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Abstract: Background: Red wine and dairy products have been staples in human diets for a long
period. However, the impact of red wine and dairy intake on brain network activity remains
ambiguous and requires further investigation. Methods: This study investigated the associations
between dairy and red wine consumption and seven neural networks’ connectivity with functional
magnetic resonance imaging (fMRI) data from a sub-cohort of the UK Biobank database. Linear mixed
models were employed to regress dairy and red wine consumption against the intrinsic functional
connectivity for each neural network. Interactions with Alzheimer’s disease (AD) risk factors,
including apolipoprotein E4 (APOE4) genotype, TOMM40 genotype, and family history of AD, were
also assessed. Result: More red wine consumption was associated with enhanced connectivity in the
central executive function network and posterior default mode network. Greater milk intake was
correlated with more left executive function network connectivity, while higher cheese consumption
was linked to reduced posterior default mode network connectivity. For participants without a family
history of Alzheimer’s disease (AD), increased red wine consumption was positively correlated with
enhanced left executive function network connectivity. In contrast, participants with a family history
of AD displayed diminished network connectivity in relation to their red wine consumption. The
association between cheese consumption and neural network connectivity was influenced by APOE4
status, TOMM40 status, and family history, exhibiting contrasting patterns across different subgroups.
Conclusion: The findings of this study indicate that family history modifies the relationship between
red wine consumption and network strength. The interaction effects between cheese intake and
network connectivity may vary depending on the presence of different genetic factors.

Keywords: fMRI; Alzheimer’s disease; neural network connectivity; red wine consumption; dairy con-
sumption

1. Introduction

Dementia arises due to damage or loss of neurons and their connections in the brain,
resulting in an irreversible and progressive decline in cognitive function [1]. The worldwide
prevalence of dementia is expected to increase significantly, from 57.4 million cases in 2019
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to 152.8 million by 2050 [2]. Alzheimer’s disease (AD), which accounts for 60–80% of all
dementia cases, is the primary cause of this debilitating condition [3].

Evidence suggests that dietary habits and specific nutrients may influence the progres-
sion of cognitive impairment and dementia [4]. Longitudinal studies discovered associa-
tions between certain nutrients or dietary patterns and reductions in brain volume [5] or
alterations in brain integrity [6]. The association between dairy and red wine consumption
and cognitive dysfunction or dementia remains a subject of debate and uncertainty. Further
large-scale studies are necessary to clarify this relationship.

One study [7] found that participants aged 60 years and older who consumed high
amounts of milk and dairy products experienced a reduced incidence of Alzheimer’s
disease dementia. Conversely, another study [8] reported that participants aged 45–64 years
who drank more than one glass of milk daily showed a faster cognitive decline compared to
those who rarely consumed milk. A recent study suggested that dairy consumption might
be linked to an increased risk of Parkinson’s disease [9]. Another study indicated that higher
milk and dairy product consumption could be associated with greater cognitive decline [10].
Two recent systemic reviews suggested that the relationship remains inconclusive due to
small sample sizes in some studies [11,12].

Research involving participants from Australia [13], the Netherlands [14], and
Canada [15] has suggested that fermented dairy products may have preventive effects
against dementia. Previous research from our laboratory, using UK data, indicated that
adding cheese to the diet daily on a weekly basis is associated with better fluid intelligence
performance, in a risk status-dependent manner [16]. However, a large-scale Japanese study
found no evidence to suggest that dairy intake was associated with functional disability
among older Japanese adults [17].

The relationship between red wine consumption and cognitive function is complex,
controversial, and uncertain [18]. Some studies have discovered the role of red wine and
dietary grape polyphenols in the prevention and treatment of AD [18,19]. Our prior research
demonstrated that, depending on risk status, incorporating red wine into the diet daily on a
weekly basis may enhance long-term cognitive outcomes in terms of Fluid Intelligence [16].

It is also important to note that excessive alcohol consumption is a well-established risk
factor for multiple chronic diseases [19,20]. Evidence also suggests that chronic alcohol intake
is linked not only to cardiac and liver problems but also to cognitive impairments and brain
damage [21]. One study indicated that consuming fewer than four drinks per day for women
and fewer than eight drinks for men is associated with a reduced likelihood of cognitive
impairment compared to abstinence, after accounting for potential confounding factors [22].

Resting-state functional magnetic resonance imaging (fMRI) can forecast cognitive
or emotional behavior [23] and identify early alterations in brain activity associated with
AD-related cognitive decline [24]. Independent component analysis investigations have
revealed discrepancies in this pattern for individuals with mild cognitive impairment (MCI)
or AD [25]. Our prior research established a connection between AD risk factors, cognitive
impairment, and fMRI findings through the assessment of network connectivity [26,27].

To further investigate the relationship between dairy and red wine consumption and
cognitive dysfunction, we analyzed data from a sub-cohort of 12,661 UK Biobank partici-
pants and examined the associations between red wine/dairy intake and the connectivity
of seven specific cognitive- and emotional-processes-related neural networks, considering
various AD risk factors of APOE4 and TOMM40 genotypes and AD family history.

2. Materials and Methods
2.1. Cohort and Participants

The UK Biobank is a prospective study, including about half a million participants
aged 40–70 years, from 22 assessment centers in the United Kingdom [28]. The current
study analyzed a sub-cohort of 12,661 participants with genomics, MRI, diet, and demo-
graphics data. In order to reduce the influence of diseases on neural network outcomes,
we excluded 636 participants who had neurological disorders, as determined by ICD-10
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codes. Specifically, individuals who had central nervous system diseases (G00–G99), cere-
brovascular diseases (I60–I69), or mental and behavioral disorders (F00–F99) were excluded
(Supplementary Figure S1). There were 2715 valid cases for the red wine analysis and
636 ones for milk consumption, with cheese being 5171.

2.2. Resting-State fMRI

Participants underwent scanning at one of three locations (Reading, Newcastle, or
Manchester) using a Siemens Skyra 3T unit equipped with a 32-channel RF receiver head
coil (Siemens Medical Solutions, Erlangen, Germany) [29]. Baseline MRI assessments
started in 2014, with continuous longitudinal data collection [30]. During scanning, partici-
pants were instructed to keep their eyes open, concentrate on a crosshair, and avoid specific
thoughts. Each scan lasted 6 min and 10 s, acquiring 490 images with particular acquisition
parameters. The UK Biobank white papers (https://biobank.ctsu.ox.ac.uk/crystal/crystal/
docs/brain_mri.pdf (accessed on 29 June 2023)) detail preprocessing and quality control
procedures. In summary, FSL tools were utilized to motion-correct, grand-mean intensity
normalize, high-pass temporal filter (with sigma = 50.0 s), and unwarp and denoise EPI
and GDC (using ICA + FIX processing) the 4D dataset. FMRIB’s MELODIC was employed
for group principal component analysis and independent component analysis, resulting
in spatially orthogonal, non-noise, distinct independent components (ICs) representing
resting neural networks [31]. The Papaya viewer allows for online visualization of these
ICs: see https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25_good_
nodes.html (accessed on 29 June 2023) for a link to the viewer and maps.

An IC was spatially back-projected onto their EPI scan to calculate intrinsic functional
connectivity for each participant. The average activation level was determined from the
initial T-value map and converted to a Z-score for simpler interpretation. This average
activation level was subsequently used in statistical analyses. As described in our previous
study, an expert (AAW) examined the activation maps and characterized the neural net-
works [26]. The present study focused on seven cognitive- and emotional-functions-related
networks (see Supplemental Table S1).

2.3. Genetic Factors—APOE, TOMM40, and Family History

Genotyping was performed with the UK BiLEVE Axiom or UK Biobank Axiom
array [32]. The APOE haplotype isoforms (ε2, ε3, and ε4) were identified using SNPs
rs429358 and rs7412. Participants were categorized as either ε4 non-carriers or carriers
based on whether participants had at least one ε4 allele (ε2/ε4, ε3/ε4, and ε4/ε4) or none
(ε2/ε2, ε2/ε3, and ε3/ε3).

As described in our previous article, TOMM40 genotype data for the SNP ‘650 were
extracted for analyses using PLINK version 1.90 (https://www.cog-genomics.org/plink/1.
9/ (accessed on 29 June 2023)). TOMM40 ‘650 status was coded as those who were non-G
carriers (AA homozygotes) versus G-carriers (GA and GG) [27].

AD family history classification relied on participants’ self-reported presence or absence
of AD in their family history via the touchscreen questionnaire. Participants were asked about
their family history through the question, “Has/did your father/mother ever suffer from:”,
which was followed by a list of chronic diseases, including ‘Alzheimer’s disease/dementia’.

2.4. Covariates

Covariates in the analysis consisted of baseline age (in years) and sex (male or female).
Additional covariates included alcohol consumption status, smoking status, body mass index
(BMI), and the Townsend Index (for social-economic stratification). Alcohol consumption sta-
tus was classified as never, previous, or current drinker, while smoking status was categorized
as never, former, or current smoker [27]. The Townsend deprivation index was calculated
before each participant joined the UK Biobank based on the national census output areas. The
participants were assigned a score that corresponded to their postcode’s output area.

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html
https://www.fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html
https://www.cog-genomics.org/plink/1.9/
https://www.cog-genomics.org/plink/1.9/
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2.5. Diet Consumption

Participants were prompted to provide information regarding their dietary habits,
including the consumption of food and alcoholic beverages, through an interactive touch-
screen questionnaire. A particular focus was placed on their 24 h intake of red wine,
categorized by distinct varieties. Moreover, the examination employed a 24 h dietary
recall method to assess the consumption of milk and cheese. Milk intake was documented
in daily 250 m increments (glass equivalents). As for cheese consumption, individuals
were inquired about their intake the previous day, including instances in sandwiches,
atop burgers or jacket potatoes, or incorporated into pasta dishes. Cheese servings were
quantified through descriptors such as “a small matchbox-sized portion”, “a large spoonful
or a handful”, or “an amount sufficient to cover a standard square sandwich bread slice”.

2.6. Statistical Analyses

Data preparation and analyses were completed by using R, version 4.2.0 (RStudio, Posit
Software, Boston, MA, USA) and SPSS 26 (IBM Corp., Armonk, NY, USA). Linear mixed
models were used to regress predictors of diet consumption against each resting state IC.

The initial analysis examined the primary effects of red wine, milk, and cheese con-
sumption on each neural network, accounting for previously mentioned covariates. Ad-
ditionally, potential interactions with family history, TOMM40, and APOE4 status were
investigated to determine whether these factors moderated the associations between di-
etary intake and neural network connectivity strength. The assessment centers where
participants consented were served as the random effects. A significance level of p < 0.05
was employed for main effects, while an alpha level of 0.10 was used for interaction effects
to offset potential reductions in statistical power [33,34]. The omnibus MANCOVA testing
was first done to limit type 1 error [35]. Interventionary studies involving animals or hu-
mans, and other studies that require ethical approval, must list the authority that provided
approval and the corresponding ethical approval code.

3. Results
3.1. Demographics and Data Summaries

Demographics and baseline characteristics are listed in Table 1. The Supplementary
Table S1 lists and describes all seven non-noise derived cognitive- and emotional-processes-
related neural networks.

Table 1. Characteristics of participants.

Characteristic

Baseline Age, mean (SD), y 55.07 (7.48) Range: 40–70
Body mass index (BMI), mean (SD), kg/m2 26.59 (4.17) Range: 14.74–56.12

Female, % 52.54
APOE ε4 Status, % 27.68

TOMM40 ‘650 status, % 26.57
Family History of AD, % 24.26

Smoking Status, %
Never 60.74

Previous 32.89
Current 6.37

Alcohol Status, %
Never 2.45

Previous 1.95
Current 95.60

Milk, mean (SD), glasses/carton//250 mL 1.48 (1.06) Range: 0.5–5
Cheese, mean (SD), servings 0.52 (0.62) Range: 0–6

Red wine, mean (SD), glasses/carton//250 mL 1.40 (1.02) Range: 0.5–5
AD = Alzheimer’s disease; APOE = apolipoprotein E. TOMM40 = translocase of outer mitochondrial membrane
40. All measures were obtained at baseline with the exception of milk consumption, cheese consumption, and red
wine consumption (collected over five visits and averaged).
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3.2. Main Effects

More red wine consumptions were associated with greater central executive function
network (IC 9; β = 0.0212, SE = 0.0085, p = 0.0128) and posterior default mode network
(IC 20; β = 0.0182, SE = 0.0059, p = 0.0021) (Figure 1) connectivity.
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Figure 1. The association between red wine consumption and intrinsic functional connectivity
(i.e., neural network activity) in adults. ** p < 0.01.

More milk intake was associated with greater left executive function network con-
nectivity (IC 13; β = 0.0314, SE = 0.0143, p = 0.0287). However, more cheese intake was
associated with less posterior default mode network (IC 20; β = −0.0241, SE = 0.0094,
p = 0.0109) connectivity.

3.3. Red Wine Consumption by Family History Interactions

Increased red wine consumption was found to be positively correlated with en-
hanced connectivity in the left executive function network (IC 13; β = 0.0135, SE = 0.0009,
p = 0.0000) (Figure 2) for participants without a family history of AD. Conversely, partici-
pants with a family history of AD exhibited reduced network connectivity in relation to
their red wine consumption.

3.4. Cheese Intake by APOE4 Status, TOMM40 Status, and Family History Interactions

The relationship between cheese consumption and neural network connectivity was
strongly influenced by APOE4 status, TOMM40 status, and family history, with the associa-
tions displaying contrasting tendencies across different subgroups. In general, increased
cheese intake was associated with reduced neural network connectivity in participants
without genetic risk factors (negative APOE4 status, TOMM40 status, and family history).
Conversely, participants who were APOE4 and TOMM40 carriers or had a positive family
history of Alzheimer’s disease exhibited a positive association between cheese consumption
and neural network connectivity.
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More cheese consumption was correlated with reduced network connectivity in exec-
utive function networks (IC 5, IC 9, and IC 13), affect processing network (IC 10), fronto-
cingular network (IC 14), and posterior default mode network (IC 20) (Figure 3) for non-
APOE4 carriers. In contrast, among APOE4 carriers, greater cheese intake was positively
associated with enhanced network connectivity in executive function networks (IC 5, IC 9,
and IC 13), affect processing network (IC 10), fronto-cingular network (IC 14), and posterior
default mode network (IC 20) (see Table 2). 
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Table 2. Estimates by group for cheese intake with AD risk factors.

Component APOE Status TOMM40 Status Family History Status

APOE4 Negative APOE4 Positive TOMM40 650′
Negative

TOMM40 650′
Positive Negative Positive

Beta SE Beta SE Beta SE Beta SE Beta SE Beta SE
IC 1 −0.0190 0.0038 0.0320 0.0063 −0.0190 0.0038 0.0320 0.0063 −0.0244 0.0038 * 0.0553 0.0059 *

IC 5 −0.0138 0.0025 ** 0.0632 0.0042 ** −0.0179 0.0025
*** 0.0774 0.0044

*** −0.0104 0.0026 * 0.0616 0.0040 *

IC 9 −0.0418 0.0034 ** 0.0695 0.0056 ** −0.0398 0.0034 ** 0.0683 0.0057 ** −0.0213 0.0034 0.0176 0.0055
IC 10 −0.0340 0.0038 ** 0.0621 0.0063 ** −0.0349 0.0037 ** 0.0685 0.0065 ** −0.0170 0.0038 0.0198 0.0064
IC 13 −0.0089 0.0018 ** 0.0540 0.0030 ** −0.0029 0.0018 0.0391 0.0031 −0.0045 0.0018 * 0.0475 0.0029 *
IC 14 −0.0141 0.0021 * 0.0234 0.0035 * −0.0148 0.0021 * 0.0265 0.0035 * −0.0165 0.0021 ** 0.0357 0.0032 **

IC 20 −0.0367 0.0028 ** 0.0300 0.0047 ** −0.0389 0.0028
*** 0.0392 0.0049

*** −0.0301 0.0029 0.0169 0.0045

Bolded text denotes p < 0.05. Neural networks with significant interactions * p < 0.05, ** p < 0.01, *** p < 0.001.

Regarding TOMM40 status, the associations mirrored those observed for APOE4 status.
For non-TOMM40 carriers, increased cheese consumption was correlated with reduced
network connectivity in executive function networks (IC 5 and IC 9), affect processing
network (IC 10), fronto-cingular network (IC 14), and posterior default mode network (IC
20). In contrast, among TOMM40 carriers, greater cheese intake was positively associated
with enhanced network connectivity in executive function networks (IC 5 and IC 9), affect
processing network (IC 10), fronto-cingular network (IC 14), and posterior default mode
network (IC 20) (refer to Table 2; Figure 4).
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In terms of family history, the pattern was similar to the findings for APOE4 and
TOMM40 status, albeit with fewer significant networks. Among participants without a
family history of Alzheimer’s disease, increased cheese consumption was associated with
reduced network connectivity in the anterior and posterior default mode network (IC
1), executive function networks (IC 5 and IC 13), and fronto-cingular network (IC 14).
Conversely, for participants with a positive family history, greater cheese intake was linked



Nutrients 2023, 15, 3390 8 of 13

to more network connectivity in the anterior and posterior default mode network (IC 1),
executive function networks (IC 5 and IC 13), and fronto-cingular network (IC 14).

4. Discussion

The aim of this study was to investigate the associations between red wine and dairy
consumption and seven distinct cognitive- and emotional-processes-related neural network
connectivity in participants, considering the influence of TOMM40 and APOE4 carrier
status and family history.

4.1. Red Wine

Our primary findings revealed that, for the main effect test, increased red wine con-
sumption correlated with enhanced central executive function network and posterior
default mode network connectivity.

The central executive function network is responsible for managing and manipulating
information in working memory, as well as facilitating decision-making and problem-
solving for goal-oriented behavior [36]. Studies have indicated that, during early adoles-
cence, the neural architecture of both the central executive function network and default
mode network undergoes changes, resulting in the fine-tuning of within-network and
between-network connectivity [37]. Enhanced connectivity between these two networks
has been linked to improved social skills at the metacognitive abilities level [38]. Therefore,
the consumption of grape polyphenols found in dietary sources, such as red wine, may
have a protective effect against the deterioration of metacognitive abilities.

We also found that, for participants with a family history of AD, the relationship
between red wine consumption and left executive function network activity exhibits differ-
ently compared to those without a family history of AD. Red wine consumption exhibited
a beneficial impact on participants without a family history of AD, while no such effect was
observed among those with a positive family history.

Alcohol is known to have adverse effects on various chronic diseases, such as car-
diovascular diseases, diabetes, liver cirrhosis, and even cancer, and it is also considered
to have neurotoxic effects on the brain [39]. Furthermore, alcohol has been recognized as
a risk factor for dementia and cognitive decline [40], with a significant role in the devel-
opment of early onset dementia [41]. On the other hand, research also has suggested a
U-shaped relationship between alcohol consumption and cognitive function scores, where
low to moderate alcohol intake is associated with better global cognition scores [40,42]. The
positive effects of alcoholic beverages, such as wine, on reducing the risk of cardiovascular
and cerebrovascular diseases have been partially attributed to alterations in lipid profiles
and factors related to blood flow and hemostasis [43]. Numerous studies have reported
that wine consumption, in particular, is linked to a reduced risk of developing dementia,
specifically Alzheimer’s disease [43]. The protective associations identified for wine might
be attributable to components other than ethanol. Wine is considered a dietary source
of phytochemicals, with red wine being particularly rich in a wide array of polyphenolic
compounds that could exhibit neuroprotective activities [18]. Several aglycone forms of
polyphenols have been investigated as potential novel dietary or supplemental strategies
for the prevention and/or treatment of Alzheimer’s disease dementia and associated brain
pathology recently [43]. In line with other research [42], our findings also indicate that this
protective effect may be influenced by genetic factors, family history. However, we did not
observe significant differences between various APOE4 or TOMM40 genotypes.

4.2. Dairy Consumption

Our results suggested greater milk intake was linked to augmented left executive
function network connectivity for the main effects. In contrast, greater cheese consumption
was found to be negatively correlated with posterior default mode network connectivity.
No significant differences were found between AD risk groups (APOE4 and TOMM40
genotypes and family history) regarding the interaction test for milk intake. However,
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for cheese consumption interactions, participants with genetic risk factors (APOE4 and
TOMM40 genotypes and family history) displayed a strong association between cheese
consumption and the connectivity of most neural networks.

The association between milk consumption and executive function network remains
ambiguous. While some research has indicated a connection between the overall intake
of dairy products and executive and cognitive functions, a direct relationship between
milk consumption and these functions has not been consistently established [15,44]. Nev-
ertheless, a 17-year longitudinal study conducted with an older population found that
milk consumption exhibited a linear protective effect against dementia [7]. One study has
reported that dairy products, excluding milk intake, were associated with the executive
function domain [15]. In contrast, other research has observed a significant linear trend for
cognitive outcome scores across increasing dairy food intake groups, as documented in
the National Health and Nutrition Examination Survey’s investigation of the association
between dairy product consumption and cognitive function [44]. Additionally, another
study found that milk consumption may be associated with reduced cognitive impairment,
as assessed by the Mini-Mental State Examination [10]. L. C. de Goeij et al. suggested
that skimmed milk and buttermilk intake are significantly associated with better executive
functioning [14]. Our data suggested that, generally, milk consumption has a benefit effect
on neural network connectivity.

The effects of cheese intake on cognitive outcomes remain inconclusive. A South
Australia-based study suggested that cheese consumption was linked to negative cog-
nitive outcomes [13]. Researchers from eastern Finland found that high saturated fat
intake from dairy products correlated with poor cognitive function and an increased risk
of mild cognitive impairment [45]. A 13-year follow-up study of elderly French women
suggested cognitive decline was associated with higher intakes of dairy desserts [46]. Mean-
while, studies from Korea [15], Spain [47], Maine State [44], and France [48] reported no
associations between cheese or fermented dairy consumption and changes in cognitive
performance [47]. However, other studies from Finland [49] and Spain [10] have indicated
that cheese may have beneficial effects. Additionally, research from Japan [7], Canada [15],
Singapore [50], and the Netherlands [14] support positive associations between the con-
sumption of fermented dairy products and cognitive function assessments.

In our previous study, we observed that family history moderated the positive as-
sociation between cheese intake and cognitive trajectories [16]. In the current study, we
employed a different measure of cheese consumption. While our previous study relied on a
week recall, this time we utilized a more accurate twenty-four-hour recall and incorporated
data from five measurement cycles. We observed a substantial influence of AD risk factors
on the associations between cheese consumption and neural network connectivity in the
present study. Notably, our findings revealed that individuals with AD risk factors exhib-
ited a highly significant association between cheese consumption and the connectivity of
most cognitive-related neural networks.

Research investigating the associations between dairy consumption and cognitive
performance is still in its infancy, and the underlying mechanisms and effects have yet to
be fully elucidated [14]. Certain components and nutrients in dairy products may promote
healthy brain function during aging. For instance, some bioactive peptides [10,51] could be
beneficial for maintaining healthy brain function as we age. Another study suggested that
novel lactopeptides derived from digested fermented dairy products may help prevent
age-related cognitive decline [52]. Evidence also indicates that the beneficial effects may
stem from milk fat, calcium, magnesium, potassium, or a combination of these nutrients as
part of the unique package that dairy provides [53]. However, these positive effects could
be moderated by other factors [54].

Our findings suggest that AD genetic risk factors play a significant role. Family
history is a particularly interesting factor. Apart from genetics, it may be related to dietary
habits and gut microbiota. Preclinical studies have shown that the probiotic effects of
lactic acid bacteria can reduce pro-inflammatory cytokines, decrease oxidative stress, and
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increase brain-derived neurotrophic factors, potentially promoting neuronal growth and
survival [55,56].

Several limitations in our study should be acknowledged. The red wine and dairy con-
sumption data were obtained from the UK Biobank and are based on self-reported dietary
information, which can introduce recall bias and inaccuracies. Although we employed
more accurate assessments, using objective biomarkers of dietary intake or conducting
experiments could further enhance the validity of our findings. While we controlled for sev-
eral potential confounders, there may be other unmeasured factors that could influence the
observed associations, such as physical activity and overall diet quality. The UK Biobank
may not be representative of the broader diverse population, limiting the generalizability
of our findings. Future studies should aim to include more diverse populations in terms of
ethnicity to better understand the associations under investigation.

By addressing these limitations, future research can be conducted using more diverse,
large-scale databases to investigate genetic variations that may contribute to the associations
between dairy and red wine consumption, AD risk factors, and cognitive performance.
This would provide a more comprehensive understanding of the relationships between
diet, genetics, and cognitive health across different populations, and ultimately contribute
to the development of evidence-based dietary recommendations and interventions aimed
at preserving cognitive function and reducing the risk of Alzheimer’s disease and other
age-related cognitive impairments.

5. Conclusions

In summary, our study provides valuable insights into the associations between dairy
and red wine consumption, AD risk factors, and cognitive performance in relation to neural
network connectivity. Our findings suggest that low to moderate red wine consumption
may have a protective effect on cognitive performance, particularly among individuals
without a family history of AD. The associations between cheese consumption and neural
network connectivity were found to be influenced by genetic risk factors, highlighting
the importance of considering genetic variability in future studies. However, the effects
of milk and cheese intake on cognitive performance remain inconclusive, warranting
further investigation.
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