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Abstract: Globally, lung cancer remains one of the leading causes of cancer-related mortality, warrant-
ing the exploration of novel and effective therapeutic approaches. Soy-fermented food products have
long been associated with potential health benefits, including anticancer properties. There is still a
lack of understanding of the active components of these drugs as well as their underlying mecha-
nistic pathways responsible for their anti-lung cancer effects. In this study, we have undertaken an
integrated approach combining network pharmacology and molecular docking to elucidate the mech-
anism of action of soy-fermented food products against lung cancer through simulation and in vitro
validation. Using network pharmacology, we constructed a comprehensive network of interactions
between the identified isoflavones in soy-fermented food products and lung cancer-associated targets.
Molecular docking was performed to predict the binding affinities of these compounds with key lung
cancer-related proteins. Additionally, molecular simulation was utilized to investigate the stability of
the compound–target complexes over time, providing insights into their dynamic interactions. Our
results identified daidzein as a potential active component in soy-fermented food products with high
binding affinities towards critical lung cancer targets. Molecular dynamic simulations confirmed the
stability of the daidzein–MMP9 and daidzein–HSP90AA1 complexes, suggesting their potential as
effective inhibitors. Additionally, in vitro validation experiments demonstrated that treatment with
daidzein significantly inhibited cancer cell proliferation and suppressed cancer cell migration and the
invasion of A549 lung cancer cells. Consequently, the estrogen signaling pathway was recognized as
the pathway modulated by daidzein against lung cancer. Overall, the findings of the present study
highlight the therapeutic potential of soy-fermented food products in lung cancer treatment and
provide valuable insights for the development of targeted therapies using the identified bioactive
compounds. Further investigation and clinical studies are warranted to validate these findings and
translate them into clinical applications for improved lung cancer management.

Keywords: soybean; isoflavones; daidzein; cancer; molecular dynamic simulation; MTT assay;
MMP9; IGF-1R

1. Introduction

Millions of people around the world suffer from lung cancer, which is a serious and
widespread health problem [1]. The symptoms of lung cancer include coughing, chest pain,
shortness of breath, and coughing up blood. Lung cancer starts in the cells of the lungs. As
well as spreading to other parts of the body, lung cancer may also cause complications and
damage to the brain, liver, bones, and adrenal glands [2]. It has been reported that lung
cancer is the second most common cancer in the world, with more than 2.2 million new cases
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and 1.8 million deaths expected by 2020, as reported by the World Health Organization
(WHO) [3]. Women are more likely to develop lung cancer than men, according to the
American Cancer Society [4]. Lung cancer incidence and mortality rates vary widely across
regions and countries, depending on factors such as socioeconomic development, tobacco
use, environmental exposure, and health system capacity [2,3]. The WHO projects that
by 2040, there will be 3.5 million new cases and 2.9 million deaths from lung cancer per
year [4].

The foremost cause of lung cancer is smoking, which exposes the lungs to harmful
chemicals that damage the DNA of cells and make them grow abnormally [1]. Smoking
accounts for about 80% to 90% of lung cancer cases [5]. However, lung cancer incidence
can also occur in individuals who have never smoked or who have been exposed to second-
hand smoke, asbestos, radon gas, air pollution, or other environmental causes and genetic
factors [1,5]. Surgery, radiation, and chemotherapy are some of the cancer treatments
developed in recent years. It is estimated that only one third of cancer patients can be cured
by surgery or radiation therapy; however, in the case of cancer that has spread to other
areas of the body, chemotherapy is considered a systemic treatment [6]. Various cancer
treatment options could lead to major side effects and even high costs due to the likelihood
of serious side effects. As a result, it is necessary for the development and finding of new
medicines derived from natural sources, particularly plant-based functional foods, in order
to ensure that these drugs are abundantly available as well as relatively cheaper in price [6].

Soybean-fermented foods are foods that are made from soybeans that have undergone
a process of fermentation by microorganisms [7]. Soybean-fermented foods are widely
consumed in Asian countries, such as China, Japan, Korea, and Indonesia, where they
have been part of the traditional diet for centuries [8]. Some of the most common soybean-
fermented foods are miso, tempeh, natto, soy sauce, and douchi. These foods vary in their
appearance, flavour, texture, and preparation methods, but they all share some health
benefits [9]. Soybean-fermented foods are rich in protein, fiber, phytochemicals, vitamins,
minerals, and probiotics. They may help improve digestion, immunity, metabolism, and
cardiovascular health. They may also prevent or treat some chronic diseases, such as
diabetes, obesity, cancer, and osteoporosis [9–12].

There are several compounds in soybean-fermented foods that have anticancer proper-
ties, including saponins, phenolic compounds, and phytic acid, as well as enzyme inhibitors
such as trypsin and Bowman–Birk inhibitors, although the most prominent compounds
are isoflavones, which are powerful antioxidants that can shield human cells from oxida-
tive stress that can lead to cancer [12,13]. Isoflavones comprise three types of aglycones,
daidzein, genistein, and glycitein, and their respective glycosides, daidzin, genistin, and
glycitin. Isoflavones can also exist as conjugated compounds, such as malonylglucoside,
acetylglucoside, and succinylglucoside [14,15]. In soybean-fermented foods, there are a
number of factors that can affect the content and profile of isoflavones. This includes the
variety of soybean, the fermentation method, the microorganisms involved, the processing
conditions, and the period of storage [16,17]. Genistein, an isoflavone that occupies a
predominant position in soy, has been described in animal models to inhibit the growth,
development, and metastasis of cancer cells, especially through the alteration of genes
involved in cell cycle control and apoptosis [18]. The results of one preclinical study sug-
gested tempe might have chemopreventive and chemotherapeutic potentials [19]. Thus, at
the present time, there is clearly a great deal of interest in the development of functional
foods, especially in cemented food-based medicines, because they can be prospective can-
didates for future anticancer functional foods. In spite of the fact that such information
is available regarding the presence of different isoflavones in a variety of soy-fermented
products, to the best of our knowledge, no reports have been made about the potential
underlying mechanism of these fermented products for the management or treatment
of cancer.

An important component of system biology is network pharmacology, which de-
scribes how biological systems, drugs, and diseases are interconnected and interact with
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one another in complex ways [20]. Through the analysis of huge amounts of data and
identification of synergistic effects across multiple diseases, the study sheds light on the pos-
sible mechanisms of action of multifaceted bioactive substances. In addition, target-based
network pharmacology has the potential to become a valuable approach to drug discovery
and the development of next-generation herbal formulations or functional foods [20]. Thus,
network and reverse pharmacology approaches were used in the present study for the
identification of possible protein targets as well as molecular pathways modulated through
isoflavones of soy-fermented foods against lung cancer, as well as to investigate the basic
anticancer and anti-metastasis activities via in vitro experiments.

2. Materials and Methods
2.1. Identifying the Potential Targets of Compounds and Diseases

A SMILES code was derived from the PubChem database to obtain the predicted
targets for all the isoflavone compounds found in the literature from fermented soy
food, which were then entered into SwissTargetPrediction (www.swisstargetprediction.ch/,
accessed on 1 February 2023) [21]. In order to find the genes that were associated with
lung cancer, we used the keyword “lung cancer” as a search term and searched through
the GeneCards database, which presented only genes scoring a relevance score of >30
(https://www.genecards.org/, accessed on 1 February 2023), DisGeNET (http://www.
disgenet.org/, accessed on 1 February 2023) by utilizing the cutoff “score_gda > 0.1”, and
OMIM (https://www.omim.org/, accessed on 1 February 2023) for the recognition of
disease-associated targets.

2.2. Finding and Acquiring Potential Targets

The study identifies several potential targets, including those predicted for isoflavones
as well as those associated with lung cancer. In order to analyze common targets, we
constructed Venn diagrams using FunRich tool version 3.1.3 [22], whereas for information
related to the classes of potential protein targets, we retrieved data from the Swiss target pre-
diction database (http://www.swisstargetprediction.ch/error_page.php?error=1/search,
accessed on 5 February 2023) [23].

2.3. Construction and Investigation of Protein–Protein Interaction Network

The STRING database is used to study protein–protein interactions (PPIs) of selected
potential targets (https://string-db.org/, accessed on 1 February 2023) [24]. The parameters
for analysis were carried out with a confidence level of 0.400; based on the parameter set-
tings, a false discovery rate (FDR) stringency of 5% was assigned to the analysis. Cytoscape
was used to construct and analyze a PPI network of selected possible targets (version 3.9.1)
and the results were subsequently imported into a PPI network of the potential targets
with which the results were imported [25]. Based on three parameters, namely “degree”,
“betweenness centrality”, and “closeness centrality”, a topological feature of the network
was estimated, from which potential targets were selected.

2.4. Findings of Hub-Genes and GO-KEGG Pathway Enrichment Analysis

For the purpose of finding Hub genes in a network, the cytohubba plugin of the
Cytoscape tool was used and the top ten hub-genes were predicted with the help of Maximal
Clique Centrality (MCC) topological analysis. With the help of the DAVID database
(https://david.ncifcrf.gov/, accessed on 5 February 2023), an enrichment analysis was
performed to analyze the biological functions of target proteins and pathways associated
with the disease [26]. A False Discovery Rate (FDR) of less than 0.05 was utilized to
visualize the enriched GO terms and pathways. In order to summarize the top ten most
insightful GO terms (BP, CC, and MF) using bioinformatics tools, a bubble graph was
generated using SRplot (https://www.bioinformatics.com.cn/, accessed on 10 February
2023), and a top twenty KEGG pathway map was generated using ShinyGo 0.77 server
(http://bioinformatics.sdstate.edu/go/, accessed on 1 February 2023).

www.swisstargetprediction.ch/
https://www.genecards.org/
http://www.disgenet.org/
http://www.disgenet.org/
https://www.omim.org/
http://www.swisstargetprediction.ch/error_page.php?error=1/search
https://string-db.org/
https://david.ncifcrf.gov/
https://www.bioinformatics.com.cn/
http://bioinformatics.sdstate.edu/go/
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2.5. Molecular Docking Analysis

The interaction between fermented soy products’ isoflavones and lung cancer targets
was investigated using AutoDock Vina 1.5.7 [27]. From the PubChem database, the 3D struc-
tures of isoflavones were downloaded. The 3D structures of each compound were converted
from .sdf to .pdb using Open Babel 3.1.1. Avogadro was used to minimize energy using the
MMFF94 force field. The steepest descent algorithm was used to optimize the model, and
a total of 5000 steps were taken in order to optimize it. In order to minimize the energy,
the structure was updated continuously, and when the energy difference was less than 0.1,
the minimization was terminated and then the .PDB file was saved. Protein 3D crystal
structures were downloaded from RCSB-PDB database (TNF—PDB ID: 2AZ5, SRC—PDB
ID: 4MXO, MMP9—PDB ID: 1GKC, ANXA5—PDB ID: 1AVH, CASP3—PDB ID: 1NME,
HRAS—PDB ID: 6ZL3, PTGS2 PDB ID—5F1A, TP53—PDB ID: 3DCY, HSP90AA1—PDB ID:
5H22 and ALB—PDB ID: 1AO6). Water molecules were deleted from the crystal structure.
The protein structure was then charged with Kollman charge and hydrogen was added.
The coordinates of the proteins were saved as .pdb file. All structures were adapted using
Open Babel, from .pdb to .pdbqt. An analysis of docked protein-ligand complexes was
conducted using PyMoLv2.5.5 and Biovia Discovery Studio v-21.1.0.20298 [28].

2.6. ADMET Prediction

After molecular docking analysis, isoflavones were screened according to their AD-
MET properties. Using the Protox-II server (https://tox-new.charite.de/protox_II/index.php?
site=home, accessed on 25 January 2023) [29] and SwissADME (http://www.swissadme.ch/,
accessed on 25 January 2023) [30], ADMET properties as well as patterns of PAINS (pan-
assay interference compounds) were predicted. PAINS patterns were filtered out after
selecting compounds with good ADMET properties [31]. Using the PAINS filter, we could
eliminate compounds that have specific patterns and a high propensity to bind to more
than one target. ADMET evaluates compounds for their drug-like physicochemical and
pharmacokinetic properties, which decrease the possibility of clinical trial failure [32].

2.7. Molecular Dynamics Simulation

Computational methods such as molecular dynamics (MDs) are used to understand
how ligands behave in the binding pocket of receptors based on their time-dependent
conformational stability. Several studies have demonstrated its practical application in
identifying new inhibitors in a number of applications [33–36]. In this study, MD analyses
were performed with Gromacs version 2019.4 [37]. MD studies were conducted using the
GROMOS force field. For obtaining the force field coordinates, the chosen ligand topology
was retrieved from the ATB server. Using the steepest descent algorithm, 1500 steps of
vacuum minimization were performed on the system. Using a simple point charge (SPC)
water model, the complex structures were solvated using a cubic periodic box of 0.5 nm.
Complex systems were maintained at an appropriate salt concentration of 0.15 M by adding
appropriate numbers of Na+ and Cl− counterions. The NVT and NPT equilibration was
performed for 100 ps steps using the leap-frog algorithm. After equilibration, the solvated
protein–ligand complex was subjected to the production of MDs for 100 ns. A trajectory file
was further analyzed after the periodic boundary conditions were removed from the MD
run. Using the Chimera package, the MD analysis was carried out on the data. Diagrams
were generated using the XMGRACE tool (https://plasma-gate.weizmann.ac.il/Grace/,
accessed on 5 February 2023).

2.8. Pass Analysis

The concept of PASS refers to a method of predicting the properties of biologically
active compounds based on their chemical structure, which makes it possible to predict
chemical compounds’ biological activities. Using the PASS web server (https://www.way2
drug.com/passonline/, accessed on 25 January 2023), it is possible to perform PASS analysis
on compounds and select those with the desired biological properties [38]. According to

https://tox-new.charite.de/protox_II/index.php?site=home
https://tox-new.charite.de/protox_II/index.php?site=home
http://www.swissadme.ch/
https://plasma-gate.weizmann.ac.il/Grace/
https://www.way2drug.com/passonline/
https://www.way2drug.com/passonline/
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structure–activity relationships, PASS predicts a compound’s potential biological properties.
Accordingly, it determines a compound’s probable properties on the basis of a measure of
Pa to Pi (probability of being active to probability of being inactive). In general, compounds
with higher Pa values are more likely to be active. For higher statistical significance, the Pa
value was set at >7.

2.9. Cell Culture

A-549 lung cancer cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM),
containing 10% FBS (fetal bovine serum), 10,000 units of penicillin with 5 mg of strep-
tomycin (Hi-Media®, Mumbai, India). Cells were maintained at 37 ◦C in a humidified
atmosphere containing 5% CO2 to maintain their optimum state [38].

2.10. Cell Viability Assay

Using a MTT assay, lung cancer cells treated with daidzein were evaluated for viability.
By trypsinizing and aspirating cells from T-25 flasks, cells were harvested. Centrifugation
at 3000× g rpm was used to collect the cells. In order to adjust the cell count, a culture
medium was used to suspend around 10,000 cells in 200 µL. To settle the cells, a 200 µL
suspension of cells was placed in every well of a 96-well microtiter plate and incubated
at 37 ◦C in 5% CO2 for 24 h. At the end of 24 h of incubation under 5% CO2 conditions
at 37 ◦C, cells were treated with 200 µL of various concentrations of standard daidzein
after the removal of spent medium from each well (Sigma-Aldrich®, St. Louis, MO, USA)
(0, 1, 10, 100, 250, 500, and 1000 µg/mL), followed by further incubation of 24 h under
5% CO2 at 37 ◦C. In the next step, 200 µL of freshly prepared medium was poured into
each well along with 10% MTT reagent. It was further incubated under 5% CO2 for 3 h at
37 ◦C. As the formazan crystals developed, DMSO (100 µL) was added and gently shook
in a gyratory shaker to dissolve them. In order to determine absorbance at 570 nm and
630 nm, a microplate reader was used. After subtracting the background and blank values
from the results, the amount of drug required to inhibit 50% of the cell growth (IC50) was
determined [39,40].

2.11. Wound-Healing Assay

A wound-healing assay was used to study the effects of daidzein on A549 cancer cells.
In 6-well plates, monolayers of cells were grown. A density of 1 × 106 cells/mL in 3 mL
of medium was used for plating. A sterile 1 mL pipette tip was used to make an injury
line in the middle of the culture. Each scraped line was photographed using an inverted
microscope. Later on, daidzein was added to the wells at different concentrations (50, 80,
and 100 µg/mL) and incubated for another 48 h before images were taken. A reduction in
the scraped area indicates the migration of cells and healing of wounds [41].

2.12. Transwell Migration Assay

Transwell inserts (24-well format, 8 m pore size, Himedia®, Mumbai, India) were
utilized for seeding 1 × 106 cells in media (serum-free). The cells were then cultured for
24 h with various concentrations of daidzein (50, 80 and, 100 µg/mL). A 10% FBS solution
was added to the lower chamber. Following incubation for 10 h, non-moving cells were
removed using a cotton swab. The migrated cells were fixed with methanol and stained
using crystal violet (0.1%). Under an inverted microscope, cell numbers were also counted
by calculating the mean of three randomly selected fields. A calculation was then made to
determine how many cells had penetrated the membrane [42].

3. Results
3.1. Target Prediction and Analysis of Potential Targets

As a result of the literature search, six major isoflavones were identified from the
different soy-fermented foods that have been incorporated into this study (Table 1). From
the PubChem database, detailed information about the selected compounds was retrieved
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and analyzed using the SwissTargetPrediction (STP) database. The target classes of each
isoflavone are shown in Figure 1. In total, 527 predicted targets were obtained from the
Swisstarget prediction and PharmMapper webserver, while 1108 target predictions were
obtained from the Genecards (GDA cutoff of >30), DisGeNet (cutoff of >0.1), and OMIM
databases after removing duplicate targets. In the process of intersecting the targets of
compounds and diseases, a total of 131 common targets were found to be potential targets
(Figure 2).

Table 1. Information about the isoflavones of soy-fermented products along with their canonical smiles.

Sr. No. Compound Name MW MF Canonical Smile

1 Daidzein 254.24 g/mol C15H10O4 C1=CC(=CC=C1C2=COC3=C(C2=O)C=CC(=C3)O)O

2 Genistein 270.24 g/mol C15H10O5 C1=CC(=CC=C1C2=COC3=CC(=CC(=C3C2=O)O)O)O

3 Glycitein 284.26 g/mol C16H12O5 COC1=C(C=C2C(=C1)C(=O)C(=CO2)C3=CC=C(C=C3)
O)O

4 Malonylgenistin 518.4 g/mol C24H22O13 C1=CC(=CC=C1C2=COC3=CC(=CC(=C3C2=O)O)OC4C
(C(C(C(O4)COC(=O)CC(=O)O)O)O)O)O

5 Genistin 432.4 g/mol C21H20O10 C1=CC(=CC=C1C2=COC3=CC(=CC(=C3C2=O)O)OC4C
(C(C(C(O4)CO)O)O)O)O

6 Malonyldaidzin 502.4 g/mol C24H22O12 C1=CC(=CC=C1C2=COC3=C(C2=O)C=CC(=C3)OC4C(C
(C(C(O4)COC(=O)CC(=O)O)O)O)O)O
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lung cancer, as retrieved from the SwissTarget-Prediction server: (A) Daidzein, (B) genistein,
(C) genistin, (D) glycitein, (E) malonyldaidzin, and (F) malonylgenistin.



Nutrients 2023, 15, 3949 7 of 32

Nutrients 2023, 15, x FOR PEER REVIEW  7  of  33 
 

 

 

Figure 1. The protein classification of targets of isoflavones in soy‐fermented food products against 

lung cancer, as retrieved from  the SwissTarget‐Prediction server: (A) Daidzein, (B) genistein, (C) 

genistin, (D) glycitein, (E) malonyldaidzin, and (F) malonylgenistin. 

 

Figure 2. Findings of common targets between isoflavones and lung cancer using a Venn diagram. 

3.2. Construction and Analysis of Compounds–Disease Common Target Network 

An analysis of the relationship between target genes was conducted using a PPI net‐

work. The first step in this process was the entering of possible targets using the STRING 

database, and then, once the data were collected, we used Cytoscape version 3.9.1 to ana‐

lyze and visualize the resultant data (Figures 3 and 4).   

Figure 2. Findings of common targets between isoflavones and lung cancer using a Venn diagram.

3.2. Construction and Analysis of Compounds–Disease Common Target Network

An analysis of the relationship between target genes was conducted using a PPI
network. The first step in this process was the entering of possible targets using the
STRING database, and then, once the data were collected, we used Cytoscape version 3.9.1
to analyze and visualize the resultant data (Figures 3 and 4).
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Figure 3. The network of common-gene targets for lung cancer and isoflavones in soy-fermented
food products created with Cytoscape software.

For the estimation of the significance of different nodes within a complex network,
three parameters were used: degree, closeness, and centrality between the nodes
(Tables 2 and 3). Each of these three parameters were used in order to estimate the impor-
tance of each node in relation to the rest of the network. The genes that were identified in
the study have been reported to play a significant role in lung cancer development. In this
regard, these findings indicate that the anticancer activity exhibited by the isoflavones in
soy-fermented foods can be significantly associated with these key targets. Considering the
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topology properties of the network, we found ten targets in the network, corresponding to
TP53, ALB, TNF, MMP9, CASP3, SRC, HSP90AA1, ANXA5, HRAS, and PTGS2, which were
arranged in the order of high to low (Figure 5A). These ten identified targets could serve as
the key targets that isoflavones can target in order to prevent lung cancer. Additionally,
we used the GeneMANIA tool to export the identified target genes into a PPI network so
we can see what kind of relationships there might be between the identified target genes
as well as other additional genes present in the network. According to the results, the
interactions in the network represents the weight and expressed as percentages. According
to the analysis of all interactions between targets in the network, it was estimated that
23.39% of the interactions involved co-expressions and 18.91% of them involved physical
interactions between the targets. The results of the study also revealed that there was
a correlation between genetic interactions (28.43%), predicted interactions (26.42), and
colocalization (2.85%) (Figure 5B).
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Table 2. List of genes with topological parameters (degree > 10).

Sr. No. Genes Degree Subgraph Betweenness Closeness
1 TP53 93 1.70309E+16 1810.2233 0.30588236

2 AKT1 85 1.50395E+16 1209.3981 0.30023095

3 ALB 84 1.45701E+16 1478.0452 0.29885057

4 EGFR 79 1.42350E+16 767.9312 0.29411766

5 HSP90AA1 74 1.33435E+16 759.32733 0.29213482

6 TNF 74 1.30945E+16 661.356 0.29147983

7 HRAS 74 1.35786E+16 549.0256 0.29082775

8 SRC 72 1.37217E+16 405.83185 0.2888889
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Table 2. Cont.

Sr. No. Genes Degree Subgraph Betweenness Closeness
9 CASP3 71 1.36318E+16 412.17584 0.29017857

10 ESR1 70 1.25796E+16 633.2289 0.28761062

11 IGF1 61 1.10979E+16 277.7639 0.2832244

12 MMP9 59 1.03265E+16 269.15085 0.28199565

13 PTGS2 56 9.70134E+15 210.61162 0.2801724

14 RHOA 52 8.16216E+15 242.6943 0.27542374

15 BCL2L1 50 9.06884E+15 108.008354 0.2760085

16 ANXA5 50 9.48677E+15 84.69625 0.2760085

17 PPARG 49 7.89432E+15 152.48575 0.27542374

18 MDM2 47 7.67214E+15 143.88704 0.27310926

19 MMP2 47 7.70540E+15 102.22551 0.2736842

20 MAPK8 45 7.24961E+15 159.74908 0.2725367

21 CAT 44 5.77340E+15 371.0654 0.2736842

22 MAPK14 44 6.64498E+15 191.85359 0.2725367

23 KDR 43 6.42202E+15 77.25879 0.26915115

24 IGF1R 42 7.03299E+15 61.846313 0.27083334

25 SIRT1 42 6.57843E+15 140.43245 0.27139875

26 MAP2K1 39 6.27801E+15 48.690422 0.26804122

27 JAK2 39 5.92678E+15 45.057877 0.26639345

28 GSK3B 38 5.85577E+15 62.118233 0.26859504

29 IL2 37 5.63596E+15 53.313896 0.26859504

30 MET 37 5.14777E+15 47.117413 0.26530612

31 PTPN11 37 4.66587E+15 83.82157 0.26694044

32 MCL1 36 5.70959E+15 23.01386 0.26530612

33 KIT 36 4.97521E+15 37.521946 0.26530612

34 HMOX1 36 3.76490E+15 423.8162 0.26804122

35 AKT2 34 4.84180E+15 38.98536 0.26530612

36 XIAP 34 4.75574E+15 66.42771 0.26639345

37 RAF1 32 3.72559E+15 44.643333 0.26262626

38 CDK2 31 3.69572E+15 63.396782 0.2631579

39 TERT 31 3.84351E+15 67.03833 0.2631579

40 PARP1 31 4.07886E+15 32.731937 0.26476577

41 ABL1 31 3.41464E+15 43.111977 0.2615694

42 SERPINE1 30 3.35331E+15 46.154045 0.2636917

43 GSTP1 29 1.44186E+15 219.61592 0.26584867

44 SOD2 28 2.63405E+15 253.57841 0.2636917

45 MMP7 27 3.03206E+15 27.786367 0.26052105

46 ABCB1 27 2.60193E+15 63.017616 0.26262626

47 PRKCA 26 2.65481E+15 40.49914 0.25948104

48 ERBB4 25 2.46818E+15 16.559324 0.25742576

49 ACE 25 2.32904E+15 53.887497 0.2615694

50 ESR2 25 2.77889E+15 89.329414 0.26052105

51 CDK6 25 2.86819E+15 13.577173 0.26

52 PLAU 24 2.59795E+15 15.441549 0.25948104

53 NQO1 24 1.84276E+15 101.50741 0.26052105
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Table 2. Cont.

Sr. No. Genes Degree Subgraph Betweenness Closeness
54 MMP1 24 2.40993E+15 14.511479 0.26

55 TYMS 24 7.98944E+14 325.19824 0.25896415

56 FGFR1 23 2.36267E+15 10.2922325 0.25844932

57 IGFBP3 22 2.32580E+15 7.1022153 0.2579365

58 NOS2 22 2.14672E+15 16.07283 0.26052105

59 RAC1 22 1.68039E+15 21.24138 0.2524272

60 ABCG2 22 1.74603E+15 37.594463 0.26

61 AHR 22 1.66178E+15 42.12418 0.26

62 EIF4E 20 2.10336E+15 2.9916174 0.25641027

63 ALK 20 1.55143E+15 24.844717 0.2579365

64 PIK3CG 19 1.76235E+15 3.1658723 0.25390625

65 PLK1 19 1.42448E+15 19.416132 0.256917

66 GART 18 4.12615E+14 142.35718 0.25490198

67 LGALS3 18 1.53411E+15 33.23837 0.25742576

68 BRAF 18 1.21536E+15 9.635091 0.2534113

69 CTNNA1 17 9.45736E+14 9.677067 0.24667932

70 VDR 17 1.24125E+15 38.346687 0.25540274

71 ADAM17 17 1.03272E+15 27.434246 0.25291827

72 CYP1B1 17 5.92961E+14 53.069645 0.25291827

73 ARG1 17 8.11169E+14 160.89526 0.25390625

74 AURKA 17 1.21561E+15 13.74725 0.2534113

75 FGFR2 17 1.17520E+15 2.511399 0.2504817

76 RHEB 17 1.20739E+15 4.2154365 0.2524272

77 CSK 16 1.20519E+15 3.0542948 0.2504817

78 GSTM1 16 5.24847E+14 38.11805 0.2559055

79 TGFBR2 16 1.32542E+15 3.1019523 0.25440314

80 AXL 16 1.19384E+15 5.4183025 0.2514507

81 CYP19A1 16 1.35939E+15 3.7160077 0.25540274

82 SERPINA1 15 5.03674E+14 47.63756 0.24952015

83 DHFR 15 5.34485E+14 81.25459 0.25641027

84 CA9 15 1.04730E+15 46.289696 0.25390625

85 BCL2 15 1.15746E+15 1.0431849 0.25096524

86 AHCY 15 8.65762E+13 173.01955 0.24436091

87 CXCR2 14 1.02009E+15 4.7516828 0.2534113

88 TPI1 14 1.48572E+14 95.91854 0.2524272

89 MMP13 14 1.00270E+15 1.3570788 0.2524272

90 EPHA2 14 9.88097E+14 2.7505817 0.25096524

91 ELANE 13 5.21488E+14 5.72029 0.24809161

92 ALOX5 12 5.73864E+14 11.384069 0.251938

93 ABCC1 12 6.35524E+14 2.7090664 0.25390625

94 PRKCE 12 6.03043E+14 1.6471758 0.24574669

95 PON1 11 2.56962E+14 11.408818 0.24528302

96 TK1 11 7.71143E+13 59.961258 0.24436091

97 MMP12 10 3.26467E+14 3.6299863 0.24436091
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Table 2. Cont.

Sr. No. Genes Degree Subgraph Betweenness Closeness
98 None 10 1.69141E+14 23.737284 0.24856597

99 TTR 10 1.84150E+14 28.287405 0.24574669

100 MAPKAPK2 9 4.17365E+14 1.1214042 0.24904214

101 GSTM2 9 2.13918E+14 3.2141564 0.24856597

102 DAPK1 9 3.42158E+14 4.8307686 0.24809161

103 RARB 9 1.69496E+14 12.325137 0.24856597

104 KIF5B 9 2.27112E+14 5.4027066 0.23853211

105 None 8 1.54169E+14 28.305624 0.24714829

106 CRYZ 8 5.75053E+13 16.664522 0.22530329

107 PPIA 8 3.42044E+14 1.9932245 0.24856597

108 CES1 7 1.05845E+14 15.055967 0.24074075

109 IMPDH2 7 2.41610E+13 35.958282 0.24074075

110 FHIT 7 1.66404E+14 2.121033 0.24482109

111 TNK2 7 3.15551E+14 0.51937443 0.24761905

112 GPI 6 1.24437E+13 3.1605623 0.2249135

113 None 6 3.15992E+13 44.775955 0.24253732

114 CDA 6 2.41221E+13 32.566826 0.2416357

115 GC 6 2.50051E+13 2.7650793 0.23423423

116 SHMT1 6 6.31168E+12 1.602381 0.21630615

117 THRB 6 6.41589E+13 7.0238786 0.24118738

118 CFB 6 4.76834E+13 1.9542947 0.23593466

119 AZGP1 5 1.72523E+13 0 0.23339318

120 PLA2G2A 5 1.38081E+14 0.7182914 0.24299066

121 SLC6A3 4 1.00602E+14 0.13263159 0.24390244

122 AKR1C1 4 1.99457E+13 0.3605042 0.2184874

123 UCK2 4 1.33363E+12 1.3484849 0.20866774

124 DUSP3 4 7.62479E+13 0.08695652 0.23423423

125 SRM 3 1.14269E+12 3.9150116 0.21207178

126 NQO2 2 2.88130E+12 0 0.21276596

127 DOT1L 2 2.71917E+13 0 0.23593466

128 CA12 2 1.26821E+13 0 0.22569445

129 ATOX1 2 2.22952E+12 0.44444445 0.21416804

130 TAP1 0 1.00000E+00 0 0.007633588

131 ISG20 0 1.00000E+00 0 0.007633588

Table 3. List of compounds with topological parameters.

Sr. No. Compound Degree Subgraph Betweenness Closeness

1 Genistin 104 4.68021088 3297.1821 0.6974359

2 Genistein 102 4.27065824 4020.0435 0.6834171

3 Malonylgenistin 99 4.34833952 2831.665 0.6634147

4 Malonyldaidzin 99 4.34633984 2870.7095 0.6634147

5 Glycitein 95 3.95949600 3162.9502 0.6384977

6 Daidzein 86 3.36311648 2407.4497 0.5887446
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Figure 5. (A) Identified hub genes in a PPI network obtained from common target genes of isoflavones
in soy-fermented food products and lung cancer; (B) network of hub genes against lung cancer
analyzed by GeneMANIA. Functional association of targets was analyzed and connecting lines with
different colours represent different correlations. Genes associated with query genes were indicated
by nodes on the outer ring. The genes shown in the inner ring were used as search terms to find
relevant information.

3.3. Functional and Pathway Enrichment Analysis

With the help of Enrichr, the identified target genes in lung cancer were analyzed to
clarify their functions and pathways for an in-depth understanding of how they relate to
the disease process, thus allowing us to better grasp the disease process in general. As
a result of the GO annotations, a variety of GO enrichment terms have been found to be
associated with the annotations. A total of 1577 BPs, 75 CCs, and 119 MFs were determined.
An analysis of this data was performed using a bubble chart, which represents the ten
most enhanced GO functions (Figure 6A–C) and each KEGG pathway (Figure 6D). These
identified genes were found to play a role in biological processes such as the intrinsic apop-
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totic signaling pathway, response to osmotic stress, positive regulation of cellular protein
localization, cellular response to chemical stress, response to oxidative stress, regulation
of the apoptotic signaling pathway, and control of the neuroinflammatory response. They
also played a role in cellular components, such as the membrane microdomain, mem-
brane raft, caveola, plasma membrane raft, ficolin-1-rich granule, nuclear membrane, and
dendrite terminus, and in molecular functions such as protease binding, tumor necrosis
factor receptor superfamily binding, ubiquitin protein ligase binding, copper ion binding,
heme binding, chaperone binding, antioxidant activity, and protein tyrosine kinase binding.
There were 163 KEGG pathways that have been linked to these genes. Among them,
small-cell lung cancer, the IL-17 signaling pathway, pathways in cancer, prostate cancer,
the P53 signaling pathway, the TNF signaling pathway, the VEGF signaling pathway, and
the estrogen signaling pathway were the most significantly enriched pathways. From the
obtained results, it can be predicted that soy-fermented food compounds can regulate some
signaling pathways in lung cancer.
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Figure 6. KEGG pathway and GO enrichment analyses of identified hub-target proteins
(p-value ≤ 0.05). (A) The biological processes (top 10), (B) the cellular components (top 10), (C) the
molecular functions (top 10), (D) the KEGG pathways (top 20). The p-values for each term are shown
by the colours, with darker colours indicating lower p-values. The number of genes associated with
each term are indicated by the dot sizes, with larger dots representing more genes.

3.4. Molecular Docking and ADMET Analysis

The results of the molecular docking analysis of isoflavones against the identified
lung cancer targets are presented in Figure 7. Structures with lower binding energies
are generally more stable. Several isoflavones, such as Malonylgenistin against ANXA5,
HSP90AA1, PTGS2, TNF, and TP53; Malonyldaidzin against MMP9, ALB, CASP3, and
HRAS; and Genistin against SRC, were found to have a higher affinity for their respective
target proteins when docking analysis was performed.
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Figure 7. Binding energy of the top-rated pose of a ligand–receptor complex obtained after molecular
docking analysis.

Furthermore, the Protox-II and SwissADME servers were used to detect the ADMET
properties and PAINS patterns of isoflavones. A list of ADMET properties is presented
in Tables 4 and 5. As a result of the analysis, only daidzein showed good ADMET prop-
erties and did not show any PAINS patterns as a result. Aside from daidzein, other
isoflavones were excluded from further evaluation, although a few have good binding
affinities with lung cancer target proteins. The results of daidzein showed good bind-
ing energy towards MMP9 (−9.3 kcal/mol), with two pi–sigma bonds (LEU418 and
THR426), two pi–pi stacked bonds (2*HIS401), one pi–pi t-shaped bond (TYR423), and
three pi–alkyl bonds (LEU397, VAL398, and ARG424); towards PTGS2 (−9.1 kcal/mol),
with two conventional H-bonds (ARG469 and GLY135), one pi–donor hydrogen bond
(CYS47), one pi–sigma bond (LEU152) and five pi–alkyl bonds (2*CYS47, 2*PRO153, and
VAL146); towards ANXA5 (−8.2 kcal/mol), with two conventional H-bonds (ASN232
and THR254), two pi–cation bonds (2*LYS108), two pi–donor hydrogen bonds (LYS108
and GLN235), one amide–pi stacked bond (GLU107) and two pi–alkyl bonds (2*LYS108);
towards HRAS (−8.1 kcal/mol), with three conventional H-bonds (GLY15, ASP119, and
TYR32), one carbon–hydrogen bond (ASP30), one pi–pi t-shaped bond (PHE28), and six pi–
alkyl bonds (3*ALA18, LYS117, ALA146, and LYS147); towards HSP90AA1 (−7.9 kcal/mol),
with one conventional H-bond (ASP93), two pi–sigma bonds (2*LEU107), two pi–pi stacked
bonds (2*PHE138), and one pi–alkyl bond (VAL186); towards ALB (−7.9 kcal/mol), with
one conventional H-bond (ARG186), one pi–sigma bond (LEU115), one pi–pi t-shaped
bond (TYR138 and TYR161), and five pi–alkyl bonds (LEU115, ARG117, LYS137, LEU182,
and ARG186); towards SRC (−7.6 kcal/mol), with one conventional H-bond (MET341),
one carbon–hydrogen bond (THR338), one pi–sigma bond (9LEU393), one pi–pi stacked
bond (TYR340), and six pi–alkyl bonds (VAL281, 2*ALA293, LEU273, LEU393, and LYS295);
towards TP53 (−7.3 kcal/mol), with one conventional H-bond (ARG10), one carbon–
hydrogen bond (ASN17), and one pi–alkyl bond (LYS20); towards TNF (−6.1 kcal/mol),
with one conventional H-bond (LYS128), one pi–anion bond, (GLU127) and two pi–pi
stacked bonds (2*TYR87); and towards CASP3 (−5.6 kcal/mol), showing four pi–alkyl
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bonds (2*LYS105 and 2*ARG147). The interaction analyses of daidzein with target proteins
are presented within in Figures 8–12 as well as in Table 6.

Table 4. ADME analysis of isoflavones in soy-fermented products.

Sr.
No. Compound TPSA C Log

Po/w GI Absorption BBB
Permeant

Lipinski
Rule

PAINS
#Alerts

Drug-
Likeness

1 Daidzein 70.67 2.24 High Yes Yes 0 Yes

2 Genistein 90.9 2.04 High No Yes 0 Yes

3 Genistin 79.9 2.3 High No Yes 0 Yes

4 Glycitein 213.42 0.13 Low No No 0 No

5 Malonyldaidzin 170.05 0.35 Low No Yes 0 Yes

6 Malonylgenistin 193.19 0.22 Low No No 0 No

Table 5. Toxicity analysis of isoflavones in soy-fermented products.

Sr.
No. Compound LD50 Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity

1 Daidzein 2430 mg/kg Inactive Inactive Inactive Inactive Inactive

2 Genistein 2500 mg/kg Inactive Inactive Inactive Inactive Inactive

3 Genistin 2500 mg/kg Inactive Inactive Inactive Inactive Inactive

4 Glycitein 2500 mg/kg Inactive Inactive Inactive Inactive Inactive

5 Malonyldaidzin 5000 mg/kg Inactive Inactive Inactive Inactive Inactive

6 Malonylgenistin 5000 mg/kg Inactive Inactive Inactive Inactive Inactive

1 
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Figure 8. (A,B) The result of the molecular docking study showing how daidzein binds to ALB,
(C,D) the result of the molecular docking study showing how daidzein binds to ANXA5 protein.
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Figure 9. (A,B) The result of the molecular docking study showing how daidzein binds to CASP3,
(C,D) the result of the molecular docking study showing how daidzein binds to HRAS. 
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Figure 10. (A,B) The result of the molecular docking study showing how daidzein binds to
HSP90AA1, (C,D) the result of the molecular docking study showing how daidzein binds to MMP9.
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Figure 11. (A,B) The result of the molecular docking study showing how daidzein binds to TNF,
(C,D) the result of the molecular docking study showing how daidzein binds to TP53. 

3 

 

Figure 12. (A,B) The result of the molecular docking study showing how daidzein binds to PTGS2,
(C,D) the result of the molecular docking study showing how daidzein binds to SRC.
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Table 6. The residues in the target proteins that interact with the isoflavones in soy-fermented
products in their best-fitting pose.

Sr. No. Protein Receptor–Ligand Interaction Type Distance

1 ALB

A:ARG186:HN—N:UNK1:O Conventional Hydrogen Bond 2.89731

A:LEU115:CD1—N:UNK1 Pi–Sigma 3.99866

A:TYR138—N:UNK1 Pi–Pi T-shaped 5.2795

A:TYR161—N:UNK1 Pi–Pi T-shaped 5.16975

N:UNK1—A:LEU115 Pi–Alkyl 4.36943

N:UNK1—A:ARG117 Pi–Alkyl 5.35004

N:UNK1—A:LYS137 Pi–Alkyl 5.49534

N:UNK1—A:LEU182 Pi–Alkyl 4.9687

N:UNK1—A:ARG186 Pi–Alkyl 5.10462

2 ANXA5

A:ASN232:ND2—UNL1:O Conventional Hydrogen Bond 3.0243

UNL1:H—A:THR254:OG1 Conventional Hydrogen Bond 2.20903

A:LYS108:NZ—UNL1 Pi–Cation 3.9575

A:LYS108:NZ—UNL1 Pi–Cation 4.62916

A:LYS108:HN—UNL1 Pi-Donor–Hydrogen Bond 3.56838

A:GLN235:NE2—UNL1 Pi-Donor–Hydrogen Bond 3.97156

A:GLU107:C,O;LYS108:N—UNL1 Amide–Pi Stacked 4.45834

UNL1—A:LYS108 Pi–Alkyl 4.73111

UNL1—A:LYS108 Pi–Alkyl 4.14464

3 CASP3

UNL1—A:LYS105 Pi–Alkyl 5.30293

UNL1—A:ARG147 Pi–Alkyl 5.1608

UNL1—A:ARG147 Pi–Alkyl 4.14092

UNL1—A:LYS105 Pi–Alkyl 4.38979

4 HRAS

A:GLY15:HN—UNL1:O Conventional Hydrogen Bond 2.93639

UNL1:H—A:ASP119:OD1 Conventional Hydrogen Bond 2.16104

UNL1:H—A:TYR32:O Conventional Hydrogen Bond 2.18025

A:ASP30:CA—UNL1:O Carbon–Hydrogen Bond 3.48989

A:LYS117:NZ—UNL1 Pi–Cation 4.71779

A:PHE28—UNL1 Pi–Pi T-shaped 4.82189

UNL1—A:ALA18 Pi–Alkyl 4.3544

UNL1—A:ALA18 Pi–Alkyl 4.95631

UNL1—A:ALA18 Pi–Alkyl 5.43033

UNL1—A:LYS117 Pi–Alkyl 4.23559

UNL1—A:ALA146 Pi–Alkyl 5.42915

UNL1—A:LYS147 Pi–Alkyl 5.43249

5 HSP90AA1

UNL1:H—A:ASP93:OD2 Conventional Hydrogen Bond 2.35485

A:LEU107:CD2—UNL1 Pi–Sigma 3.88062

A:LEU107:CD2—UNL1 Pi–Sigma 3.24717

A:PHE138—UNL1 Pi–Pi Stacked 4.22964

A:PHE138—UNL1 Pi–Pi Stacked 5.49423

UNL1—A:VAL186 Pi–Alkyl 5.23903



Nutrients 2023, 15, 3949 19 of 32

Table 6. Cont.

Sr. No. Protein Receptor–Ligand Interaction Type Distance

6 MMP9

B:LEU418:CD1—UNL1 Pi–Sigma 3.69972

B:THR426:CG2—UNL1 Pi–Sigma 3.62835

B:HIS401—UNL1 Pi–Pi Stacked 5.87543

B:HIS401—UNL1 Pi–Pi Stacked 4.30408

B:TYR423—UNL1 Pi–Pi T-shaped 5.31933

UNL1—B:LEU397 Pi–Alkyl 5.05191

UNL1—B:VAL398 Pi–Alkyl 5.30563

UNL1—B:ARG424 Pi–Alkyl 5.09726

7 PTGS2

B:ARG469:HN—UNL1:O Conventional Hydrogen Bond 1.41545

UNL1:H—B:GLY135:O Conventional Hydrogen Bond 2.22526

B:CYS47:HN—UNL1 Pi-Donor–Hydrogen Bond 2.67525

B:LEU152:CD2—UNL1 Pi–Sigma 3.66252

UNL1—B:CYS47 Pi–Alkyl 5.40895

UNL1—B:PRO153 Pi–Alkyl 4.36592

UNL1—B:VAL46 Pi–Alkyl 5.45328

UNL1—B:CYS47 Pi–Alkyl 4.76239

UNL1—B:PRO153 Pi–Alkyl 4.21059

8 SRC

UNL1:H—A:MET341:O Conventional Hydrogen Bond 1.98724

UNL1:C—A:THR338:OG1 Carbon–Hydrogen Bond 3.30631

A:LEU393:CD1—UNL1 Pi–Sigma 3.64069

A:TYR340—UNL1 Pi–Pi Stacked 5.95556

UNL1—A:VAL281 Pi–Alkyl 5.42465

UNL1—A:ALA293 Pi–Alkyl 3.82388

UNL1—A:LEU273 Pi–Alkyl 5.40809

UNL1—A:ALA293 Pi–Alkyl 4.88406

UNL1—A:LEU393 Pi–Alkyl 4.89681

UNL1—A:LYS295 Pi–Alkyl 4.75793

9 TNF

UNL1:H—A:LYS128:O Conventional Hydrogen Bond 2.61045

A:GLU127:OE1—UNL1 Pi–Anion 4.79338

A:TYR87—UNL1 Pi–Pi Stacked 4.12668

A:TYR87—UNL1 Pi–Pi Stacked 3.71965

10 TP53

A:ARG10:HH2—UNL1:O Conventional Hydrogen Bond 2.76819

UNL1:C—A:ASN17:O Carbon Hydrogen Bond 3.39087

UNL1—A:LYS20 Pi–Alkyl 5.48083

3.5. MD Simulation Analysis

To understand the protein–ligand stability as well as the protein structural flexibility
between the docked complex of daidzein–MMP9, further MD simulation using GROMACS
software was performed at 100 ns. Proteins and protein–ligand complexes can be exam-
ined using RMSD analysis to determine structural deviations. During the simulation, the
structural deviations of MMP9 and the MMP9–daidzein complexes were investigated in
the solvent environment to determine their stability and movement. As a result of the sim-
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ulation, the RMSD values of the backbone of MMP-9 and the docked complex by daidzein
showed a stable pattern (Figure 13A). MMP9 and the MMP9–daidzein complex showed
an average RMSD of 0.17 nm and 0.18 nm, respectively, leading to a maximum RMSD of
0.21 nm at certain points. As a result of the initial adjustments, random fluctuations in the
RMSD pattern were seen in both MMP9 systems after 10 ns. Throughout the simulation,
there were no significant shifts in the RMSD pattern, suggesting that MMP9 was stable de-
spite a strong ligand-binding strength. The RMSF of a protein is a measure of the flexibility
of every residue within it. There was an average fluctuation of 0.10 nm in MMP9–daidzein
complex during the simulation. Following daidzein binding, the fluctuations appeared
stable and minimized. Based on the graph, it appears that MMP9 and daidzein interact with
remarkable constancy (Figure 13B). The protein structures depend on H-bonds for stability
and integrity. As a means of assessing the integrity and stability of docked protein–ligand
complexes, the MMP9–daidzein complex’s intermolecular hydrogen bonds promote both
protein and ligand stability. The MMP9–daidzein-docked complex was maintained by
three H-bonds. A simulation was therefore carried out in order to examine their time evolu-
tion during the simulation process (Figure 13C). According to the plot, MMP9 and daidzein
formed an average of three H-bonds, which were quite stable during simulation. Daidzein
formed five H-bonds at different locations, but the number remained the same (three).
Molecular stability can also be calculated from the compactness of protein molecules. The
compactness measure in MD simulations is called Rg. The compactness of a protein struc-
ture is a useful parameter that can be used to examine the tertiary structure. Rg values were
used to assess the compactness of MMP9 after daidzein binding. According to Figure 13,
the MMP9–daidzein complex had an average Rg value of 1.50 nm (Figure 13D). In the Rg
plot, the protein–ligand complex remained compact during the simulation. Basically, SASA
refers to how much surface area is accessible to a neighboring solvent from the surface of a
protein molecule. During simulations, SASA analysis is widely used to examine protein
folding or unfolding and structural stability. Based on the simulation, there were no major
peaks in SASA values, indicating that daidzein binding affected MMP9 folding behaviour.
For the MMP9–daidzein complex, the average SASA value was 87.88 nm2. The SASA
values showed that MMP9 remained stable in the presence of daidzein (Figure 13E).

3.6. PASS Analysis of Daidzein

In order to identify safe and effective lead molecules for drug discovery and develop-
ment, it is essential to assess the biological properties of the compound under investigation.
To explore the biological properties of daidzein, a PASS analysis was performed. The
results showed that daidzein was found to be an aldehyde oxidase inhibitor, histidine
kinase inhibitor, HIF1A expression inhibitor, membrane integrity agonist, MMP9 expres-
sion inhibitor, antimutagenic, membrane permeability inhibitor, AR expression inhibitor,
TP53 expression enhancer, RELA expression inhibitor, apoptosis agonist, JAK2 expression
inhibitor, and HMOX1 expression enhancer, with significant Pa values ranges from 0.712 to
0.967 (Table 7).

Table 7. The PASS webserver predicts the biological and structural properties of daidzein.

Sr. No. Pa Pi Activity

1 0.967 0.002 Aldehyde oxidase inhibitor

2 0.960 0.001 Histidine kinase inhibitor

3 0.915 0.005 HIF1A expression inhibitor

4 0.887 0.014 Membrane integrity agonist

5 0.864 0.002 MMP9 expression inhibitor

6 0.850 0.005 Membrane permeability inhibitor
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Table 7. Cont.

Sr. No. Pa Pi Activity

7 0.836 0.003 Antimutagenic

8 0.831 0.002 AR expression inhibitor

9 0.771 0.014 TP53 expression enhancer

10 0.756 0.001 RELA expression inhibitor

11 0.755 0.010 Apoptosis agonist

12 0.740 0.013 JAK2 expression inhibitor

13 0.712 0.007 HMOX1 expression enhancer
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3.7. Anticancer Activity of Daidzein

The anticancer activity of standard daidzein was checked via MTT assay against A549
lung cancer cells. Based on the obtained results, lung cancer cell viability was inhibited in a
time- and dose-dependent manner in response to the treatment at various concentrations
of daidzein. It was found that daidzein had an IC50 value of 83.06 µg/mL against A549
lung cancer cells (Figure 14).
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Each value represents the mean of three independent experiments conducted in triplicate.

3.8. Anti-Metastasis Activity of Daidzein

As a result of the progression of cancer in several epithelial cells, cell migration
is usually considered the most significant metastatic event taking place during cancer
progression. Consequently, wound healing and a transwell invasion assay were performed
to investigate if daidzein inhibited A549 cancer cell migration. The outcomes of the
experiments shown in Figure 15 show that untreated cancer cells from A549 slowly moved
from the wound site to the clear area after 19 and 44 h of wounding. Different concentrations
of daidzein inhibited the migration of the A549 cancer cells. The A549 cancer cells were
inhibited in a dose-dependent manner by daidzein treatment in the transwell invasion
assay, as illustrated in Figure 16.
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Figure 15. The effect of diadzein on the migration of A549 cells. (A–C) At 0, 19, and 44 h, a scratch
was made in a monolayer of untreated A549 cells, (D–F) after treatment of a 50 µg/mL concentration
of diadzein at 0, 19, and 44 h, (G–I) after treatment with a 80 µg/mL concentration of diadzein at 0,
19, and 44 h, (J–L) after treatment with a 100 µg/mL concentration of diadzein at 0, 19, and 44 h.
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4. Discussion

The field of network pharmacology has emerged as an area that combines various
aspects of systems biology, bioinformatics, and network science to analyze molecular
interactions between drugs and the targets of their treatment. There is a growing interest
in revealing the systematic pharmacological mechanisms of drugs, which can help guide
research and development as well as the clinical diagnosis and treatment of new drugs
and drugs in the pipeline [43]. This approach has been successful in elucidating many
complex and complicated therapeutic mechanisms of herbal and functional foods [44–46].
Various types of fermented soy products have been investigated for their possible anticancer
properties due to their unique composition and fermentation process. Isoflavones are a
class of phytoestrogens that are considered to be one of the primary bioactive compounds
in these products. These compounds have been examined in several studies in order to
determine their impact on different types of cancerous cells [18,19]. Despite this, there are
only a few scientific studies that provide evidence supporting the therapeutic mechanism
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of isoflavones found in soy-fermented food products against lung cancer. Therefore, in this
study, we investigated the potential active components and their possible mechanisms of
isoflavones found in fermented soy products in terms of treating lung cancer using network
pharmacology. The results of the analysis were validated by conducting functional assays
in vitro and looking at the potential anticancer effect as well as anti-metastasis effect.

A protein–protein interaction (PPI) network is a powerful tool in various fields of
biological and biomedical research. PPI networks are graphical representations that depict
interactions between proteins within a cell or organism. These networks are valuable for un-
derstanding the complexity of cellular processes, signaling pathways, disease mechanisms,
and drug discovery [47]. When a protein becomes abnormal, it can lead to various biologi-
cal consequences and may contribute to the growth of diseases including cancer [48]. In this
study, TP53, ALB, TNF, MMP9, CASP3, SRC, HSP90AA1, ANXA5, HRAS, and PTGS2 were
identified as the top ten targets in the PPI network constructed. TP53 is also known as p53,
and cells are protected from becoming cancerous by this tumor suppressor gene. Mutations
of this gene are prevalent in various cancers, including lung cancer. TP53 is located on
chromosome 17 and encodes the p53 protein, responsible for regulating multiple target
genes, especially those involved in cell cycle control, DNA repair, apoptosis (programmed
cell death), and senescence (cellular aging) [49]. ALB (serum albumin) is an important
indicator for monitoring the nutritional status of cancer patients. Lower levels of Alb are
associated with a worse prognosis for patients with malignant tumors [50]. The tumor
necrosis factor (TNF) is a multifunctional cytokine that plays a variety of roles in cancer,
including lung cancer. TNF helps in regulating inflammation, immunity, cell survival, and
apoptosis [51]. In many biological processes, matrix metalloproteinase-9 (MMP-9) plays a
vital role. Numerous studies have linked it to cancer pathology, including, but not limited
to, invasion, angiogenesis, and metastasis [52]. Early in tumorigenesis, it contributes to the
creation of the metastatic niche and promotes the colonization of the lungs by circulating
tumor cells [53]. Lung cancer malignancy is positively correlated with its expression [54].
Caspase-3 (CASP3) is crucial in tumorigenesis and cancer progression as a key enzyme
in the apoptotic pathway. Researchers often use CASP3 activation as a substitute marker
for assessing cancer treatments’ effectiveness [55,56]. Cell survival and tumorigenesis in
non-small cell lung cancer (NSCLC) are maintained by SRC protein interactions with cell
surface growth factor receptors and intracellular pathways [57]. Many oncologic functions
are mediated by SRC-family kinases in cancers, including migration, proliferation, survival,
motility, and angiogenesis [58]. HSP90AA1 is a gene that encodes the protein HSP90.
Multi-client proteins of this chaperone protein play a key role in cancer development.
A study found a correlation between poorer overall survival and higher expression of
HSP90AA1 in cancer tissues. The expression and transcription of HSP90AA1 as well as the
activity of the AKT1/ERK pathways were found to be higher in the tissues of lung cancer
patients [59]. According to another study, CDK1 and HSP90AA1 were also found to be
common in their analysis, suggesting that CDK1 and HSP90AA1 play an important role in
the regulation of non-small cell lung cancer [60]. Annexin A5 is encoded by the ANXA5
gene. As phospholipid-binding, calcium-regulated protein, it regulates cell cycle, exocyto-
sis, and apoptosis. By regulating the expression of Bcl-2 and Bax when ANXA5 expression
was increased, cell proliferation was inhibited, whereas cell metastasis was suppressed by
regulating E-cadherin and MMP-9 expression [61]. In the RAS family of proto-oncogenes,
HRAS is a gene that encodes for the protein HRAS. The genes encode proteins that regulate
the growth, differentiation, and survival of many types of cells [62]. There is a gene called
PTGS2 that encodes a protein called Prostaglandin-endoperoxide synthase 2 (PTGS2), also
referred to as cyclooxygenase-2 (COX-2). The PTGS2 gene plays a role in a number of
pathological processes, including non-small cell lung cancer chemoresistance [63].

The results of the KEGG enrichment analysis showed that the estrogen signaling
pathways, TNF signaling pathways, P53 signaling pathways, VEGF signaling pathways,
and IL-17 signaling pathways were significantly enhanced in this study. There is evidence
that the estrogen signaling pathway contributes to the development of lung cancer. By
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activating certain signaling pathways, estrogen can up-regulate the expression of certain
genes and promote lung cancer cell migration. Additionally, estrogen has the ability to
transactivate growth factor signaling pathways, specifically the epidermal growth factor
pathway [64]. There is evidence to suggest that the VEGF signaling pathway contributes to
the development of lung cancer. There is no doubt that VEGF plays an important role in
angiogenesis, a process that is essential for tumor growth and propagation. It is important
to recognize that VEGF plays a pivotal role in the establishment of a vascular supply within
a tumor, which plays a vital role in the progression of lung cancer. Consequently, a new
class of drugs has emerged, aimed at inhibiting its pathway, and its efficacy has been
demonstrated in improving patient prognoses [65]. As a major mediator of inflammation-
induced cancer, TNF plays an important role. A rapid rise in the level of TNF has been
found to be a universal adaptive response to the inhibition of EGFR in NSCLC, regardless
of whether the EGFR is expressed or not. The EGFR signaling inhibits the production of
TNF mRNA by inducing miR-21 expression, which in turn has the effect of decreasing the
stability of the TNF mRNA [66]. The p53 protein plays a crucial role in maintaining the
integrity of the genome, which is why it is referred to as the “guardian of the genome”.
Approximately half of all cancers are caused by mutations in the TP53 gene, including those
of the lung, breast, colon, prostate, liver, bladder, and skin. DNA damage stops the cell cycle
when the TP53 gene on human chromosome 17 is activated. An unrestricted cell cycle and
an uncontrolled reproduction of damaged DNA result from mutations in the p53 protein,
leading to cancer tumors. [67,68]. Inflammatory processes are facilitated by IL-17, a cytokine
that plays a crucial role in cancer development. By activating the IL-6-Stat3 signaling
pathway, IL-17 can accelerate tumor growth. When IL-17 levels rise, IL-6 production
increases, which activates the oncogenic signal transducer and activator of transcription
(STAT) 3, resulting in prosurvival and proangiogenic genes being expressed. As a result, IL-
6–Stat3 plays a role in promoting tumor growth through the Th17 response [69–71]. There
are several inhibitors which are reported to inhibit the TNF, p53, VEGF, and IL-17 signaling
pathways in cancer [72–74]. Overall, these findings indicate that isoflavones present in
soy-fermented foods might play a role in suppressing lung cancer via the mediation of
these signaling pathways based on our network pharmacology analysis results.

The molecular docking analysis performed in this network pharmacology approach
has provided valuable insights into the potential interactions between the isoflavones of
soy-fermented food products and the identified target proteins of lung cancer. Through
the docking simulations, we aimed to identify key interactions, binding affinities, and
potential binding modes of the ligands with their respective target proteins. The ADMET
and toxicity analysis conducted within the network pharmacology framework has offered
critical insights into the pharmacokinetic and safety profiles of the lead compounds [75].
The identification of ligands with favourable ADMET properties and manageable toxicities
represents a significant step towards the selection of potential therapeutic candidates [76].
Furthermore, simulations of molecular dynamics can reveal the dynamic interactions
between drugs and target molecules, providing a deeper understanding of their binding
mechanisms, their stability, and their interactions [77]. Therefore, the screening and binding
stability between the isoflavones in soy-fermented food products and the central targets
were analyzed in the present study. Therefore, the present study examined the screening
and binding stability between isoflavones in soy-fermented food products and the central
targets in order to determine their efficacy. The results showed that only daidzein showed
good ADMET properties and did not show any PAINS patterns with relatively good
binding activity with the target proteins. Further, the binding stability of the daidzein–
MMP9 complex was determined, as MMP9 is considered to be the most important target
proteins in the lung cancer metastasis. In order to obtain the highest affinity between the
ligand–protein complex of daidzein–MMP9, the molecular dynamics analysis revealed
that these complexes display a stable conformation in solvation in water at a temperature
of 300 K and at 1 atmosphere pressure. This is in line with what has been shown in the
docking analysis. During the MD simulation, hydrogen bonds were found to be formed
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in both protein–ligand complexes, which indicates that the interaction has a high level
of affinity.

Further experiments, including the anticancer and anti-metastasis analysis of daidzein
on lung cancer cells, should be conducted to confirm the network pharmacological results.
The biological effects of daidzein include antioxidation, anti-inflammation, chemopre-
vention, and anticancer properties [78]. There have been reports that this compound
exhibits anticancer properties against different types of cancer, including breast and ovarian
cancers [79,80]. In terms of its chemical composition, daidzein is similar to mammalian
estrogens, and it can serve two different purposes by substituting for or inhibiting the
estrogen and estrogen receptor (ER) complex [81]. Thus, Daidzein protects against many
diseases, particularly those related to estrogen regulation, including diabetes, breast cancer,
osteoporosis, and cardiovascular disease [81]. MTT assays are commonly used to evaluate
a drug’s cytotoxic potential [81]. Using an MTT assay, the obtained results indicated that
daidzein was capable of exhibiting anticancer effects on human lung cancer cells after
24 h of treatment. In a study conducted on SKVO3 cells, daidzein demonstrated potent
anticancer activity with an IC50 of 20 µM. Nevertheless, it exhibited relatively low activ-
ity against normal ovarian Moody cells, with an IC50 of 100 µM [82]. It is believed that
metastasis, which is the spread of cancer cells from the primary tumor to distant sites, is
one of the most difficult aspects of cancer treatment and the leading cause of death due
to cancer [83]. Understanding and targeting the mechanisms underlying metastasis is
crucial to developing effective anti-metastatic therapies [84]. This study therefore further
investigated the anti-metastasis potential of daidzein and discussed its implications for
cancer therapy. The results of our study demonstrated a promising anti-metastatic effect
of daidzein in lung cancer cells. Both in wound-healing assays and invasion assays, the
treatment of lung cancer cells with daidzein significantly reduced cancer cell migration
and invasion.

A key mechanism underlying the anti-metastatic potential of daidzein could be its
ability to inhibit the estrogen signaling pathway. It is believed that daidzein can provide a
dual-directional purpose by providing a substitute for or hindering of estrogen as well as
the estrogen receptor (ER) complex due to its similar chemical composition to mammalian
estrogens [82]. Consequently, daidzein appears to be able to provide protective effects
against a wide range of diseases, especially those that are connected to the control of
estrogen, such as breast cancer, lung cancer, osteoporosis, diabetes, and cardiovascular
disease [82]. Research has shown that estrogen signaling pathways may contribute to lung
cancer development. Estrogen may be involved in lung cancer progression or initiation
based on gender differences in lung cancer presentation [83]. A549 cells and lung cancer
tissues have been shown to be upregulated by estrogen through the IGF-1R signaling
pathway [84]. By activating the MEK/ERK signaling pathway, estrogen promotes lung
cancer cell migration in addition to upregulating OPN expression [64]. Furthermore, it has
been found that estrogen can promote the metastasis of non-small cell lung cancer (NSCLC)
through the estrogen receptor β (ERβ)-mediated invasiveness-associated upregulation of
matrix metalloprotease protein [85]. There are a number of mechanisms that contribute
to estrogen’s promotion of lung cancer, and ER and IGF-1R are promising targets for
combination therapy against lung cancer. MMP-9 is a protein that promotes metastasis and
angiogenesis through extracellular matrix decomposition. It has been found to be involved
in the estrogen signaling pathway. According to one study, estradiol induces MMP-9
expression in ERα-positive breast cancer cells via PELP1-mediated membrane-initiated
signaling [86]. In a recent study, glutamic acid-, proline-, and leucine-rich protein 1 (PELP1)
was found to be a novel ER coregulator, which has shown distinct characteristics from
other ERα coregulators, and has recently been shown to play a role in the metastasis of
several types of cancer [86]. According to the results of the study, estrogen-induced MMP-9
expression might be mediated through PI3K/Akt signaling pathways that are mediated by
PELP1 in ER-positive breast cancer cells [86]. Overall, it was concluded that daidzein may
have the potential to act as an active ingredient in soy-fermented food products in fighting
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cancer; however, it will be necessary to conduct further experiments to determine if it is the
most significant active component in these products.

Thus, network pharmacology has proven to be an effective method of identifying
the active ingredients in functional foods. It also identifies their molecular mechanisms
of action. As a result of our study, there has been the first sustained evidence produced
indicating that the use of fermented soy products, with the main component being daidzein,
has proven to be beneficial in the treatment of cancer, specifically lung cancer. In light of
our findings, further research into the mechanism of action of daidzein in treating lung
cancer will certainly pave the way for the future.

5. Conclusions

As a whole, the present comprehensive study utilized an integrated approach that
combines network pharmacology, molecular docking, molecular dynamics simulations,
and rigorous in vitro validation in order to determine how soy-fermented food products
affect lung cancer and the potential active components and intricate mechanistic pathways
involved. Through this multifaceted analysis, we have successfully identified key bioactive
compounds and unveiled the underlying interactions within cellular processes that con-
tribute to the observed therapeutic effects. Our findings underscore the promising role of
different soy-fermented food products as a valuable resource in the battle against lung can-
cer. The synergy of computational predictions and experimental validation has provided
a robust foundation for understanding the intricate molecular mechanisms driving the
anticancer potential of these products. This research not only contributes to the scientific
understanding of the beneficial effects of soy-fermented food products but also offers a
roadmap for future studies and potential therapeutic developments. As we continue to
advance our knowledge in the field of integrative cancer research, the insights gained from
this study pave the way for further exploration and optimization of isoflavones, potentially
leading to the development of novel treatments or complementary strategies for lung
cancer management. Our multidisciplinary approach exemplifies the power of combining
computational and experimental methodologies to unravel complex biological phenomena,
opening new avenues for innovative cancer therapeutics.
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