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CytoSolve® Operating Guide Protocol Summary 

 

 

S1.1. Introduction to CytoSolve® System 

CytoSolve is a well-established computational systems biology framework of technology and 

processes that provides the capability to derive molecular mechanisms of action; to create 

quantitative and predictive models of those mechanisms; and, to employ the resultant models to 

simulate complex biomolecular phenomena [1–5]. In neurovascular studies, the CytoSolve 

framework elicited and derived a multi-layered engineering molecular systems architecture 

integrating the anatomy of the neurovascular unit, molecular mechanisms, and disease to 

demonstrate the commonality of multiple neurovascular diseases as communication dysfunctions 

in common molecular signaling sub-systems and compounds [4].  

 

In oncology, CytoSolve’s capability has been employed for the in silico modeling of pancreatic 

cancer to identify and optimize a multi-combination therapeutic that was subsequently allowed for 

clinical trials by the United States Food and Drug Administration [6], has been used to identify the 

molecular systems architecture of interactome in acute myeloid leukemia (AML) 

microenvironment [7], and has been independently recognized by leading cancer researchers as a 



platform for developing multi-combination therapies [3]. In cardiovascular research, CytoSolve 

has been used to accurately model the release of nitric oxide (NO) production in endothelial cells 

subjected to shear stress [5].  

 

In the area of plant biology, CytoSolve enabled the quantitative molecular systems understanding 

of C1 metabolism - a critical system of molecular pathways inherent to all plants, fungi and 

bacteria - to understand the systemic effects oxidative stress and genetic modification on C1 

metabolism in soy [8–11]. Recently, CytoSolve was used to uncover the mechanistic understanding 

of glucaric acid effect on liver detoxification [12], identify the synergistic effect of apigenin and 

hesperidin on joint pain [13], discover and model the mechanisms of immunomodulatory effect of 

bioactive compound in green tea on organ transplant tolerance [14], and elucidate effect of 

bioactive compounds from fruit, berry, vegetable (FBV) juice power on low grade chronic 

inflammation [15].  

 

S1.2. CytoSolve® System Capabilities  

The method used in this study provides a scalable computational framework for modeling large-

scale biological systems by dynamic integration of an ensemble of multiple molecular pathway 

models [1]. This method enables the development of large-scale models of complex biological 

systems that span multiple temporal and spatial scales as well as across diverse domains. Rather 

than attempting to monolithically model systems of biochemical reactions, a distributed 

engineering systems approach – a relatively novel concept in systems biology– is employed that 

breaks a large scale biological system into an ensemble of smaller molecular pathway models that 



are computationally coupled. This approach makes the modeling of large-scale biological systems 

both tractable and scalable.  

S1.3. Key Elements of CytoSolve® System Protocol 

There are six (6) steps that comprise the protocol to use the CytoSolve® system. Fig. S1 illustrates 

those steps of the protocol.   

 

Figure S1: CytoSolve® Protocol Overview. The six steps involved in the CytoSolve® protocol.  

Steps 1 and 2 relate to performing systematic literature review to identify molecular pathways and 

the biochemical parameters required for computational modeling. Steps 3 to 5 relate to 

construction of individual models, integration of individual models, and executing simulations 

using the integrated modes. Step 6 provides the option to employ CytoSolve® optimization engine 

to discover the optimal combination of inputs (ingredients/compounds) for a specific range of 

values of outputs (biomarkers associated with particular biomolecular functions). 

 

The six (6) steps are listed below: 

1) Organize and curate data from the scientific literature (§S1.4) 

2) Extract molecular pathway diagrams from the curated literature (§S1.5) 

3) Convert each molecular pathway diagram to a mathematical model (§S1.6) 



4) Integrate individual mathematical models to derive an integrated model (§S1.7)   

5) Use the integrated model to execute computer simulations to analyze the effect of 

ingredients on interest, individually as well as in combination (§S1.8) 

6) Execute optimization engine on the integrated model to identify optimal ingredient 

combination (§S1.9) 

 
S1.4. CytoSolve® Protocol for Organization and Curation of Data from 
the Scientific Literature 

 

This protocol step is the first step of the overall CytoSolve® Protocol indicated in Fig.S1. In this 

step, the scientific literature is searched to identify journal papers that contain research on the area 

of interest i.e. oxidative stress, inflammation, apoptosis, joint pain, cardiovascular health, etc.  For 

a particular area of interest, and ingredients of interest, molecular pathways for the area of interest, 

and the effect of ingredients of interest on those molecular pathways are identified and organized. 

 

Four (4) specific steps are executed per the CytoSolve® Protocol to organize and curate the journal 

papers, as itemized below: 

1. Create a list of Medical Subject Headings (MeSH) keywords to optimize recall and 

precision of peer-reviewed articles. The keywords are typically a list of words in 

combination with Boolean operators i.e. “AND”, “OR”, etc.   

2. Search and retrieve the relevant peer-reviewed articles published during a specific 

time period from PubMed, Medline, and Google Scholar. These set of articles are 

stored as an “Initial Set” repository. The time period is a date range i.e. “January 

1989 to April 2022,” etc. 



3. Screen the titles and abstracts of articles in the Initial Set repository to identify most 

relevant articles based on our inclusion criteria. These set of articles are stored as 

the “Final Set” repository 

4. Perform full-length review of peer-reviewed articles from the Final Set repository  

 

Abstracts and unpublished literature were not sought as they have not been peer reviewed 

adequately to authenticate their results.  

 

Articles obtained from the systematic literature review are categorized into three categories: 1) 

Articles related to molecular pathways implicated in the area of interest; 2) articles related to 

interactions of ingredients of interest with molecular targets in area of interest pathways; and, 3) 

articles related to pharmacokinetic properties of the ingredients of interest. 

 

S1.5. CytoSolve® Protocol for Extraction of Data from the Scientific 
Literature 

 

Journal articles in Group 1 are reviewed to gather data relevant to molecular pathways involved in 

the area of interest. The steps to extract and represent molecular pathways diagrammatically are 

itemized below: 

1. Identify and extract: 

a. chemical species involved in the molecular pathways 

b. types of cells  

c. cellular components (e.g. cytosol, mitochondria, nucleus, etc.) where the 

chemical species are present in each cell type 



2. Identify and diagrammatically represent biochemical interactions  

3. Interconnect biochemical reactions to create molecular pathway diagram in each cell 

type  

 

Journal articles in Group 2 are reviewed to gather data relevant to pharmacokinetics of ingredients 

of interest. 

 

Journal articles in Group 3 are reviewed to extract following information: 

1. Reaction rate constants of biochemical reactions involved in molecular pathways   

2. Molecular targets of ingredients of interest in the molecular pathways of interest 

 

The kinetic parameters used in this study are derived using principles of Michaelis-Menten kinetics 

that are based on the steady-state approximation of the biochemical reactions [16,17]. This 

information is provided in Section S2. 

 

S1.6. CytoSolve® Protocol for Setup of Individual In Silico 
Mathematical Models  
 

The steps to convert molecular pathway diagrams to mathematical models are itemized below: 

1. Convert biochemical reactions involved in each of the molecular pathway into ordinary 

differential equations (mathematical expressions that describe the rate of change) 

2. Represent each molecular pathway as a system of ordinary differential equations 

3. Encode the system of differential equations in a computer software source code format 

known as Systems Biology Markup Language (SBML)[18] to construct a mathematical 

model for a particular molecular pathway  



4. Store each model as a separate SBML file   

 

S1.7. CytoSolve® Protocol for Integration of Individual In Silico 
Mathematical Models  
 

In order to create an integrative quantitative model of the area of interest, it is necessary to 

mathematically couple the solutions across the ensemble of individual molecular pathway models. 

Such mathematical coupling is performed using the CytoSolve [2,14,19] computational engine, 

which is described in detail in Ayyadurai and Dewey, 2011[1] and Ayyadurai et al., 2022. The 

computational architecture of CytoSolve enables the integration of plurality of molecular pathway 

models [1,19].  

 

The steps to integrate the ensemble of individual mathematical models are listed below: 

1. Upload individual SBML files, constructed in §S1.6 of Section S1, to CytoSolve engine 

2. Update the initial conditions for the molecular species in all the mathematical models in 

the graphical user interface 

3. Update simulation period was specified in the graphical user interface  

4. Review and confirm molecular species and reaction duplicates across all the individual 

models in the graphical user interface 

5. Commence integration of individual models  

For a computational system biology analysis wherein the simulation of biochemical reactions is 

being executed and the governing equations are well known, as is in this case, the error bounds are 

set prior to executing simulations [20,21]. Herein, the error bounds are set to 10-6 prior to the 

execution of simulations. This means that the solutions to the governing equations used in the 



simulation of specific biochemical reactions must be within these error bounds. Therefore, in silico 

– computational – results from such simulations will not have error bars, which customarily appear 

in results reported from in vitro and in vivo experimental studies [22].  

 

S1.8. CytoSolve® Protocol for Simulation of Integrated In Silico 
Mathematical Model  
 

The following steps are performed to execute the computer simulations: 

1. Input biochemical reactions for interaction between ingredients of interest and molecular 

pathways involved in area of interest 

2. Input the kinetic rate constants for each of the biochemical reaction 

3. Input the initial concentrations for each of the molecular species in the biochemical 

reactions  

4. Input the time period for the simulation of integrative models, and dose levels of 

ingredients of interest   

5. Execute the integrative model under control conditions  

6. Execute the integrative model in presence of ingredients of interest individually  

7. Execute the integrative model in presence of the combination of ingredients  

 

The steps for analyzing simulation output data are itemized below: 

1. Export the raw data to Microsoft Excel  

2. Extract the steady state levels of biomarkers 

3. Plot steady state levels of biomarkers as a function of simulation time in presence and 

absence of ingredients of interest, individually as well as in combination.  



 
S1.9. CytoSolve® Protocol to Execute Optimization Engine on the 
Integrated Model to Identify Optimal Ingredient Combination   
 

The following steps are performed to execute the optimization engine: 

1. Simulate the integrative model in presence of ingredients of interest  

2. Select “Optimize Results” on the CytoSolve® graphical user interface to initiate the 

optimization engine 

3. In the optimization engine, choose “Objective” for the ingredients of interest and the 

biomarkers affected by the ingredients of interest. The objective is set to “optimize” for the 

ingredients of interest; “maximize” for the biomarkers that are related to positive outcome; 

and, “minimize” for the biomarkers that are related to negative outcomes. 

4. Execute the optimization engine and record the results 

 

The steps for analyzing simulation output data are itemized below: 

1. Export the raw data to Microsoft Excel  

2. Extract the values of ingredients of interest that have either minimized or maximized the 

biomarker  

 

S1.10. CytoSolve® System Constraints  

Although the framework developed in this study provides a detailed mechanistic understanding of 

oxidative stress that match well with published clinical data, some of the model components’ 

parameters were derived from experiments using different cell types, as well as different 

experimental conditions such as variations in culture conditions that adds to the uncertainty of the 



model predictions [23]. Such issues of parameter estimation, however, are not unique to this study. 

They are common to a number of cellular mathematical models [23] and do warrant further 

experimental investigation and validation.  

 
  



Section S2 

 

Table S1: Bioactive components amounts in FBV juice powder dose used for simulation 

 

  

Table S2.1: Biochemical Reactions and Rate Equations Involved in ROS Production. 

Description Rate Equation 

[L∙] + [O2] →[LOO∙] kLPO * [L∙] * [O2] 

[LOO∙ ] + [LH] → [LOOH] + [L*] [LOO∙] *[LH]* *kLR1 

[LOOH] + [Fe3+] →[LOO∙] + [Fe2+] + [H+] [LOOH] * [Fe3+] * kLRFe2 

[LOOH] + [Fe2+] → [LO∙] + [Fe3+] + [OH-] [LOOH] * [Fe2+] * kLRFe1 

[H2O2] + [Catalase] →[H2O] + [O2] [H2O2] * [Catalase] * kcat 

[LH] + [LO∙] → [LOH] + [L*] [LH] * [LO∙] * kLR2 

[GPo] + [GSH] →[GSGP] + [GSSG] + 

[H20] 
[GPo] * [GSH] * kGSGP 

[GSH] + [GSGP] →[Gpr] + [GSSG] + 

[H20] 
[GSH] * [GSGP] * kGPr 

[H2O2] + [GPr] →[H2O] + [GPo] [H2O2] * [H+] * [H+] * [GPr] * kGPo 

[H+] + [O2
-∙]+ [SOD] →[ H2O2] [H+] * [O2

-∙] * [SOD] * kSOD 

[H2O] ↔[H+] + [OH-] [H2O] * kdH2O - [H+] * [OH-] * KH2O 

[LH] + [OH∙] →[L∙] + [H2O] [LH] * [OH∙] * kinitLR 

[H2O2] + [Fe2+] →[ Fe3+] + [OH∙] + [OH-] [H2O2] * [Fe2+] * kFe1 

[Fe2+] + [OH∙]  →[OH-] + [ Fe3+]   [Fe2+] *[OH∙]  * kFe6 

[Fe3+] + [H2O2]→[ Fe2+] + [HO2
∙] + [H+] kFe5 * [Fe3+] * [H2O2] 

[HO2
∙] + [Fe3+] →[O2] + [ Fe2+]  + [H+] [HO2

∙] * [Fe3+] * kFe3 

[O2
-*]+ [Fe3+] →[ Fe2+] + [O2] [O2

-*]* [Fe3+] * kFe3 

[H2O2] + [OH∙] → [H O2*] + [H2O] [H2O2] * [OH∙] * kFe4 

[HO2
∙] +[OH∙]  →[H2O] + [O2] [HO2

∙] * [OH∙] * kFe7 

[H O2
∙] + [H2O2]→[OH∙] + [H2O] + [O2] [H O2

∙] * [H2O2] * kFe9 

[H O2
∙] + [HO2

∙] → [H2O2] [H O2
∙] * [H O2

∙] * kFe8 

[O2] →[O2
-∙] 

[O2 ]* (kNADPHOxi * [NADPH OXidase] / 

((km_NADPHoxi + O2)  

[O2
-∙]→[O2] [O2

-*]* kdegROS 

 

Bioactive Component Range of Amount Used for 

Simulations (g) 

Concentrations Used for 

Simulation (μM) 

Cyanidin 0 to 10 0 to 25 

Delphinidin 0 to 11 0 to 25 

Ellagic acid 0 to 0.85 0 to 106 

Kaempherol 0 to 0.1 0 to 25 

Malvidin 0 to 39 0 to 25 

Rutin 0 to 5 0 to 25 



 

Table S2.2: Chemical Kinetic Parameters used in ROS Production Model. 

Parameter Value Units References 

kinitLR 0.5 nM-1 s-1 Atunes et al., 1996[24] 

kLPO 0.3 nM-1 s-1 Atunes et al., 1996[24] 

kLR1 1.4 x 10-8 nM-1 s-1 Atunes et al., 1996[24] 

kFe1 7.6 x 10-8 nM-1 s-1 Henle et al., 1996[25] 

kFe6 0.35 nM-1 s-1 Henle et al., 1996[25] 

kFe3 3.1 x 10-4 nM-1 s-1 Henle et al., 1996[25] 

kLR2 0.0066 nM-1 s-1 Atunes et al., 1996[24] 

kLRFe1 0.015 nM-1 s-1 Xue et al., 2012[26] 

kLRFe2 1 x 10-6 nM-1 s-1 Xue et al., 2012[26] 

kGPo 0.021 nM-1 s-1 Buettner et al., 2006[27] 

kGSGP 4 x 10-5 nM-1 s-1 Buettner et al., 2006[27] 

kGPr 0.01 nM-1 s-1 Buettner et al., 2006[27] 

kSOD 1.6 nM-1 s-1 Edwards et al., 2011[28] 

kcat 0.034 nM-1 s-1 Edwards et al., 2011[28] 

KH2O 140.0 nM-1 s-1 Stillinger, 1978[29] 

kdH2O 2.5 x 10-5 s-1 Stillinger, 1978[29] 

kFe2 0.0012 nM-1 s-1 Henle et al., 1996[25] 

kFe4 0.027 nM-1 s-1 Henle et al., 1996[25] 

kFe5 2.7 x 10-10 nM-1 s-1 Henle et al., 1996[25] 

kFe7 7.0 nM-1 s-1 Henle et al., 1996[25] 

kFe8 0.017 nM-1 s-1 Henle et al., 1996[25] 

kFe9 5 x 10-10 nM-1 s-1 Henle et al., 1996[25] 

kFe10 5.5 nM-1 s-1 Henle et al., 1996[25] 

kT_LOO 0.001 nM-1 s-1 Xue et al., 2012[26] 

kVE_LOO_deg 2 x 10-5 nM-1 s-1 Xue et al., 2012[26] 

kBC_O2 1.8 x 10-17 nM-1 s-1 Xue et al., 2012[26] 

kBCR_O2 0.2 nM-1 s-1 
Ozhogina and Kasakina, 

1995[30] 

kBC_kBCR 8 x 10-7 nM-1 s-1 
Ozhogina and Kasakina, 

1995[30] 

kBC_LOO 3 x 10-6 nM-1 s-1 
Ozhogina and Kasakina, 

1995[30] 

kBC_VITE 10 nM-1 s-1 Haila, 1999[31] 

kBCO_LOO 1 x 10-4 nM-1 s-1 Haila, 1999[31] 

kAsc_OH 0.00855 nM-1 s-1 Haila, 1999[31] 

kAsc_O2 0.01 nM-1 s-1 Haila, 1999[31] 

kAScR_O2 0.26 nM-1 s-1 Haila, 1999[31] 

kIQ_XO 280 nM Haila, 1999[31] 

k32 720 nM s-1 Haila, 1999[31] 

kEpi_ROS 0.0073 nM-1 s-1 Haila, 1999[31] 



kdegROS 0.085 s−1 
Macfarlane and Miller, 

1992[32] 

kNADPHOxi 1720 s−1 Koshkin et al., 1997[33] 

km_NADPHoxi 30000 nM Koshkin et al., 1997[33] 

kI_Epi_NDAPhoxi 5000 nM Estimated 

kiEGCG_Fe 0.046 s−1 Perron et al. 2010[34] 

ki_lyco_L 0.013 nM-1 s-1 Kawata et al., 2018[35] 

ki_ly_LOO 0.08 nM-1 s-1 Kawata et al., 2018[35] 

Ki_ging_O2 4050 nM Guenette et. al., 2007[36] 

KIshog_O2 850 nM Guenette et. al., 2007[36] 

Rutin_SuperoxideIC50 47942 nM Patil et al., 2013[37] 

Malvidin-3-O-glucoside_SuperoxideIC50 21482 nM Abeda et al. 2015[38] 

Kaempherol_SuperoxideIC50 47930 nM Wang et al. 2018[39] 

EllagicAcid_SuperoxideIC50 27660 nM Sun et al., 2021[40] 

Delphinidin3Oglucoside_SuperoxideIC50 13321 nM Abeda et al. 2015[38] 

Cyanidin_SuperoxideIC50 56015 nM Chun et al., 2003[41]  

 

 

Table S3.1: Biochemical Reactions and Rate Equations Involved in Anti-Oxidant Production 
Model. 

Description Rate Equation 

[NRF2] + [Keap1] + [AKT] → 

[NRF2_Keap1] 

[Nrf2] * [Keap1] * konNrf2_Keap1 – [Nrf2_keap1] 

* koffNrf2_Keap1 

[NRF2_Keap1] →Ф [Nrf2_keap1] * kdegNRf2 

[NRF2] + [Maf] → [NRF2_Maf] 
[Nrf2_N] * [Maf] * knrf2_maf – [Nrf2_Maf] * 

koffnrf2_maf 

[Nrf2_keap1_o] → [Keap1] + 

[NRF2_N] 
[Nrf2_keap1_o] * ktrans_Nrf2 

[NRF2-ARE-Maf] → [HO-1 mRNA] [Nrf2_ARE_Maf] * kHO1mRNA 

[HO-1 mRNA] → [HO-1 mRNA_c] [HO-1_mRNA] * ktrans 

[HO-1 mRNA_c] → Ф [HO-1_mRNA_c] * kdegHO1mRNA 

[HO-1 mRNA_c] → [HO-1] [HO-1_mRNA_c] * ksynHO1 - HO-1 * kdegHO1 

[NRF2-ARE-Maf] → [SOD2_mRNA] [Nrf2_ARE_Maf] * ksyn_SODmRNAsyn 

[SOD2 mRNA] → [SOD2 mRNA_c] [SOD2_mRNA] * ktrans 

[SOD2 mRNA_c] → Ф [SOD2_mRNA_c] * kdeg_SODmRNAdeg 

[SOD2 mRNA_c] → [SOD2] 
[SOD2_mRNA_c] * ksyn_SOD2protein – [SOD2] 

* kdeg_SOD2protein 

[NRF2-ARE-Maf] → [CAT mRNA] [Nrf2_ARE_Maf] * ksyn_CATmRNAsyn 

[CAT mRNA] → [CAT mRNA_c] [CAT_mRNA] * ktrans 

[CAT mRNA_c] → Ф [CAT_mRNA_c] * kdeg_CATmRNAdeg 

[CAT mRNA_c] → [CAT] 
[CAT] * kdeg_CATprotein – [CAT_mRNA_c] * 

ksyn_CATprotein 

[NRF2-ARE-Maf] → [GPx-1 mRNA] [Nrf2_ARE_Maf] * ksyn_GPXmRNAsyn 



[GPx-1 mRNA] → [GPx-1 mRNA_c] [GPX_mRNA] * ktrans 

[GPx-1 mRNA_c] → Ф [GPX_mRNA_c] * kdeg_GPXmRNAdeg 

[GPx-1 mRNA_c] → [GPx-1] 
[GPX] * kdeg_GPXprotein – [ GPX_mRNA_c] * 

Ksyn_GPXprotein 

 

 

Table S3.2: Chemical Kinetic Parameters Used in Anti-Oxidant Production Model. 

Parameter Value Units Reference 

ktrans 0.005775 s-1 Dargemont and Kuhn 1992[42] 

konNrf2_Keap1 0.00345 
nM-

1s-1 
Uruno et al. 2013⁠ [43] 

koffNrf2_Keap1 0.282 s-1 Uruno et al. 2013⁠ [43] 

kdegNRf2 3.85*10-4 s-1 Mulvaney et al. 2016⁠ [44] 

ktrans_Nrf2 7.70*10-4 s-1 Jain et al., 2017 ⁠[45] 

knrf2_maf 1.67*10-5 
nM-

1s-1 
Khalil et al. 2015⁠ [43] 

koffnrf2_maf 0.167 s-1 
Calculated based on Khalil et al. 

2015 [43]⁠ 

k_keap1_ox 4.0*10-5 
nM-

1s-1 
Khalil et al. 2015 [43]⁠ 

k_keap1_red 1.00*10-4 
nM-

1s-1 
Khalil et al. 2015 [43] 

ktrans_Nrf22 0.00167 s-1 Khalil et al. 2015[43] 

kHO1mRNA 2.69*10-5 s-1 Noel et al. 2015 ⁠[44] 

kdegHO1mRNA 8.37*10-5 s-1 Bouton and Demple, 2000 ⁠[46] 

ksynHO1 6.32*10-5 s-1 Ge et al. 2017⁠ [47] 

ksyn_SODmRNAsyn 2.61E-05 s-1 Murakami et al., 2017 [48] 

ksyn_CATmRNAsyn 8.50E-05 s-1 Murakami et al., 2017 [48] 

ksyn_GPXmRNAsyn 5.12E-04 s-1 Murakami et al., 2017 [48] 

kdeg_GPXmRNAdeg 5.07E-05 s-1 Shen et al. 1994 [49] 

kdeg_SODmRNAdeg 1.20E-05 s-1 Fukai et al. 1999 [50] 

kdeg_CATmRNAdeg 5.92E-05 s-1 Sen et al., 2005 [51] 

Ksyn_GPXprotein 9.75E-04 s-1 Szychowski et al. 2019 [52] 

kdeg_GPXprotein 8.02E-06 s-1 Shen et al. 1994 [49] 

ksyn_CATprotein 3.21E-05 s-1 Szychowski et al. 2019 [52] 

kdeg_CATprotein 1.45E-05 s-1 Chen et al. 2018 [53] 

ksyn_SOD2protein 5.14E-04 s-1 Hass and Massaro 1988 [54] 

kdeg_SOD2protein 3.85E-06 s-1 Bartnikas and Gitlin, 2003 [55] 

k_aARE 5.24E+27  Ge et al. 2017⁠ [47] 

kd_ARE 0.02  Ge et al. 2017⁠ [47] 

kDelphinidin3Oglucoside_NRF2EC50 20000 nM Xu et al. 2020 [56] 

kEllagicAcid_NRF2EC50 30000 nM Ding et al. 2019 [57] 

k Kaempherol _NRF2EC50 349369 nM Kumar et al., 2016 [58] 



k Malvidin-3-O-glucoside 

_NRF2EC50 
100,000 nM Xu et al. 2021 [59] 

kRutin_NRF2EC50 25,000 nM Gȩgotek et al., 2017 [60] 

  



Section S3 

Table S4. Search strings used to identify literature. 

 

  
Literature Search Keywords 

1. “Oxidative stress AND aging” 

2. “Reactive oxygens species production AND oxidative stress” 

3. “Anti-oxidant enzyme production AND oxidative stress” 

4. “Cyanidin AND Reactive oxygens species production” 

5. “Delphinidin AND Reactive oxygens species production” 

6. “Ellagic acid AND Reactive oxygens species production” 

7. “Kaempherol AND Reactive oxygens species production” 

8. “Malvidin AND Reactive oxygens species production” 

9. “Rutin AND Reactive oxygens species production” 

10. “Delphinidin AND Anti-oxidant enzyme production” 

11. “Ellagic acid AND Anti-oxidant enzyme production” 

12. “Kaempherol AND Anti-oxidant enzyme production” 

13. “Malvidin AND Anti-oxidant enzyme production” 

14. “Rutin AND Anti-oxidant enzyme production” 
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