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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver diseases and
encompasses non-alcoholic steatosis, steatohepatitis, and fibrosis. Sanguisorba officinalis L. (SO) roots
have traditionally been used for their antioxidant properties and have beneficial effects on metabolic
disorders, including diabetes and obesity. However, its effects on hepatic steatosis and fibrosis remain
unclear. In this study, we explored the effects of a 95% ethanolic SO extract (SOEE) on NAFLD and
fibrosis in vivo and in vitro. The SOEE was orally administered to C57BL/6] mice fed a choline-
deficient, L-amino-acid-defined, high-fat diet for 10 weeks. The SOEE inhibited hepatic steatosis
by modulating hepatic malondialdehyde levels and the expression of oxidative stress-associated
genes, regulating fatty-acid-oxidation-related genes, and inhibiting the expression of genes that are
responsible for fibrosis. The SOEE suppressed the deposition of extracellular matrix hydroxyproline
and mRNA expression of fibrosis-associated genes. The SOEE decreased the expression of fibrosis-
related genes in vitro by inhibiting SMAD2/3 phosphorylation. Furthermore, the SOEE restored the
gut microbial diversity and modulated specific bacterial genera associated with NAFLD and fibrosis.
This study suggests that SOEE might be the potential candidate for inhibiting hepatic steatosis and
fibrosis by modulating oxidative stress, fatty acid oxidation, and gut microbiota composition.

Keywords: Sanguisorba officinalis L.; steatosis; fibrosis; gut microbiota; choline-deficient; L-amino
acid-defined; high-fat diet (CDAHFD)

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver diseases,
with an estimated worldwide prevalence of 32.4% [1]. Moreover, its prevalence has in-
creased over time, from 25.5% in 2005 to 37.8% in 2016 [2]. NAFLD is characterized by the
excessive accumulation of lipids in hepatocytes that was not due to alcohol consumption [3].
It is defined as fat deposition in the hepatocytes with a lipid content > 5% on biopsy [4].
NAFLD is a group of diseases that encompasses non-alcoholic fatty liver (NAFL) and
non-alcoholic steatohepatitis (NASH), which is classified as a progressive NAFLD that
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can progress to fibrosis and cirrhosis, and in some cases, hepatocellular carcinoma (HCC).
About 30-40% of NAFLD patients progress to NASH, and 30-45% of NASH patients
progress to liver fibrosis, increasing the morbidity of cirrhosis and HCC [5]. Despite the
increasing prevalence of NAFLD, no FDA-approved medications for NAFLD are available.

Various studies on NAFLD, including those investigating NAFLD progression, drug
efficacy, and associated molecular mechanisms, have been conducted using diet-induced an-
imal models [6]. A common diet-induced model used in NAFLD studies is the methionine-
and choline-deficient (MCD) diet [7-9]. An MCD diet induces NAFLD and fibrosis by
inhibiting hepatic fatty acid oxidation and increasing circulatory very low-density lipopro-
tein (VLDL) levels [10]. However, MCD diet models induce cirrhotic weight loss and
cachexia, which are not the hallmarks of NAFLD in humans [11]. A high-fat, high-fructose,
high-cholesterol (HFFC) diet results in steatosis, NASH, and fibrosis. However, an HFFC
diet requires at least six months of intake to induce hepatic steatosis and fibrosis [12]. A
choline-deficient, L-amino-acid-defined (CDAA) diet-induced model overcomes weight
loss challenges and effectively develops NAFLD and fibrosis [13]. In addition, a choline-
deficient, L-amino-acid-defined, high-fat diet (CDAHFD) leads to liver fibrosis progression
within a short period in a diet-induced NAFLD mouse model, which is potentially useful
for mimicking human NAFLD [6,9]. Previous studies used CDAHFD to induce NAFLD
and fibrosis and confirmed the efficacy of drugs and natural products [14,15].

Sanguisorba officinalis L. (SO) is a perennial plant found in Asia. The root of SO has
been established as a traditional medicinal plant in Korea to treat hemostasis, burns, and
inflammation [16,17]. Moreover, various studies reported the bioactivities of SO roots,
including anti-inflammatory, antioxidant, and anti-obesity activities [18-20]. Among the
compounds derived from the roots of SO are triterpenoids and phenolic acids, such as
gallic acid, catechin, ziyuglycoside I (ZG1), and ziyuglycoside II (ZG2) [21,22]. Specifically,
ZG1 and ZG2, which exhibit anti-inflammatory and anticancer effects, were exclusively
found in the roots of SO [22-24]. Despite the physiological activity of the SO root and
its derived compounds, their effects on hepatic steatosis and fibrosis have not yet been
investigated. In this study, the bioactive effects of SO root 95% ethanol extract (SOEE) were
investigated to determine its potential therapeutic effects against hepatic steatosis and
fibrosis in CDAHFD-fed mice.

2. Materials and Methods

An extended methods section is available in the Supplementary Materials.

2.1. Plant Materials and Extraction

Dried roots of SO were collected from China in November 2020 and purchased from
a commercial market (Samhong, Gyunggi-do, Republic of Korea) in South Korea. Plant
identification was confirmed by Professor Dae Sik Jang of Kyung Hee University (Seoul,
Republic of Korea). The SO roots were dried and crushed into a powder. Powdered SO
roots (50 g) were extracted with 500 mL of 95% ethanol for 72 h at room temperature on
an orbital shaker and filtered through filter paper (GE Healthcare, Chicago, IL, USA). A
rotary evaporator was used to evaporate the solvent in the SOEE under reduced pressure
(Buchi, Flawil, Switzerland) to eliminate the solvent. The chromatogram of SOEE and
standard compounds (ZG1, ZG2, and gallic acid) (Figure S1), chemical analysis information
(Tables S1-53), and quantification of each compound (ZG1, ZG2, and gallic acid) (Table S4)
are shown in the Supplementary Materials.

2.2. Cell Culture

The LX-2 cell line was obtained from the American Type Culture Collection (Manassas,
VA, USA). The cells were cultured using Dulbecco’s Modified Essential Medium (Welgene,
Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea) supplemented with heat-inactivated
fetal bovine serum (10%) (Gibco, Grand Island, NY, USA) and penicillin-streptomycin (1%)
(Hyclone, Logan, UT, USA) and incubated at 37 °C in 5% CO;.
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2.3. Animal Experiment

Four-week-old C57BL/6] male mice were purchased from Daehan Biolink Inc. (Eum-
seong, Chungcheongbuk-do, Republic of Korea) and acclimated for 2 weeks. The mice were
maintained in a controlled environment facility (23 & 0.5 °C, 60% humidity) with a 12/12 h
light/dark cycle. After adaptation, the mice were divided into five feeding groups: control
diet group (control, n = 10), CDAHFD (A06071302, Research Diets Inc., New Brunswick,
NJ, USA) group (CDAHFD group, n = 10), CDAHFD treated with 15 mg/kg/day obeti-
cholic acid (Medchemexpress, Princeton, NJ, USA) (15 mg/kg/day) (OCA group, n = 10),
CDAHED treated with the SOEE (25 mg/kg/day) (SO25 group, n = 10), and CDAHFD
treated with the SOEE (100 mg/kg/day) (SO100 group, n = 10). The SOEE dosage was
determined by referring to previous reports on metabolic diseases [20]. Doses of 25 and
100 mg/kg/day of SOEE in mice are equivalent to 121.6 and 486.5 mg, respectively, of
SOEE in humans (60 kg) [25]. The OCA and SOEE were dissolved in 0.5% carboxymethyl
cellulose solution. Each treatment was administered daily via oral gavage for 10 weeks.
One day before the mice were sacrificed, feces were collected from each mouse. After
10 weeks, the mice were sacrificed and plasma and liver tissues were collected and stored
at —80 °C for biological analysis. An overview of the experimental design is shown in
Figure S2.

2.4. Biochemical Analysis

The plasma levels of alanine aminotransferase (ALT) (Cat. E-BC-K235-S), aspartate
aminotransferase (AST) (Cat. E-BC-K236-M), TG (Cat. E-BC-K238), and total cholesterol
(TC) (Cat. E-BC-K109-M) were quantified using kits from Elabscience (Houston, TX, USA).
TG, TC, malondialdehyde (MDA) (Cat. E-BC-K025-M), and hydroxyproline (Cat. E-BC-
K062-S) levels in the liver tissues were measured using kits from Elabscience (USA). All
experiments were performed according to the manufacturer’s instructions.

2.5. Histological Examination

The right lobe of the liver from each mouse was collected, fixed, and stained for histo-
logical examination. A detailed description of the methods is given in the Supplementary
Materials.

To evaluate the NAFLD activity score (NAS), the scores of various histological fea-
tures, such as steatosis, ballooning, and inflammation, were computed using a pre-trained
convolutional neural network (CNN) [26]. Briefly, high-magnification image tiles in two
dimensions (299 x 299 px?) were prepared using a Zeiss AxioCam MRc5 (Carl Zeiss, Jena,
Germany) microscope with 125X magnification and 0.44 um/px of pixel resolution under
bright field illumination [26]. Image tiles were quantified and described using an auto-
mated “Kleiner score” [27] of steatosis (0-3), ballooning (0-2), and inflammation (0-3) and
then summed up to give the NAS [26]. NAS was evaluated based on H&E-stained liver
sections using a CNN.

2.6. Quantitative Reverse Transcription—Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from liver tissue and LX-2 cells and complementary DNA
(cDNA) was synthesized. qRT-PCR was performed using gene-specific primers (Table 1).
Detailed information is described in the Supplementary Materials.

2.7. Western Blotting

To determine the protein expression levels, cell lysates were harvested and centrifuged
to obtain proteins. The primary antibodies used were anti-rabbit SMAD2 /3, phosphor-
SMAD?2/3, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Goat anti-rabbit
IgG antibody (horseradish peroxidase (HRP)-conjugated) was used as the secondary anti-
body. Detailed information and methods are described in the Supplementary Materials.
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Table 1. Primer sequence for qRT-PCR.

Genes Direction Primer (5’ —3’) Species
Collal Forward AGC ACG TCT GGT TTG GAG AG Mouse
Collal Reverse GAC ATT AGG CGC AGG AAG GT Mouse
Col3al Forward GTG GAC ATT GGC CCT GTIT TG Mouse
Col3al Reverse AGT TGG TCA CTT GCA CTG GT Mouse
Tgfvl Forward GTG GCT GAA CCA AGG AGA CG Mouse
Tgfvl Reverse GTT TGG GGC TGA TCC CGT TG Mouse
Timp1 Forward TTA TTC TCC ACT GTG CAG CCC Mouse
Timp1 Reverse ACA AGA GGA TGC CAG ATG CC Mouse
Acta2 Forward TCC AGC CAT CTT TCA TTG GGA Mouse
Acta2 Reverse CCC CTG ACA GGA CGTTGTTA Mouse
Ppara Forward GAA CTG ACG TTT GTG GCT GG Mouse
Ppara Reverse GCT CTC TGT GTC CAC CAT GT Mouse
Cptla Forward ACT CCG CTC GCT CAT TCC Mouse
Cptla Reverse GAC TGT GAA CTG GAA GGC CA Mouse
Lpl Forward GTG GAC ATC GGA GAA CTGCT Mouse
Lpl Reverse CCT CTC GAT GAC GAA GCT GG Mouse
Sod1 Forward GGG AAG CAT GGC GAT GAA AG Mouse
Sod1 Reverse GCCTTC TGC TCG AAG TGG AT Mouse
Cat Forward CAA GAT TGC CTT CTC CGG GT Mouse
Cat Reverse ATG GTG TAG GAT TGC GGA GC Mouse
Gpx1 Forward AGT CCA CCG TGT ATG CCT TC Mouse
Gpx1 Reverse CCT CAG AGA GACGCG ACATT Mouse
B-actin Forward CAT TGC TGA CAG GAT GCA GAA GG Mouse
B-actin Reverse TGC TGG AAG GTG GAC AGT GAG G Mouse
ACTA2 Forward GCC AAG CACTGT CAG GAA Human
ACTA2 Reverse ATT GTC ACA CACCAAGGCA Human
COL1A1 Forward ATG GAGCTCCTGGTC AGAT Human
COL1A1 Reverse GTA GCA CCATCATIT CCA CG Human
COL3A1 Forward GCT CTG CTT CAT CCC ACT AT Human
COL3A1 Reverse CGC ATA GGA CTG ACC AAG AT Human
TIMP1 Forward CTC TGA AAA GGG CTT CCA GTC Human
TIMP1 Reverse AGG ATT CAG GCT ATC TGG GAC Human
GAPDH Forward CAG CCG CAT CTTCTT TTG CG Human
GAPDH Reverse TCC GTT GAC TCC GACCTT CA Human

2.8. 16S rRNA Gene Sequencing of the Bacterial Community in Feces

One day before sacrifice, fecal samples were collected, homogenized via mechanical
lysis using bead beating, and DNA was extracted. To amplify the V3-V4 hypervariable
region of the 165 rRNA gene, PCR was performed using the universal primer set 341F
and barcoded 806R. Samples were sequenced on a MiSeq platform and raw sequencing
data were analyzed using the QIIME2-DADAZ2 pipeline [28,29]. Detailed information and
methods are described in the Supplementary Materials.
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2.9. Statistical Analysis

All results are presented as the mean =+ standard error (SEM). Statistical differences
between groups were evaluated using one-way analysis of variance (ANOVA) and Tukey’s
post hoc multiple comparison test using R software (v.4.1.2.). A p-value < 0.05 was consid-
ered statistically significant. Spearman’s correlation was used to correlate the phenotypes
and abundances of the microbial taxa. The p-values were adjusted using the Benjamini—
Hochberg (BH) false discovery rate (FDR) procedure [30], and the correlation coefficients
and adjusted p-value were visualized using the “heatmap” package [31].

3. Results
3.1. Effects of SOEE on Plasma Lipid Profiling and Liver Injury Markers in CDAHFD-Fed Mice

To explore the effects of the SOEE on NAFLD and fibrosis in vivo, male mice were fed
a CDAHFD for 10 weeks to develop NAFLD and fibrosis and then orally administered 25
or 100 mg/kg/day of SOEE. OCA (15 mg/kg/day, farnesoid X Receptor agonist) was used
as the positive control. First, the circulating levels of ALT and AST, which are liver injury
markers, were examined to determine the effects of the SOEE on the liver. The levels of ALT
and AST were significantly elevated in the CDAHFD group; however, the SOEE treatment
did not significantly reduce these levels (Table 2). In contrast, the OCA administration
increased the levels of these liver injury markers.

Table 2. Effects of SOEE on plasma lipid profiling and liver injury markers in CDAHFD-fed mice.

Group Body Weight Liver Weight ALT AST Plasma TG Plasma TC
(g (g) (IU/L) (IU/L) (mM/L) (mM/L)
Control ***30.87 + 3.38 **%1.15+0.18 % 1.12 £ 0.56 **% 549 4 2.09 0.36 £ 0.11 *0.99 £0.14
CDAHFD 24.16 +2.34 1.67 £0.26 17.85 £ 2.58 13.13 £ 2.50 0.40 +£0.10 0.83 £0.17
OCA 23.32 £1.99 **2.04 £0.20 #244541028  *25.69 4 15.03 ***0.23 £ 0.07 #0.67 +£0.17
5025 2419 +1.81 1.68 £ 0.29 15.84 = 4.41 #10.36 & 3.48 *0.30 £ 0.06 0.77 £0.15
S0O100 2450 £1.15 1.67 £0.19 18.24 +3.52 11.31 +£3.11 *0.27 £0.07 0.72 £0.11

Data are expressed as mean + SEM. One-way ANOVA and Tukey’s post hoc multiple comparison tests were
performed for statistical analysis. p-value compared with the CDAHFD group. “***” p < 0.001, “**” p < 0.01,
“*" 1 < 0.05,and “#” p < 0.10.

The TG levels in the plasma increased in the CDAHFD group, whereas it was signifi-
cantly decreased by the OCA and SOEE administration (p < 0.05) (Table 2). However, the TC
levels were lower in the CDAHFD group than in the control group, and the administration
of OCA and SOEE did not result in significant alterations.

3.2. Effect of SOEE on NAFLD-Related Traits in CDAHFD-Fed Mice

To determine fat depositions in the liver, which indicates NAFLD severity, we mea-
sured the hepatic TG and TC levels. The CDAHEFD significantly increased the TG and TC
content in the liver. The administration of OCA significantly decreased the hepatic TG and
TC levels; however, the SOEE treatment did not significantly reduce the hepatic TG and TC
contents (Figure 1A,B).

Histological analysis of the liver was performed to evaluate whether the SOEE in-
hibited hepatic lipid accumulation in the CDAHFD-fed mouse model. H&E-stained liver
sections from each group were subjected to morphological analysis (Figure 1C). To compare
the level of lipid accumulation in histological analysis with that in colorimetric analysis,
the lipid droplet size was quantified. In the H&E-stained liver tissues, lipid accumulation
was significantly higher in the CDAHFD group than in the control group (Figure 1C). The
surfaces of the lipid droplets were quantified using Image]J software (v.1.53k, NIH, USA)
and showed a significant increase in lipid accumulation in the CDAHFD group compared
with that in the control group (Figure 1D). In addition, treatment with the SOEE reduced
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the surface area of hepatic lipid droplets; however, the diminution of lipid accumulation
was not observed significantly in the SO100 group.
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Figure 1. Effects of SOEE on NAFLD-related traits in CDAHFD-fed mice. (A) TG contents in
liver tissue. (B) TC contents in liver tissue. (C) Representative image of H&E-stained liver section.
Magnification is 200x. (D) Quantified surface area of lipid droplets in each group using Image]J
software. (E) Evaluated NAFLD activity score in H&E-stained liver sections using deep-learning-
based CNN. Data are expressed as mean + SEM (1 = 10). One-way ANOVA and Tukey’s post
hoc multiple comparison test were performed for statistical analysis. p-value compared with the
CDAHFD group. “***” p < 0.001, “**” p < 0.01, “*” p < 0.05, and “ns” non-significant.

The NAFLD activity score (NAS) was determined using a CNN model. Increased NAS
levels were observed in the CDAHFD-fed mice; however, the OCA and SOEE treatments
significantly reduced the NAS levels (Figure 1E). The reduction in hepatic steatosis induced
by the SOEE was confirmed via various histopathological analyses.

3.3. Effects of SOEE on Oxidative-Stress- and Fatty-Acid-Oxidation-Related Markers in the Liver
of CDAHFD-Fed Mice

In addition to lipogenesis, multiple parallel hits involving oxidative stress and fatty
acid oxidation are involved in NAFL progression [32-35]. The hepatic levels of MDA, a lipid
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peroxidation marker, were higher in the CDAHFD group than in the control group. The
SOEE treatment significantly reduced MDA levels (p < 0.05) (Figure 2A). Furthermore, the
expression of antioxidant enzymes, such as catalase (Cat), superoxide dismutase 1 (Sod1),
and glutathione peroxidase I (Gpx1), which inhibit hepatic MDA production [36], was
decreased in the CDAHFD group. In contrast, the SOEE treatment significantly increased
the mRNA expression of antioxidant enzymes (Figure 2B-D). These results suggest that the
SOEE alleviated the progression of hepatic steatosis by inhibiting oxidative stress.
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Figure 2. Effects of SOEE on oxidative-stress- and fatty-acid-oxidation-related markers in CDAHFD-
fed mice. (A) Level of hepatic malondialdehyde (MDA), which is a biomarker of lipid peroxidation,
measured using a colorimetric assay. (B,D) mRNA expression of oxidative-stress-related genes,
namely, (B) catalase (Cat), (C) glutathione peroxidase I (Gpx1), and (D) superoxide dismutase 1 (Sod1),
were quantified using qRT-PCR. mRNA expression levels of fatty-acid-oxidation-related genes were
quantified using gqRT-PCR. (E) Peroxisome proliferator-activated receptor alpha (Ppara), (F) carnitine
palmitoyltransferase 1A (Cptla), and (G) lipoprotein lipase (Lpl) mRNA levels. Data are expressed
as mean + SEM (n = 10). One-way ANOVA and Tukey’s post hoc multiple comparison test were
performed for statistical analysis. p-value compared with the CDAHFD group. “***” p < 0.001,
w7 p <0.01, “*” p < 0.05, and “ns” non-significant.

PPAR« target genes are involved in fatty acid oxidation in highly oxidative tissues,
such as the liver, heart, and muscle [37]. Activation of PPAR« induces the transcription
of various fatty-acid-oxidation-related genes in the mitochondria, peroxisomes, and cy-
tochromes, thereby reducing liver lipid levels [38,39]. Ppara expression was significantly
lower in the CDAHFD group than in the control group (p < 0.05) and was recovered in the
SOEE-treated group (p < 0.001) (Figure 2E). Moreover, mRNA expression of Cptla, one of
the fatty-acid-oxidation-related genes in NASH [40], was increased in the SOEE-treated
group (Figure 2F). Lipoprotein lipase (Lpl) plays a role in the decomposition of VLDL,
which discharges TG outside the liver [41]. In this study, the OCA and SOEE treatments
reduced the expression of Lpl, which was increased by the CDAHFD (p < 0.05) (Figure 2G),
indicating that SOEE administration may attenuate the progression of hepatic steatosis.
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3.4. Effects of SOEE on Hepatic Fibrosis in CDAHFD-Fed Mice

NAFLD encompasses a wide range of clinical phenotypes, including hepatic steatosis,
NASH, and fibrotic NASH [42]. Histological and biochemical analyses were performed to
determine the effect of the SOEE on the progression of NASH to fibrosis. Fixed liver sections
were stained with Sirius Red (Figure 3A) and analyzed to quantify the fibrotic area. The
Sirius-Red-stained area was significantly larger in the CDAHFD-fed mice. In contrast, the
Sirius-Red-stained areas were markedly decreased (~60%) in the SO100 group (Figure 3B).
In addition, the SOEE treatment inhibited liver fibrosis by reducing hydroxyproline levels,
which increased with the progression of liver fibrosis (Figure 3C) [43].
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Figure 3. Effects of SOEE on fibrosis-related markers in the liver of CDAHFD-fed mice. (A) Rep-
resentative image of Sirius-Red-stained liver section. Magnification was 200x. (B) Quantified
Sirius-Red-stained area in liver tissue section (n = 40 images per group). (C) Hydroxyproline level in
liver tissue (n = 10). (D-G) mRNA expression levels of fibrosis-related genes including (D) alpha-
smooth muscle actin (Acta2), (E) collagen type I alpha 1 (Collal), (F) collagen type III alpha 1 (Col3al),
and (G) transforming growth factor beta 1 (Tgfb1) were quantified using gqRT-PCR. Data are expressed
as mean + SEM (n = 10). One-way ANOVA and Tukey’s post hoc multiple comparison test were
performed for statistical analysis. p-value compared with the CDAHFD group. “***” p < 0.001,
7 p <0.01, “*” p < 0.05, and “ns” non-significant.
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The expression levels of various fibrosis-related genes were measured to estimate
the occurrence of liver fibrosis. Alpha-smooth muscle actin (Acta2) mRNA expression
was not significantly increased by the CDAHFD; however, the SO25 treatment reduced
(p < 0.05) Acta2 expression (Figure 3D). In addition, the expression of collagen type I
alpha 1 (Collal), collagen type Il alpha 1 (Col3al), and transforming growth factor beta 1
(Tgfb1) was significantly reduced (p < 0.01) in the OCA, SO25, and SO100 groups compared
with the CDAHFD group (Figure 3E-G). These results suggest that the SOEE treatment
attenuated fibrosis progression by effectively inhibiting the CDAHFD-induced expression
of fibrosis-related genes.

3.5. Effects of SOEE on Fibrosis-Related Gene Expression and Signaling Pathway in LX-2 Cells

Next, we investigated the mechanism by which SOEE inhibited liver fibrosis in TGF-
B1l-induced LX-2 hepatic stellate cells (HSCs). LX-2 cells were treated with 5 ng/mL of
TGF-B1 and the SOEE, and qRT-PCR was performed to confirm the inhibitory effect of
the SOEE on fibrosis. First, LX-2 cells were treated with various concentrations of the
SOEE (1, 5, or 10 pg/mL) in the presence of TGF-31 (5 ng/mL). The SOEE significantly
reduced the mRNA expression levels of fibrosis-related genes (ACTA2, COL1A1, COL3A1,
and TIMP1), which were increased by the TGF-31 treatment (p < 0.01) (Figure 4A-D).
These results suggest that the SOEE had a fibrosis-inhibitory effect on HSCs and alleviated
hepatic steatosis and fibrosis progression. TGF-{3 is a profibrogenic cytokine that primarily
activates the SMAD signaling pathway [44,45]. Therefore, we hypothesized that SOEE
inhibits the TGF-p signaling pathway during HSC activation and fibrosis. To determine the
inhibitory effect of the SOEE on the SMAD signaling pathway, the phosphorylated form of
SMAD was confirmed. Phosphorylation of SMAD2/3 was highly increased in the TGF-
1 treatment group, and the SOEE treatment significantly reduced the phosphorylation
(Figure 4E,F). These results suggest that the SOEE inhibited liver fibrosis by inhibiting the
phosphorylation of the key transcription factor SMAD2/3 in HSCs.

3.6. Effects of SOEE on the Diversity and Composition of the Gut Microbiota

Increasing evidence suggests that the gut microbiota-liver axis plays a significant role
in NAFLD/NASH, particularly in cases of fibrosis [46,47]. The 165 rRNA gene amplicon
sequencing analysis of mouse fecal samples allowed us to evaluate whether the ameliora-
tive effect of the SOEE was related to gut microbiota modulation. Analysis of the microbial
diversity and differential abundance of taxa demonstrated that the CDAHFD influenced
the composition and diversity of the gut microbiome. The alpha diversity index based on
the Shannon metric, Faith’s PD, and the observed amplicon sequence variant (ASV) show
that diversity increased in the CDAHFD group, whereas it was significantly reduced by
the SOEE or OCA treatment (Figure 5A—C). To determine the microbial genera showing dif-
ferential abundances between the CDAHFD and SOEE groups, we compared the microbial
compositions of the two groups. The ANOVA results reveal that several bacteria, including
Butyricicoccus, Acetivibrio ethanolgignens, and Lactobacillus, were differentially abundant
between the control and CDAHFD groups (Figure 5D-F); the abundance of these genera
was significantly altered by the SOEE treatment. Furthermore, the abundances of Butyricic-
occus and Acetivibrio ethanolgignens were lower in the SOEE group than in the CDAHFD
group and were positively correlated with NAFLD/fibrosis-related traits, whereas the
abundance of Lactobacillus was increased in the SOEE group and was negatively correlated
with NAFLD/fibrosis-related traits (Figure 5G).
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Figure 4. Effects of SOEE on mRNA expression levels of fibrosis-related genes and SMAD2/3
phosphorylation in LX-2 cells. To investigate the fibrosis inhibitory effect of SOEE, LX-2 cells were
treated with TGF-1 (TGFb1) at 5 ng/mL, and mRNA expression levels of (A) alpha-smooth muscle
actin (ACTA?2), (B) collagen type I alpha 1 (COL1A1), (C) TIMP metallopeptidase inhibitor 1 (TIMP1),
and (D) collagen type III alpha 1 (COL3A1) were observed using qRT-PCR. (E) Protein levels of
SMAD?2/3 and p-SMAD2/3 were determined using Western blotting. Cells were pre-treated with
SOEE for 24 h and then with TGF-f1 (5 ng/mL) and SOEE simultaneously for 30 min. (F) Protein
expression levels were quantified using Image] software. Data are expressed as mean 3= SEM. (1 = 4).
One-way ANOVA and Tukey’s post hoc multiple comparison test were performed for statistical
analysis. p-value compared with the TGF-1 group. “***” p < 0.001, “**” p < 0.01, “*” p < 0.05.
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Figure 5. Effect of SOEE on gut microbial diversity and composition in CDAHFD-fed mice. (A—C) Alpha
diversity indices: (A) Shannon diversity, (B) Faith’s PD, and (C) observed ASV. One-way ANOVA and
Tukey’s post hoc multiple comparison test were performed for statistical analysis. p-value compared with
the CDAHFD group. (D-F) Representative microbial genera, namely, (D) Butyricicoccus, (E) Acetivibrio
ethanoligignens group, and (F) Lactobacillus show significantly differential abundance between the SOEE
and CDAHFD groups. One-way ANOVA and Tukey’s post hoc multiple comparison test were performed
for statistical analysis. p-value compared with the CDAHFD group. (G) Heat map showing the correla-
tions between the abundance of microbial genera and NAFLD/ fibrosis-related markers. In taxonomic
classification, the class and phylum level to which each genus belongs are denoted with different colors.
p-values were adjusted using the Benjamini-Hochberg (BH) FDR procedure. p-value compared with the
CDAHEFD group. “**” p < 0.001, “*” p < 0.01, “*” p < 0.05, and “ns” non-significant.

4. Discussion

Previously reported candidates for the treatment of NAFLD, namely, OCA, elafibranor
(GFT505), and lanifibranor (IVA337), were shown to improve some features of NAFLD.
However, all candidates affected only a fraction of the “multiple hit” characteristic of
NAFLD [48-50]. Candidate drugs consist of only one or two complex compounds. In
contrast, natural products contain various active compounds that are effective in controlling
multiple hits, which are beneficial for complex diseases. Therefore, studying the therapeutic
effects of natural products and their mechanisms of action in NAFLD may be a useful
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strategy for the discovery of NAFLD therapeutics. SOEE was selected as a candidate
compound for NAFLD inhibition using a plant extract library. To the best of our knowledge,
this is the first report of SOEE as a potential candidate for NAFLD treatment, including the
inhibition of fibrosis.

Many animal models have been developed using various diets [9]. Diet-induced
NAFLD models, including MCD-, HFHF-, HFFC-, and CDAA-diet-induced models, were
reported in various studies. Each model has disadvantages, such as severe weight loss. To
effectively induce NAFLD and fibrosis and mimic human physiology, we used a CDAHFD-
induced NAFLD model in this study. The effects of SOEE on NAFLD were assessed in
a CDAHFD-fed mouse model and in vitro using HSCs. Several conclusions were drawn
from this study. SOEE inhibited NAFLD by modulating biomarkers related to oxidative
stress and fatty acid oxidation in CDAHFD-fed mice. In addition, SOEE suppressed
the expression of fibrosis-related biomarkers in CDAHFD-fed mice and inhibited HSC
activation by regulating SMAD signaling. Third, SOEE altered the gut microbial diversity
and modulated the abundance of bacterial genera correlated with hepatic steatosis and
fibrosis.

Previously, the pathogenesis of NAFLD was proposed as a “two-hit” process [51].
Recently the “multiple parallel hit” hypothesis by complex factors was reported. This
hypothesis suggests that various factors, such as steatosis, the microbiome, fatty acid ox-
idation, and endoplasmic reticulum stress, influence the pathogenesis of NASH [32-35].
Hepeatic lipid peroxidation is also associated with NAFLD [52]. MDA is a representative
marker of oxidative stress and is formed via the degeneration of polyunsaturated lipids [53].
In our study, hepatic lipid accumulation occurred in the CDAHFD group, and the quantifi-
cation of lipid droplets in H&E-stained liver section slides and calculation of NAS using
a CNN model confirmed the reduction in steatosis using the SOEE. This analysis was
particularly significant because we used a CNN to objectively assess NAS and confirm that
the SOEE administration reduced hepatic steatosis. Moreover, hepatic MDA levels were
significantly reduced in SOEE treatment groups. CAT, SOD, and GPX1 play crucial roles
as antioxidants against reactive oxygen species [36]. The effects of CAT were determined
in a Cat” mouse model [54]. The CDAHFD reduced the mRNA expression of Gpx1, Sod,
and Cat, whereas the SOEE treatment increased their expression compared with the control
levels. Furthermore, the SOEE increased the Ppara levels and suppressed Lpl expression in
the liver. Increased LPL production prevents TG release from the liver [55]. In addition,
PPAR« regulates fatty acid transport and mitochondrial -oxidation [56]. The influence
of PPAR« on inflammation and hepatic steatosis was demonstrated in a PPAR™/~ mouse
model [57]. As these biomarkers are associated with fatty acid oxidation and oxidative
stress, SOEE treatment may inhibit NAFLD progression by regulating fatty acid oxidation
and oxidative stress.

NAFLD is a chronic inflammatory condition in which HSCs are transformed into
myofibroblasts. The activation of HS5Cs is the most important factor in hepatic fibrosis [58].
Liver fibrosis progresses owing to HSC activation [59]. HSCs play important roles in liver
physiology and fibrogenesis [60]. HSC activation leads to the excessive precipitation of
the extracellular matrix (ECM) collagen [61]. ECM precipitation is consistent with the
increase in hydroxyproline levels [62]. Moreover, collagen is a structural ECM protein, and
its deposition results in increased mRNA levels of fibrosis-related genes, including Coll1al,
and Col3al [63]. Liver fibrosis was dramatically increased in the CDAHFD-fed groups, as
confirmed by fibrosis-related gene expression and histopathological analyses. The SOEE
treatment significantly reduced the area of fibrosis. The level of hydroxyproline, which is
an indicator of fibrosis severity, also decreased in the SO100 group. Furthermore, the SOEE
significantly reduced the mRNA levels of liver-fibrosis-related genes, which were increased
by the CDAHFD. Thus, the SOEE suppressed HSC activation and prevented ECM and
collagen deposition.

To investigate the mechanism by which SOEE inhibits fibrosis in HSCs, liver fibrosis-
related mechanisms and mRNA levels were examined in LX-2 cells. HSC activation is
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induced by various factors, including signaling pathway regulation, metabolic regulation,
epigenetic regulation, and extracellular stimuli. TGF-§ is typically the most potent factor
in liver fibrosis [44,45]. For investigating the activation of HSCs, LX-2 cells were treated
with TGF-B1. qRT-PCR revealed the anti-fibrotic effects of the SOEE. The SOEE markedly
decreased the fibrosis-related mRNA expression in TGF-1-treated LX-2 cells. In particular,
the mRNA expression of COL1A1 was dramatically suppressed by the SOEE. TGF-f3
receptor binding to TGF-f3 is known to induce the phosphorylation of SMAD2 /3 proteins.
During HSC activation, SMAD2/3 promotes the transcription of collagen types 1 and
3 [64,65]. The SOEE inhibited SMAD?2/3 phosphorylation in TGF-f31-induced LX-2 cells.
Natural products inhibit liver fibrosis by inhibiting SMAD2/3 [66,67]. In this study, SOEE
effectively inhibited the phosphorylation of SMAD?2/3 in HSCs to reduce liver fibrosis.

The SOEE increased the abundance of probiotics, such as Lactobacillus, which was
negatively correlated with hepatic-steatosis- and fibrosis-related markers. Lactobacillus is a
genus of lactic-acid-producing bacteria that has positive effects on gut microbiota and host
health. In a clinical trial, probiotic agents, including Lactobacillus acidophilus, Lactobacillus
rhamnosus, and Lactobacillus paracasei, significantly improved body weight and intrahepatic
fat in patients with NAFLD [68]. In mouse models, L. rhamnosus, Lactobacillus sakei, L. aci-
dophilus, Lactobacillus fermentum, and Lactobacillus plantarum significantly reduce hepatic
lipid accumulation, inflammation, and plasma lipid profiles in a high-fat-diet-induced
mouse model of NAFLD [69-72]. Lactobacillus casei supplementation reduces liver inflam-
mation, fibrosis, and oxidative stress in rats with MCD-induced NASH [73]. Lactobacillus
may modulate gut microbiota, reduce endotoxin levels, decrease inflammation, and im-
prove gut barrier function, which may contribute to its therapeutic effects against NAFLD,
NASH, and liver fibrosis. Therefore, SOEE combined with Lactobacillus spp., as a dietary
supplement, may be a promising therapeutic strategy for the treatment of hepatic steatosis
and fibrosis. In addition, CDAHFD mice showed an increase in the relative abundance of
harmful bacteria at the genus level, including Acetivibrio ethanolgignens, Roseburia, Rikenel-
laceae RCY gut group, and Butyricicoccus, compared with the control group, and all of these
bacteria were significantly reduced after the SOEE treatment. Furthermore, A. ethanolgig-
nens, Roseburia, and Butyricicoccus were positively correlated with hepatic-steatosis- and
fibrosis-related markers. A. ethanolgignens mediates liver inflammation and causes abnor-
mal lipid metabolism [74]. Roseburia, which is a member of the Lachnospiraceae family, is
abundant in patients with NAFLD [75]. The interaction between the gut microbiota and
host is complex and variable, and SOEE can increase the relative abundance of beneficial
bacteria and reduce the abundance of harmful bacteria, thereby inhibiting the development
of hepatic steatosis and fibrosis.

5. Conclusions

In conclusion, hepatic steatosis and fibrosis were observed in the CDAHFD-induced
NAFLD mouse model, and the SOEE improved oxidative stress and fatty-acid-oxidation-
related factors. The SOEE markedly decreased the expression of fibrosis-related markers
and inhibited the phosphorylation of SMAD2/3. Finally, we showed that the SOEE altered
gut microbial diversity and composition, which are associated with hepatic steatosis and
fibrosis. Thus, the SOEE, which inhibits hepatic steatosis and fibrosis by modulating
oxidative stress, fatty acid oxidation, and gut microbiota, may be a potential natural
therapeutic agent against NAFLD.

Supplementary Materials: The following supporting information can be downloaded from https:
/ /www.mdpi.com/article/10.3390/nu15173779/s1: Figure S1. HPLC chromatograms of (A) 95% ethanol
extract of Sanguisorba officinalis L. (SOEE) at 203 nm, (B) standard of ziyuglycoside I and II (203 nm),
(C) HPLC chromatograms of SOEE at 280 nm, and (D) standard gallic acid (280 nm); Figure S2. Experi-
mental design of CDAHFD-induced mouse model; Table S1. HPLC conditions for the analysis of SOEE
and standards of ziyuglycoside I and II; Table S2. HPLC conditions for the analysis of SOEE and gallic
acid standard; Table S3. Calibration data for ziyuglycoside I and II and gallic acid; Table S4. Ziyuglycoside
I, ziyuglycoside II, and gallic acid content in SOEE.
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