetic resonance spectroscopy
showing that NMDA receptor activation results in the production of superoxide radi-
cals [69]. Typically, ROS and RNS are counteracted by antioxidants or antioxidant enzyme
systems within the cell, which have the ability to donate an electron to re-balance the free
radicals. If the amount of free radicals outstrips the antioxidant defense system of the cell,
oxidative stress occurs [70]. These free radicals can start a cascade of events including mito-
chondrial impairment, and damage to lipids, proteins, and DNA, leading to mutagenesis,
and ultimately cell death [71]. Additionally, as mentioned above, oxidative stress can lead
to BBB permeability [65].

Increased permeability of the BBB in migraine patients could result in the entry of
blood-borne toxins, as well as increased amounts of dietary glutamate and aspartate,
into the brain, which could elicit excitotoxicity. It is noteworthy that excitotoxicity, neu-
roinflammation, and oxidative stress have the ability to perpetuate one another, allow-
ing this “neurotoxic triad” to be maintained over time. Thus, neurogenic inflammation
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and oxidative stress can also be involved in migraine initiation/sensitization through
potentiating excitotoxicity.

3.5. Role of Glutamate in Nitric Oxide Release and Vasodilation

A link between glutamate and nitric oxide (NO) was initially proposed after the find-
ing that glutamate or NMDA treatment causes the release of NO and cyclic guanosine
monophosphate (cGMP) in cerebellar cultures [72]. Additionally, NMDA receptor activa-
tion results in a rise in cGMP levels in the brain, with nitric oxide synthase (NOS) inhibitors
and NO scavengers preventing this rise in cGMP levels [72]. This suggests that NO has
signaling functions downstream of NMDA receptor activation. In neurons, Ca2+ entry, as
a result of the activation of NMDA receptors, induces NOS, which is physically coupled
to NMDA receptors [73]. Glutamate can also activate NMDA receptors in the endothe-
lial cells of capillaries, causing subsequent induction of NOS, and release of NO, which
causes vasodilation [74]. The contribution of cerebral and meningeal arterial vasodilation
in migraine initiation has been suspected for many decades [75,76]. Interestingly, NO can
negatively affect the BBB when it combines with a superoxide radical to form peroxynitrite,
a potent free radical that leads to oxidative stress and excitotoxicity [77–79].

4. Glutamate Concentration in Migraineurs

Increased levels of glutamate in plasma [80–82], cerebrospinal fluid (CSF) [14,82,83],
and platelets [84–86] have been detected in migraine patients. This elevated level of
glutamate was observed during attacks as well as during interictal periods [82,83,87],
for those with and without aura [82,88,89]. Furthermore, a meta-analysis on excitatory
neuro-metabolite levels across pain conditions, using data pooled from magnetic resonance
spectroscopy studies, revealed a significant increase in glutamate levels in the brains of
migraine patients, compared with controls [90]. This evidence could reflect cortical neuronal
hyperexcitability and points to the dysfunction of glutamatergic signaling in migraine
pathogenesis. In a study by Ferrari et al., prophylactic medications lowered the frequency
of attacks and glutamate levels compared to baseline; however, migraine sufferers still
had higher serum levels of glutamate compared to healthy controls [89]. Another case-
control study among migraine patients without aura, using proton magnetic resonance
spectroscopy, showed an increased level of the glutamate/glutamine ratio between attacks
in both the primary occipital cortex and thalamus [91]. Table 1 represents the glutamate
concentration in adult migraine patients, as compared to healthy controls, in various tissues.
Significantly higher glutamate concentrations have been reported in the plasma, platelet,
CSF, and brain of migraine patients, as compared to healthy controls.

Table 1. Glutamate concentrations in migraine patients vs. healthy individuals.

Migraine Patients Healthy Controls References
With Aura Without Aura
Mean (SD) Mean (SD) Mean (SD)

Plasma
Based on aura (nmol/mL) 14 (6)–454 (98) 13 (6)–485 (129) 15 (8)–227 (87) [53,81,82,85]
Without categorization (nmol/mL) 23 (1)–75 (20) 9 (2)–32 (20) [80,89,92]
Platelets
(µmol/1010 plts) 0.50 (0.22)–0.58 (0.12) 0.43 (0.17)–0.45 (0.16) 0.34 (0.09)–0.45 (0.11) [84,85]
Cerebrospinal fluid
Based on aura (nmol/mL) 9.3 (1.5) 7.5 (1.8) 4.5 (1.8) [82]
Without categorization (nmol/mL) 2.18 (0.40) 1.37 (0.30) [93]
Brain (MRS)
Visual cortex (mmol/l) 6.8 (0.5) 7.0 (0.5) 6.4 (0.8) [94]
OCC 7.20 (1.45) 6.68 (1.25) [95]
APC 6.98 (0.85) 6.22 (0.97) [95]
PCC (mmol) 7.21 (0.96) 7.27 (0.94) [96]

MRS: Magnetic resonance spectroscopy, OCC: Occipital Cortex, APC: Anterior Paracingulate Cortex, PCC:
Posterior cingulate cortex, SD: Standard deviation.
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5. Dietary Components Affecting Glutamate Neurotoxicity and Migraine

Dietary factors may be one of the most important modifiable lifestyle components
for treating migraines. There are specific micronutrients that protect against excitotoxicity
caused by excess glutamate. These same micronutrients have also shown promising efficacy
in migraine reduction in clinical settings. These nutrients are reviewed below (Figure 2
illustrates the protective mechanisms for each nutrient against excitotoxicity).
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While outside the scope of this review, it should also be quickly noted that dietary
factors can also affect the microbiome and that these important gut bacteria may also be
influential in migraine. For a comprehensive review of what is known about the gut-brain
axis in migraines, please refer to [97].

5.1. Omega-3 Fatty Acids

Omega-3 fatty acids are long-chain, polyunsaturated fatty acids that contribute to nor-
mal brain development and function [98]. Docosahexaenoic acid (DHA), a very long chain
omega-3 fatty acid, has been identified as an important component of the lipid membrane
of the CNS and an abundant phospholipid in the gray matter of the cerebral cortex [98].
Besides their structural function, omega-3s are a precursor for signaling molecules, as well
as playing a role in neurotransmission and gene expression [99].

Both in vivo and in vitro evidence have shown beneficial effects of omega-3 deriva-
tions on nociception [100–102]. The essential omega-3 fatty acid, alpha-linolenic acid,
showed a neuroprotective effect against glutamate-mediated excitotoxicity, a critical cause
of neuronal injury in animal studies, including epilepsy [103], ischemia [104], stroke [105]
and spinal cord injury [106]. One of the earliest studies providing evidence regarding
the neuroprotective potential of omega-3 fatty acids was derived from an animal study
investigating the effect of an omega-3-supplemented diet on neuronal damage, as com-
pared to a control diet (using olive oil). The neuronal injuries were induced by middle
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cerebral artery occlusion and infusion of an NMDA receptor agonist, by the researchers.
Rats supplemented with omega-3s had significantly reduced damage in both focal ischemia
and excitotoxicity [107]. The underlying mechanism of this effect could be attributed to
the change in membrane fatty acid composition. Arachidonic acid (an omega-6 fatty acid)
has been reported to be associated with increased excitotoxicity by inducing a prolonged
inhibition of glutamate reuptake into glial cells [108] and also increased release of glutamate
into the synaptic cleft [109]. Therefore, substitution of omega-3 fatty acids for omega-6
could offer beneficial effects on excitotoxic brain damage. Additionally, eicosapentaenoic
acid (EPA) and DHA (long-chain omega-3s) also showed promising benefits for protecting
against monosodium glutamate (MSG) neurotoxicity in the hippocampus of prepubertal
rats [110]. This neuroprotective effect of omega-3s could be attributed to their role in en-
hancing the plasticity, communication, and function of astrocytes [111]. Astrocytes are the
major regulators of glutamate homeostasis and prevent excitotoxicity by taking glutamate
up out of the synaptic cleft. This effect is supported by the finding that a lack of omega-3s
can aggravate the negative impact of aging on astroglial morphology and activity [112]. In
summary, omega-3 fatty acids may be effective in reducing excitotoxicity, making this an
important class of nutrients for neurological protection.

Epidemiological research has shown an inverse association between dietary intake
of omega-3s and the prevalence and characteristics of headache disorders including mi-
graine [113,114]. Human clinical studies that investigated the potential effects of omega-
3s on migraine suggest that omega-3 supplementation might improve migraine-related
outcomes [115–117]. A meta-analysis indicated that omega-3s significantly reduced mi-
graine duration; however, no significant change in terms of frequency or intensity was
detected [118].

5.2. Magnesium (Mg2+)

Magnesium is an important intracellular mineral that plays vital roles in a wide range
of metabolic reactions [119]. Magnesium is also critical for normal CNS function. It is
involved with nerve transmission, the release of neurotransmitters, and protection against
excitotoxicity [120]. Low levels of magnesium have been reported in many neurological
disorders including Alzheimer’s disease [121], traumatic brain injury [122], stroke [123],
epilepsy [124], Parkinson’s [125], psychiatric disorders [126], and migraine [127]. Low
brain magnesium was also detected during a migraine attack using magnetic resonance
spectroscopy in migraine patients [128].

There are several mechanisms underlying the anti-nociceptive effect of magnesium es-
pecially related to glutamate-mediated excitotoxicity. Magnesium blocks NMDA glutamate
receptors, thereby protecting against excitotoxicity, and since NMDA receptor antagonists
suppress trigeminal nociceptive transmission, this mineral could be a potential modulator
of trigeminovascular nociception [34]. In a rat model of trigeminovascular activation, block-
ing NMDA receptors with either magnesium or memantine (an antagonist of NMDAR)
inhibited nociceptive activation of the trigeminocervical complex [129]. In support of this
effect on the NMDA receptor, a reduction in damage was observed in magnesium-treated
mice who had induced excitotoxicity by ibotenate, a glutamate receptor agonist [130].
Moreover, in an animal model of cerebral ischemia, the extracellular level of glutamate
in the cortex was reduced following magnesium administration [131]. In experimental
models, magnesium also had an inhibitory effect on CSD [132,133] and deficiency in this
mineral increases the sensitivity of NMDA receptors to glutamate-mediated CSD [134].

The effectiveness of magnesium has been extensively evaluated for migraine pre-
vention. The results of a meta-analysis of randomized clinical trials indicated that oral
magnesium significantly alleviated the frequency and severity of migraine, and intravenous
magnesium was effective in relieving acute migraine attacks [135]. However, another meta-
analysis investigating the effects of intravenous magnesium failed to show a beneficial
effect in terms of pain relief [136].
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5.3. Vitamin D

Vitamin D is a steroid hormone that is best known for its role in Ca2+ and phosphorus
homeostasis and osteogenesis [137]. Notably, the beneficial effects of vitamin D extend well
beyond mineral absorption and bone health. It is considered a neurosteroid because of
its crucial role in neuronal integrity and brain development [138]. Vitamin D deficiency
has been linked to neurological disorders [139]. Vitamin D receptors are broadly found in
different parts of the brain including the cortex, hypothalamus, thalamus, hippocampus,
and substantia nigra, supporting the potential role of vitamin D in different neurological
conditions [140].

In vitro evidence has demonstrated the protective effects of vitamin D against gluta-
mate excitotoxicity [141], which may be partially mediated by vitamin D’s role in gene
transcription, affecting the production of key enzymes in the nervous system. Vitamin
D deficiency can reduce glutamate decarboxylase levels in the brain. Glutamate de-
carboxylase is the enzyme that catalyzes the decarboxylation of glutamate to convert
it into γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the nervous
system [142]. Thus, vitamin D can help prevent excitotoxicity indirectly by upregulat-
ing the production of the enzyme that increases the conversion of excitatory glutamate
into inhibitory GABA. Notably, vitamin D may also reduce excitotoxicity via modula-
tion of NMDA receptors by regulating Ca2+ influx through L-type voltage-sensitive Ca2+

channels [143].
Epidemiological studies evaluating serum levels of vitamin D in migraine patients

have reported conflicting results, with some case-control studies showing no differences
between migraine patients and healthy controls [144,145], and others observing significant
differences [146,147]. However, a meta-analysis in 2020 summarizing the results from
8 observational studies reported overall significantly lower serum levels of 25(OH)D
(the main circulating form of vitamin D) in migraine patients, as compared to healthy
controls [148]. Additionally, the concentration of vitamin D in the blood has also been
associated with migraine characteristics, as migraine patients with vitamin D deficiency are
more likely to suffer frequent and severe attacks than migraine patients with adequate levels
of vitamin D [146,149]. Vitamin D administration was found to be effective in alleviating
migraine-related outcomes in a meta-analysis of five randomized controlled trials [150].

5.4. Vitamin C

Vitamin C, or ascorbic acid, is a water-soluble vitamin known mostly for its unique
antioxidant properties [151]. Vitamin C has a critical role in antioxidant defense as well as
many non-antioxidant activities in the CNS [151].

Ascorbic acid exerts a neuroprotective effect against excitotoxicity through attenu-
ating NMDA receptor activity [152] and increasing glutamate reuptake from the synap-
tic cleft [153]. Vitamin C has also been shown to reduce oxidative stress induced by
monosodium glutamate (MSG). In an experimental study on albino rats, vitamin C sup-
plementation protected against degenerative changes in neurons and astrocytes in the
cerebellar cortex induced by MSG [154]. Vitamin C also selectively inhibits T-type calcium
channels in peripheral and central neurons, which are involved in the control of neuronal
excitability [155]. Additionally, vitamin C neutralizes ROS, effectively addressing the ox-
idative stress caused by excitotoxicity. Therefore, it appears that vitamin C may possess
multiple neuroprotective properties.

Despite the limited number of studies concerning the role of vitamin C in migraines,
the evidence presented above supports the potential of vitamin C in fighting excitotoxicity,
thereby preventing migraines. To date, the only randomized controlled trial related to
this research area is a small pilot study that administered N-acetylcysteine, vitamin E, and
vitamin C in migraine patients. They showed that this antioxidant combination significantly
reduced the frequency, intensity, and duration of attacks, as well as the number of acute
medications being used, as compared to the controlled group [156]. Clearly, more research
is needed on vitamin C’s efficacy in migraine reduction.
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5.5. Vitamin E

Vitamin E is a generic term for compounds called tocopherols and tocotrienols. Alpha-
tocopherol is the main form (with the highest biological activity) found in human and
animal tissue [157]. Vitamin E has been extensively studied for its antioxidant properties,
as the dominant lipid-soluble, chain-breaking antioxidant in the body, which supports
membrane integrity by preventing lipid peroxidation [157]. The brain has very high
amounts of polyunsaturated fatty acids, making vitamin E essential for the antioxidant
protection of these lipids [158].

In an experimental model of neuropathic pain, vitamin E had an analgesic effect by
reducing central sensitization [159]. Vitamin E showed potential for fighting excitotoxicity,
reducing glial cell activation, neuronal death, neuroinflammation, and oxidative stress
in the hippocampus, in an epilepsy model [160,161]. A possible underlying mechanism
is attributed to the regulatory effect of vitamin E on glutamine synthase activity, which
is believed to be suppressed by oxidative stress [160,162]. Glutamine synthase converts
glutamate to glutamine, a non-excitotoxic amino acid, to allow it to be safely shuttled from
astrocytes to neurons before being recycled back to glutamate [162]. Vitamin E can also
be involved in glutamate and GABA balance through counteracting microglial activation
and the inflammatory cascade [163,164]. The cytokines released from microglia affect
neuron excitability by modulating astrocytic glutamate receptors and transporters [165].
Substantial evidence from rodent and human studies indicates that inflammation causes
downregulation of glutamate decarboxylase activity, which results in a lower conversion of
glutamate into GABA, increasing the likelihood of excitotoxicity occurring [166–169]. In
line with this evidence, it was shown that transgenic mice, which express increased levels of
pro-inflammatory cytokines or chemokines, had lower levels of glutamate decarboxylase in
the hippocampus and cerebellum [170]. Therefore, the anti-inflammatory effects of vitamin
E may protect GABA production and vulnerability to more excitation. Furthermore, in vitro
evidence has demonstrated that vitamin E reduces astrocytes’ permeability to Ca2+ and
Na+ ions by inhibiting protein kinases and downregulating glutamate receptor genes [171].

Vitamin E, as a potential treatment option for migraine, has only been studied in
regard to menstrual migraines [172]. A double-blind, placebo-controlled, crossover clinical
trial indicated that vitamin E supplementation for five days during two menstrual cycles
was associated with significant improvement in pain severity and functional disability [172].
A probable explanation for vitamin E efficacy as a prophylaxis of menstrual migraine is
related to its inhibitory effect on phospholipase A2 and cyclooxygenase enzymes. This
leads to inhibition of arachidonic acid release from cell membranes and its conversion to
prostaglandin [173]. High levels of prostaglandin have been reported in the endometrium
during menstruation and in the serum during the premenstrual phase [174]. The inhibitory
effect of vitamin E on phospholipase A2 is of substantial value since there is evidence show-
ing that the enzyme targets other intracellular membranes including the mitochondrial
membrane as well [175]. Mitochondrial membrane damage is associated with high ROS
production, oxidative stress, and ultimately cell death [176]. It is worth noting that antiox-
idants work together to maintain themselves in an active state, so despite their unique
functions in redox balance, they can also be indirectly involved in each other’s activity as
well. The benefits described in the aforementioned study looking at the combined effects of
vitamin E, vitamin C, and N-acetylcysteine, may have partially been due to these interactive
effects of combining antioxidants [156].

5.6. Riboflavin (Vitamin B2)

Riboflavin, also known as vitamin B2, is involved in various metabolic pathways
through two coenzyme forms including flavin adenine dinucleotide (FAD) and flavin
mononucleotide (FMN) [177]. In addition to riboflavin’s critical role in energy metabolism,
it also has antioxidant function and plays a pivotal role in the metabolism of vitamin
B6 (converting dietary pyridoxine into its active form pyridoxal L-phosphate), as well
as having roles in DNA repair, and apoptosis [177]. Therefore, deficiency or any distur-
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bance in riboflavin metabolism can contribute to broad-spectrum dysfunction including
cardiovascular, neuromuscular, immune, and neurological abnormalities [177].

Riboflavin has direct and indirect ameliorating effects on glutamate excitotoxicity
which is implicated in migraine pain. The reduction in voltage-gated Ca2+ channel activity
by riboflavin can inhibit endogenous glutamate release by inhibiting glutamate exocytosis
in synaptic clefts [178]. In addition, experimental studies demonstrated the neuroprotective
effects of riboflavin and pyridoxal phosphate (PLP) on excitotoxicity [179]. As mentioned
earlier, riboflavin is involved in the formation of PLP, which is required for the production
of many neurotransmitters in the CNS [180]. Very importantly, the conversion of glutamate
to GABA, the major inhibitory neurotransmitter in the nervous system, by glutamic acid
decarboxylase, necessitates PLP as a cofactor [181]. Therefore, it is not surprising that
deficiency in riboflavin and consequent reduction in PLP formation contribute to the
elevation of glutamate and reduction in GABA levels, thereby resulting in excitotoxicity.
These two vitamins are also crucial for the kynurenine pathway, which is considered
the major pathway for the catabolism, or breakdown, of tryptophan [182]. Adequacy
of riboflavin and PLP has been linked to the production of kynurenic acid which is a
protective antagonist of NMDA and all ionotropic glutamate receptors [183]. Deficiency of
these cofactors can lead to further metabolism down the pathway causing the production
of quinolinic acid, which is an extremely neurotoxic metabolite that increases the risk of
excitotoxicity in multiple ways [184,185].

Riboflavin is one of the most studied vitamins for migraine prophylaxis. In this regard,
clinical studies on adult migraine patients have shown very promising results [186–188]. A
pooled analysis of 8 randomized controlled clinical trials indicated a significant reduction
in terms of migraine days, frequency, pain intensity, and duration of attacks following
400 mg/day riboflavin supplementation for three months [189]. Currently, the American
Academy of Neurology (level B evidence) recommends 400 mg per day for adult mi-
graineurs [190], as compared to the current recommended dietary allowance of 1.1–1.6 mg
per day. It should be noted, that as a water-soluble vitamin, the excess is just being excreted
(as can be seen by fluorescent-colored urine when you take riboflavin), and thus, such high
doses are likely not needed for benefiting migraine patients. Although not all available
evidence is obtained from high-quality trials, due to riboflavin’s low cost, high tolerability,
and effectiveness in migraine alleviation in the majority of research, it could be considered
an advantageous vitamin for migraine [191].

5.7. Vitamin B6 (Pyridoxine), Folate (Vitamin B9), and Vitamin B12 (Cobalamin)

Vitamins B6, B9, and B12 (in addition to riboflavin) play a key role in one-carbon
metabolism, and their deficiency has been linked to elevated levels of homocysteine
(Hcy) [192]. Hcy is another neurotoxic metabolite that has the ability to activate NMDA
receptors, and vitamins B6, folate, and B12 can protect against its accumulation [192,193].

An experimental model of pain induced by acetic acid demonstrated the antinocicep-
tive effects of B vitamins [194]. However, it seems the effectiveness of these vitamins in
migraine prophylaxis could be attributed to their effect on lowering Hcy for the most part.
Notably, the role of riboflavin in the production of the active form of pyridoxine makes it
indirectly involved in this pathway as well [192]. The presence of high levels of Hcy in the
brain might act as a trigger or amplifier in a variety of ways [195]. Hcy has a known neuro-
toxic effect via direct stimulation of NMDA receptors and consequent excitotoxicity [193].
Previously, it has also been shown that Hcy acts as an antagonist to GABA-A receptors,
influencing the migraine pain threshold negatively [196]. Homocysteine also contributes to
the breakdown of the extracellular matrix which affects BBB integrity [196]. An increase in
brain microvascular permeability was also observed in mice with hyperhomocysteinemia
via the activation of matrix metalloproteinases, which lead to vascular remodeling and BBB
disruption [197].

Migraine, especially migraine with aura, is associated with a risk of ischemic stroke [198],
and elevated levels of Hcy in migraineurs have been identified as a potential risk factor for
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stroke, as reported by epidemiological studies [199,200]. Evidence showing the effectiveness
of B6, B9, and B12 vitamins on Hcy level reduction encouraged trials to explore the beneficial
effects of Hcy-lowering vitamins. In a double-blind randomized controlled trial by Askari
et al., 3 months of supplementation with folic acid plus pyridoxine in migraine patients with
aura, led to significant improvement in migraine characteristics compared to placebo [201];
while in the migraine group that received folic acid alone, no significant change was detected
in comparison with the placebo group [201]. One clinical trial tested pyridoxine supplemen-
tation for migraine patients with aura, and the authors reported a reduction in the severity
and duration of attacks, but no effects on the frequency of attacks were noted [202].

5.8. Coenzyme Q10 (CoQ10)

CoQ10 is a fat-soluble compound mostly found in animal proteins, but also in beans,
nuts, seeds, and avocado [203]. Our body can synthesize CoQ10, thus its dietary intake
is not considered essential. However, evidence has shown that CoQ10 deficiency can
occur secondary to several mitochondrial disorders, aging, and in those using statins
(for lowering cholesterol) [204,205]. As mentioned before, migraine patients are prone to
mitochondrial dysfunction as a result of excitotoxicity-mediated oxidative stress. CoQ10
plays a key role in energy production in mitochondria and also acts as an antioxidant in
cell membranes [203]. Interestingly, it is involved in the restoration of the oxidized form of
vitamin E, helping to restore vitamin E’s antioxidant function [206].

Preclinical evidence supports the protective effect of CoQ10 against excitotoxicity. In
a mouse model of glaucoma, a diet supplemented with CoQ10 ameliorated glutamate
excitotoxicity and oxidative stress compared to an un-supplemented control diet [207]. In
another study, the effect of CoQ10 on the endogenous release of glutamate in the cerebral
cortex was evaluated [208]. The findings suggested that CoQ10 inhibited glutamate release
from cortical synaptosomes in rats via suppression of the presynaptic voltage-dependent
Ca2+ channels and extracellular signal-regulated kinase pathway. Water-soluble CoQ10
(Ubisol-Q10) has also been shown to reduce glutamate-induced cell death in an in vitro
model [209]. Murine hippocampal neuronal cells were exposed to glutamate, 24 h after
Ubisol-Q10 treatment. The results indicated that CoQ10 protects the neuronal cells by
preserving mitochondrial function and structure.

The beneficial impact of CoQ10 supplementation on migraine-related outcomes has
been tested in several clinical studies [210–213]. The pooled result of the most recent
meta-analysis of 6 studies supports the idea that CoQ10 supplementation can reduce the
frequency and duration of migraine attacks but does not reduce severity [214].

6. Gap between Pathophysiology of Migraine and Interventions: Where Do We
Stand Now?

The contribution of glutamate to neuropathological aspects of migraine has led to the
development of several glutamate antagonists as migraine prophylactic drugs [215–218].
However, these drugs have limited utility and a high probability of side effects [219,220].

Clinical trials in migraineurs have provided supportive findings for all reviewed
nutrients including riboflavin, folate, pyridoxine, cobalamin, vitamin D, C, E, magnesium,
and omega-3 fatty acids. These nutrients have shown potential for alleviating excitotoxicity
as well. Given the evidence indicating nutrient deficiency among migraineurs [148,200,221],
replenishment of these nutrients seems reasonable. However, dietary nutrients are often
studied one at a time, which inhibits potential synergism and cooperative effects between
nutrients from being observed. Thus, applying a more comprehensive dietary approach
may yield greater results.

Notably, besides being an endogenous source, glutamate is a non-essential amino acid
found in the diet [222]. In a normal situation, the amount of dietary glutamate entering
the brain is regulated by saturable transporters on the BBB [223]. However, considering
the probability of diminished BBB integrity in migraine patients [224–228], it is likely that
the amount of dietary glutamate entering the brain is higher than in healthy individuals.
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This idea is supported by multiple studies that have shown that MSG administration can
induce headaches [229–231]. Moreover, some dietary components could have a triggering
effect on a migraine attack as reported by patients in epidemiological studies [232,233].
The contribution of dietary triggers in migraines was the basis for the development of
elimination diet strategies [234]. However, precisely determining random food triggers is
challenging, and a diet that is overly restrictive can have a long-term negative effect on
nutritional status [235,236]. Until now, no specific diet has been developed for migraine
prevention, and several proposed diets have shown varying levels of efficacy [237]. Taken
together, both dietary triggers and nutrient intake might be key to therapeutic benefits in
migraine, which has not been possible with current interventions.

Our team previously administered a diet-based intervention called the “low gluta-
mate diet” in patients with widespread chronic pain disorders [222,238,239]. This diet
removes free forms (i.e., not bound to a protein) of glutamate and aspartate (mainly by
restricting food additives with excitotoxins, in addition to a few foods that are naturally
high in glutamate/aspartate such as soy sauce, fish sauce, and aged cheeses), while also
emphasizing the intake of foods high in the micronutrients reviewed above [238]. This
diet has shown benefits for widespread chronic pain conditions [222,240], including Gulf
War illness (GWI) [238]. Interestingly, all of these studies have demonstrated widespread
symptom improvement, including reduced reports of migraines. Figure 3 illustrates the
significant reduction in migraine in veterans with Gulf War Illness after one month on
the diet. Moreover, most subjects reported going from multiple weekly migraines to no
migraines during the diet month. We believe these symptom improvements in patients
suffering from widespread chronic pain disorders stem from reductions in central sensiti-
zation (from reduced excitotoxicity) and potentially corresponding improvements in the
inter-related occurrence of oxidative stress and neuroinflammation. More in-depth research
is warranted to further explore whether or not the low glutamate diet may be used as an
effective treatment for migraine.

Nutrients 2023, 15, x FOR PEER REVIEW 13 of 22 
 

 

is warranted to further explore whether or not the low glutamate diet may be used as an 
effective treatment for migraine. 

 
Figure 3. Change in percentage of subjects with Gulf War Illness (n = 40) reporting migraine before 
and after one month on the low glutamate diet. Chi-square significance of p = 0.04. 

7. Conclusions 
Glutamate-mediated excitotoxicity is associated with a wide range of neurological 

disorders including migraine. The proposed mechanisms include the direct effect of exci-
totoxicity on neuronal injury or death, or its contribution to neuroinflammation, oxidative 
stress, blood-brain barrier permeability, and cerebral vasodilation, all of which are associ-
ated with migraine pathophysiology. Available evidence supports the role of several nu-
trients in protecting against excitotoxicity including riboflavin, folate, pyridoxine (vitamin 
B6), cobalamin (vitamin B12), vitamin D, C, E, magnesium, and omega-3 fatty acids. Ad-
ditional evidence also suggests that supporting endogenous production of CoQ10 with 
increased dietary intake may also be protective. Interestingly, clinical data support the 
role of these nutrients in improving migraines as well, providing a strong rationale for 
designing effective interventions. There is an obvious gap between our understanding of 
migraines and the dietary strategies which have been administered so far, since dietary 
nutrients are often studied separately, and no specific diet for migraine has been devel-
oped. However, the beneficial effects of the low glutamate diet on widespread chronic 
pain disorders appear to have overlapping mechanistic effects, and additionally is some 
preliminary evidence supporting an effect on migraine. Thus, further research on this di-
etary strategy in migraine is warranted. 

Author Contributions: F.M. was responsible for literature search and writing the first draft of the 
paper. K.F.H. was responsible for the design, revise and final version of the paper. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: No new data were created or analyzed in this study. 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 
TG: Trigeminovascular, NMDA: N-methyl-D-aspartate, CSD: Cortical spreading de-

pression, CGRP: Calcitonin gene-related peptide, SP: Substance P, CNS: Central nervous 

Figure 3. Change in percentage of subjects with Gulf War Illness (n = 40) reporting migraine before
and after one month on the low glutamate diet. Chi-square significance of p = 0.04.

7. Conclusions

Glutamate-mediated excitotoxicity is associated with a wide range of neurological
disorders including migraine. The proposed mechanisms include the direct effect of excito-
toxicity on neuronal injury or death, or its contribution to neuroinflammation, oxidative
stress, blood-brain barrier permeability, and cerebral vasodilation, all of which are asso-
ciated with migraine pathophysiology. Available evidence supports the role of several
nutrients in protecting against excitotoxicity including riboflavin, folate, pyridoxine (vita-
min B6), cobalamin (vitamin B12), vitamin D, C, E, magnesium, and omega-3 fatty acids.
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Additional evidence also suggests that supporting endogenous production of CoQ10 with
increased dietary intake may also be protective. Interestingly, clinical data support the
role of these nutrients in improving migraines as well, providing a strong rationale for
designing effective interventions. There is an obvious gap between our understanding of
migraines and the dietary strategies which have been administered so far, since dietary
nutrients are often studied separately, and no specific diet for migraine has been developed.
However, the beneficial effects of the low glutamate diet on widespread chronic pain disor-
ders appear to have overlapping mechanistic effects, and additionally is some preliminary
evidence supporting an effect on migraine. Thus, further research on this dietary strategy
in migraine is warranted.
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98. Czyż, K.; Bodkowski, R.; Herbinger, G.; Librowski, T. Omega-3 fatty acids and their role in central nervous system-a review. Curr.
Med. Chem. 2016, 23, 816–831.

99. McNamara, R.K.; Carlson, S.E. Role of omega-3 fatty acids in brain development and function: Potential implications for the
pathogenesis and prevention of psychopathology. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 329–349.

100. Galán-Arriero, I.; Serrano-Muñoz, D.; Gómez-Soriano, J.; Goicoechea, C.; Taylor, J.; Velasco, A.; Ávila-Martín, G. The role of
Omega-3 and Omega-9 fatty acids for the treatment of neuropathic pain after neurotrauma. Biochim. Biophys. Acta (BBA)-Biomembr.
2017, 1859, 1629–1635. [CrossRef]

101. Silva, R.V.; Oliveira, J.T.; Santos, B.L.; Dias, F.C.; Martinez, A.M.; Lima, C.K.; Miranda, A.L. Long-chain omega-3 fatty acids
supplementation accelerates nerve regeneration and prevents neuropathic pain behavior in mice. Front. Pharmacol. 2017, 8, 723.
[CrossRef]

102. Figueroa, J.D.; Cordero, K.; Serrano-Illan, M.; Almeyda, A.; Baldeosingh, K.; Almaguel, F.G.; De Leon, M. Metabolomics uncovers
dietary omega-3 fatty acid-derived metabolites implicated in anti-nociceptive responses after experimental spinal cord injury.
Neuroscience 2013, 255, 1–18. [CrossRef]

103. Voskuyl, R.A.; Vreugdenhil, M.; Kang, J.X.; Leaf, A. Anticonvulsant effect of polyunsaturated fatty acids in rats, using the cortical
stimulation model. Eur. J. Pharmacol. 1998, 341, 145–152. [CrossRef]

104. Heurteaux, C.; Laigle, C.; Blondeau, N.; Jarretou, G.; Lazdunski, M. Alpha-linolenic acid and riluzole treatment confer cerebral
protection and improve survival after focal brain ischemia. Neuroscience 2006, 137, 241–251. [CrossRef] [PubMed]

105. Blondeau, N. The nutraceutical potential of omega-3 alpha-linolenic acid in reducing the consequences of stroke. Biochimie 2016,
120, 49–55. [CrossRef]

106. King, V.R.; Huang, W.L.; Dyall, S.C.; Curran, O.E.; Priestley, J.V.; Michael-Titus, A.T. Omega-3 fatty acids improve recovery,
whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J. Neurosci. 2006, 26, 4672–4680. [CrossRef]

107. Relton, J.K.; Strijbos, P.J.L.M.; Cooper, A.L.; Rothwell, N.J. Dietary N-3 fatty acids inhibit ischaemic and excitotoxic brain damage
in the rat. Brain Res. Bull. 1993, 32, 223–226. [CrossRef] [PubMed]

108. Barbour, B.; Szatkowski, M.; Ingledew, N.; Attwell, D. Arachidonic acid induces a prolonged inhibition of glutamate uptake into
glial cells. Nature 1989, 342, 918–920. [CrossRef]

109. Lynch, M.A.; Voss, K.L. Arachidonic Acid Increases Inositol Phospholipid Metabolism and Glutamate Release in Synaptosomes
Prepared from Hippocampal Tissue. J. Neurochem. 1990, 55, 215–221. [CrossRef]

110. Gürgen, S.G.; Sayın, O.; Çetïn, F.; Sarsmaz, H.Y.; Yazıcı, G.N.; Umur, N.; Yücel, A.T. The Effect of Monosodium Glutamate on
Neuronal Signaling Molecules in the Hippocampus and the Neuroprotective Effects of Omega-3 Fatty Acids. ACS Chem. Neurosci.
2021, 12, 3028–3037. [CrossRef]

111. Hennebelle, M.; Champeil-Potokar, G.; Lavialle, M.; Vancassel, S.; Denis, I. Omega-3 polyunsaturated fatty acids and chronic
stress-induced modulations of glutamatergic neurotransmission in the hippocampus. Nutr. Rev. 2014, 72, 99–112. [CrossRef]

112. Latour, A.; Grintal, B.; Champeil-Potokar, G.; Hennebelle, M.; Lavialle, M.; Dutar, P.; Potier, B.; Billard, J.M.; Vancassel, S.; Denis, I.
Omega-3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA 1. Aging Cell
2013, 12, 76–84. [CrossRef] [PubMed]

113. Sadeghi, O.; Maghsoudi, Z.; Khorvash, F.; Ghiasvand, R.; Askari, G. The relationship between different fatty acids intake and
frequency of migraine attacks. Iran. J. Nurs. Midwifery Res. 2015, 20, 334.

114. Evans, E.W.; Lipton, R.B.; Peterlin, B.L.; Raynor, H.A.; Thomas, J.G.; O’Leary, K.C.; Pavlovic, J.; Wing, R.R.; Bond, D.S. Dietary
intake patterns and diet quality in a nationally representative sample of women with and without severe headache or migraine.
Headache J. Head Face Pain 2015, 55, 550–561. [CrossRef] [PubMed]

115. Tajmirriahi, M.; Sohelipour, M.; Basiri, K.; Shaygannejad, V.; Ghorbani, A.; Saadatnia, M. The effects of sodium valproate with fish
oil supplementation or alone in migraine prevention: A randomized single-blind clinical trial. Iran. J. Neurol. 2012, 11, 21.

116. Harel, Z.; Gascon, G.; Riggs, S.; Vaz, R.; Brown, W.; Exil, G. Supplementation with omega-3 polyunsaturated fatty acids in the
management of recurrent migraines in adolescents. J. Adolesc. Health 2002, 31, 154–161. [CrossRef] [PubMed]

117. Abdolahi, M.; Jafarieh, A.; Sarraf, P.; Sedighiyan, M.; Yousefi, A.; Tafakhori, A.; Abdollahi, H.; Salehinia, F.; Djalali, M. The
neuromodulatory effects of ω-3 fatty acids and nano-curcumin on the COX-2/iNOS network in migraines: A clinical trial study
from gene expression to clinical symptoms. Endocr. Metab. Immune Disord.-Drug Targets (Former. Curr. Drug Targets-Immune Endocr.
Metab. Disord.) 2019, 19, 874–884. [CrossRef] [PubMed]

118. Maghsoumi-Norouzabad, L.; Mansoori, A.; Abed, R.; Shishehbor, F. Effects of omega-3 fatty acids on the frequency, severity, and
duration of migraine attacks: A systematic review and meta-analysis of randomized controlled trials. Nutr. Neurosci. 2018, 21,
614–623. [CrossRef]

119. Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5, i3–i14. [CrossRef]

https://doi.org/10.1016/j.acra.2014.04.009
https://www.ncbi.nlm.nih.gov/pubmed/24981958
https://doi.org/10.1186/s10194-020-1078-9
https://www.ncbi.nlm.nih.gov/pubmed/32054443
https://doi.org/10.1016/j.bbamem.2017.05.003
https://doi.org/10.3389/fphar.2017.00723
https://doi.org/10.1016/j.neuroscience.2013.09.012
https://doi.org/10.1016/S0014-2999(97)01467-2
https://doi.org/10.1016/j.neuroscience.2005.08.083
https://www.ncbi.nlm.nih.gov/pubmed/16289892
https://doi.org/10.1016/j.biochi.2015.06.005
https://doi.org/10.1523/JNEUROSCI.5539-05.2006
https://doi.org/10.1016/0361-9230(93)90180-J
https://www.ncbi.nlm.nih.gov/pubmed/8374800
https://doi.org/10.1038/342918a0
https://doi.org/10.1111/j.1471-4159.1990.tb08841.x
https://doi.org/10.1021/acschemneuro.1c00308
https://doi.org/10.1111/nure.12088
https://doi.org/10.1111/acel.12026
https://www.ncbi.nlm.nih.gov/pubmed/23113887
https://doi.org/10.1111/head.12527
https://www.ncbi.nlm.nih.gov/pubmed/25758250
https://doi.org/10.1016/S1054-139X(02)00349-X
https://www.ncbi.nlm.nih.gov/pubmed/12127385
https://doi.org/10.2174/1871530319666190212170140
https://www.ncbi.nlm.nih.gov/pubmed/30760195
https://doi.org/10.1080/1028415X.2017.1344371
https://doi.org/10.1093/ndtplus/sfr163


Nutrients 2023, 15, 3952 18 of 22

120. Lambuk, L.; Jafri, A.J.A.; Arfuzir, N.N.N.; Iezhitsa, I.; Agarwal, R.; Rozali, K.N.B.; Agarwal, P.; Bakar, N.S.; Kutty, M.K.; Yusof,
A.P.M. Neuroprotective effect of magnesium acetyltaurate against NMDA-induced excitotoxicity in rat retina. Neurotox. Res.
2017, 31, 31–45. [CrossRef]

121. Veronese, N.; Zurlo, A.; Solmi, M.; Luchini, C.; Trevisan, C.; Bano, G.; Manzato, E.; Sergi, G.; Rylander, R. Magnesium status in
Alzheimer’s disease: A systematic review. Am. J. Alzheimer’s Dis. Other Dement. ® 2016, 31, 208–213. [CrossRef]

122. Stippler, M.; Fischer, M.R.; Puccio, A.M.; Wisniewski, S.R.; Carson-Walter, E.B.; Dixon, C.E.; Walter, K.A. Serum and cerebrospinal
fluid magnesium in severe traumatic brain injury outcome. J. Neurotrauma 2007, 24, 1347–1354. [CrossRef]

123. Altura, B.T.; Memon, Z.I.; Zhang, A.; Cheng, T.P.-O.; Silverman, R.; Cracco, R.Q.; Altura, B.M. Low levels of serum ionized
magnesium are found in patients early after stroke which result in rapid elevation in cytosolic free calcium and spasm in cerebral
vascular muscle cells. Neurosci. Lett. 1997, 230, 37–40. [CrossRef]

124. Prasad, D.K.V.; Shaheen, U.; Satyanarayana, U.; Surya Prabha, T.; Jyothy, A.; Munshi, A. Association of Serum Trace Elements and
Minerals with Genetic Generalized Epilepsy and Idiopathic Intractable Epilepsy. Neurochem. Res. 2014, 39, 2370–2376. [CrossRef]
[PubMed]

125. Oyanagi, K.; Hashimoto, T. Magnesium in Parkinson’s disease: An update in clinical and basic aspects. In Magnesium in the
Central Nervous System; University of Adelaide Press: Adelaide, Australia, 2011.

126. Botturi, A.; Ciappolino, V.; Delvecchio, G.; Boscutti, A.; Viscardi, B.; Brambilla, P. The role and the effect of magnesium in mental
disorders: A systematic review. Nutrients 2020, 12, 1661. [CrossRef]

127. Sarchielli, P.; Coata, G.; Firenze, C.; Morucci, P.; Abbritti, G.; Gallai, V. Serum and salivary magnesium levels in migraine and
tension-type headache. Results in a group of adult patients. Cephalalgia 1992, 12, 21–27. [CrossRef] [PubMed]

128. Ramadan, N.; Halvorson, H.; Vande-Linde, A.; Levine, S.R.; Helpern, J.; Welch, K. Low brain magnesium in migraine. Headache J.
Head Face Pain 1989, 29, 590–593. [CrossRef] [PubMed]

129. Hoffmann, J.; Storer, R.J.; Park, J.W.; Goadsby, P.J. N-Methyl-d-aspartate receptor open-channel blockers memantine and
magnesium modulate nociceptive trigeminovascular neurotransmission in rats. Eur. J. Neurosci. 2019, 50, 2847–2859. [CrossRef]

130. Manet, S.; Gressens, P.; Gadisseux, J.F.; Evrard, P. Prevention by magnesium of exototoxic neuronal death in the developing brain:
An animal model for clinical intervention studies. Dev. Med. Child Neurol. 1995, 37, 473–484. [CrossRef]

131. Lin, J.-Y.; Chung, S.-Y.; Lin, M.-C.; Cheng, F.-C. Effects of magnesium sulfate on energy metabolites and glutamate in the cortex
during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe microdialysis technique. Life Sci. 2002, 71,
803–811. [CrossRef]

132. van der Hel, W.S.; van den Bergh, W.M.; Nicolay, K.; Tulleken, K.A.; Dijkhuizen, R.M. Suppression of cortical spreading
depressions after magnesium treatment in the rat. Neuroreport 1998, 9, 2179–2182. [CrossRef]

133. Mody, I.; Lambert, J.; Heinemann, U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat
hippocampal slices. J. Neurophysiol. 1987, 57, 869–888. [CrossRef]

134. Van Harreveld, A.; Fifková, E. Mechanisms involved in spreading depression. J. Neurobiol. 1973, 4, 375–387. [CrossRef]
135. Chiu, H.-Y.; Yeh, T.-H.; Yin-Cheng, H.; Pin-Yuan, C. Effects of intravenous and oral magnesium on reducing migraine: A

meta-analysis of randomized controlled trials. Pain Physician 2016, 19, E97. [PubMed]
136. Choi, H.; Parmar, N. The use of intravenous magnesium sulphate for acute migraine: Meta-analysis of randomized controlled

trials. Eur. J. Emerg. Med. 2014, 21, 2–9. [CrossRef] [PubMed]
137. Adams, J.S.; Hewison, M. Update in Vitamin D. J. Clin. Endocrinol. Metab. 2010, 95, 471–478. [CrossRef] [PubMed]
138. Garcion, E.; Wion-Barbot, N.; Montero-Menei, C.N.; Berger, F.; Wion, D. New clues about vitamin D functions in the nervous

system. Trends Endocrinol. Metab. 2002, 13, 100–105. [CrossRef]
139. Mpandzou, G.; Haddou, E.A.B.; Regragui, W.; Benomar, A.; Yahyaoui, M. Vitamin D deficiency and its role in neurological

conditions: A review. Rev. Neurol. 2016, 172, 109–122. [CrossRef]
140. Eyles, D.W.; Smith, S.; Kinobe, R.; Hewison, M.; McGrath, J.J. Distribution of the vitamin D receptor and 1α-hydroxylase in

human brain. J. Chem. Neuroanat. 2005, 29, 21–30. [CrossRef]
141. Taniura, H.; Ito, M.; Sanada, N.; Kuramoto, N.; Ohno, Y.; Nakamichi, N.; Yoneda, Y. Chronic vitamin D3 treatment protects

against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression in cultured rat
cortical neurons. J. Neurosci. Res. 2006, 83, 1179–1189. [CrossRef]

142. Groves, N.J.; Kesby, J.P.; Eyles, D.W.; McGrath, J.J.; Mackay-Sim, A.; Burne, T.H.J. Adult vitamin D deficiency leads to behavioural
and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behav. Brain Res. 2013, 241, 120–131. [CrossRef]

143. Brewer, L.D.; Thibault, V.; Chen, K.-C.; Langub, M.C.; Landfield, P.W.; Porter, N.M. Vitamin D hormone confers neuroprotection
in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J. Neurosci. 2001, 21, 98–108.
[CrossRef]

144. Zandifar, A.; Masjedi, S.s.; Banihashemi, M.; Asgari, F.; Manouchehri, N.; Ebrahimi, H.; Haghdoost, F.; Saadatnia, M. Vitamin D
Status in Migraine Patients: A Case-Control Study. BioMed Res. Int. 2014, 2014, 514782. [CrossRef]

145. Kjærgaard, M.; Eggen, A.E.; Mathiesen, E.B.; Jorde, R. Association Between Headache and Serum 25-Hydroxyvitamin D; the
Tromsø Study: Tromsø 6. Headache J. Head Face Pain 2012, 52, 1499–1505. [CrossRef]

146. Hussein, M.; Fathy, W.; Abd Elkareem, R.M. The potential role of serum vitamin D level in migraine headache: A case–control
study. J. Pain Res. 2019, 12, 2529–2536. [CrossRef] [PubMed]

https://doi.org/10.1007/s12640-016-9658-9
https://doi.org/10.1177/1533317515602674
https://doi.org/10.1089/neu.2007.0277
https://doi.org/10.1016/S0304-3940(97)00471-0
https://doi.org/10.1007/s11064-014-1439-3
https://www.ncbi.nlm.nih.gov/pubmed/25255736
https://doi.org/10.3390/nu12061661
https://doi.org/10.1046/j.1468-2982.1992.1201021.x
https://www.ncbi.nlm.nih.gov/pubmed/1559254
https://doi.org/10.1111/j.1526-4610.1989.hed2909590.x
https://www.ncbi.nlm.nih.gov/pubmed/2584000
https://doi.org/10.1111/ejn.14423
https://doi.org/10.1111/j.1469-8749.1995.tb12035.x
https://doi.org/10.1016/S0024-3205(02)01738-1
https://doi.org/10.1097/00001756-199807130-00006
https://doi.org/10.1152/jn.1987.57.3.869
https://doi.org/10.1002/neu.480040406
https://www.ncbi.nlm.nih.gov/pubmed/26752497
https://doi.org/10.1097/MEJ.0b013e3283646e1b
https://www.ncbi.nlm.nih.gov/pubmed/23921817
https://doi.org/10.1210/jc.2009-1773
https://www.ncbi.nlm.nih.gov/pubmed/20133466
https://doi.org/10.1016/S1043-2760(01)00547-1
https://doi.org/10.1016/j.neurol.2015.11.005
https://doi.org/10.1016/j.jchemneu.2004.08.006
https://doi.org/10.1002/jnr.20824
https://doi.org/10.1016/j.bbr.2012.12.001
https://doi.org/10.1523/JNEUROSCI.21-01-00098.2001
https://doi.org/10.1155/2014/514782
https://doi.org/10.1111/j.1526-4610.2012.02250.x
https://doi.org/10.2147/JPR.S216314
https://www.ncbi.nlm.nih.gov/pubmed/31686895


Nutrients 2023, 15, 3952 19 of 22

147. Togha, M.; Razeghi Jahromi, S.; Ghorbani, Z.; Martami, F.; Seifishahpar, M. Serum Vitamin D Status in a Group of Migraine
Patients Compared With Healthy Controls: A Case–Control Study. Headache J. Head Face Pain 2018, 58, 1530–1540. [CrossRef]
[PubMed]

148. Liampas, I.; Siokas, V.; Brotis, A.; Dardiotis, E. Vitamin D serum levels in patients with migraine: A meta-analysis. Rev. Neurol.
2020, 176, 560–570. [CrossRef] [PubMed]

149. Song, T.-J.; Chu, M.-K.; Sohn, J.-H.; Ahn, H.-Y.; Lee, S.H.; Cho, S.-J. Effect of Vitamin D Deficiency on the Frequency of Headaches
in Migraine. J. Clin. Neurol. 2018, 14, 366–373. [CrossRef] [PubMed]

150. Zhang, Y.-F.; Xu, Z.-Q.; Zhou, H.-J.; Liu, Y.-Z.; Jiang, X.-J. The Efficacy of Vitamin D supplementation for migraine: A meta-analysis
of randomized controlled studies. Clin. Neuropharmacol. 2021, 44, 5–8. [CrossRef]

151. May, J.M. Vitamin C Transport and Its Role in the Central Nervous System. In Water Soluble Vitamins: Clinical Research and Future
Application; Stanger, O., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 85–103. [CrossRef]

152. Majewska, M.D.; Bell, J.A. Ascorbic acid protects neurons from injury induced by glutamate and NMDA. Neuroreport 1990, 1,
194–196. [CrossRef]

153. Lane, D.J.; Lawen, A. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via
swelling-activated anion channels in cultured neonatal rodent astrocytes. Cell Biochem. Biophys. 2013, 65, 107–119. [CrossRef]

154. Hashem, H.E.; El-Din Safwat, M.D.; Algaidi, S. The effect of monosodium glutamate on the cerebellar cortex of male albino rats
and the protective role of vitamin C (histological and immunohistochemical study). J. Mol. Histol. 2012, 43, 179–186. [CrossRef]

155. Nelson, M.T.; Joksovic, P.M.; Su, P.; Kang, H.-W.; Van Deusen, A.; Baumgart, J.P.; David, L.S.; Snutch, T.P.; Barrett, P.Q.; Lee, J.-H.
Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J. Neurosci. 2007, 27,
12577–12583. [CrossRef]

156. Visser, E.J.; Drummond, P.D.; Lee-Visser, J.L.A. Reduction in Migraine and Headache Frequency and Intensity With Combined
Antioxidant Prophylaxis (N-acetylcysteine, Vitamin E, and Vitamin C): A Randomized Sham-Controlled Pilot Study. Pain Pract.
2020, 20, 737–747. [CrossRef] [PubMed]

157. Brigelius-Flohé, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [CrossRef] [PubMed]
158. Friedman, J. Why is the nervous system vulnerable to oxidative stress? In Oxidative Stress in Applied Basic Research and Clinical

Practice; Humana Press: Totowa, NJ, USA, 2011; pp. 19–27.
159. Kim, H.K.; Kim, J.H.; Gao, X.; Zhou, J.-L.; Lee, I.; Chung, K.; Chung, J.M. Analgesic effect of vitamin E is mediated by reducing

central sensitization in neuropathic pain. Pain 2006, 122, 53–62. [CrossRef] [PubMed]
160. Ambrogini, P.; Minelli, A.; Galati, C.; Betti, M.; Lattanzi, D.; Ciffolilli, S.; Piroddi, M.; Galli, F.; Cuppini, R. Post-Seizure

α-Tocopherol Treatment Decreases Neuroinflammation and Neuronal Degeneration Induced by Status Epilepticus in Rat
Hippocampus. Mol. Neurobiol. 2014, 50, 246–256. [CrossRef]

161. Betti, M.; Minelli, A.; Ambrogini, P.; Ciuffoli, S.; Viola, V.; Galli, F.; Canonico, B.; Lattanzi, D.; Colombo, E.; Sestili, P. Dietary
supplementation with α-tocopherol reduces neuroinflammation and neuronal degeneration in the rat brain after kainic acid-
induced status epilepticus. Free Radic. Res. 2011, 45, 1136–1142. [CrossRef]

162. Martinez-Hernandez, A.; Bell, K.P.; Norenberg, M.D. Glutamine synthetase: Glial localization in brain. Science 1977, 195,
1356–1358. [CrossRef]

163. Ambrogini, P.; Albertini, M.C.; Betti, M.; Galati, C.; Lattanzi, D.; Savelli, D.; Di Palma, M.; Saccomanno, S.; Bartolini, D.; Torquato,
P. Neurobiological correlates of alpha-tocopherol antiepileptogenic effects and microRNA expression modulation in a rat model
of kainate-induced seizures. Mol. Neurobiol. 2018, 55, 7822–7838.

164. Tilleux, S.; Hermans, E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J. Neurosci. Res.
2007, 85, 2059–2070.

165. Upaganlawar, A.B.; Wankhede, N.L.; Kale, M.B.; Umare, M.D.; Sehgal, A.; Singh, S.; Bhatia, S.; Al-Harrasi, A.; Najda, A.;
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