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Abstract: Skeletal muscle is essential for human locomotion as well as maintaining metabolic home-
ostasis. Age-related reduction in skeletal muscle mass, strength, and function (i.e., sarcopenia) is a
result of pathophysiological processes that include inflammation, alteration of molecular signaling
for muscle protein synthesis and degradation, changes in insulin sensitivity, as well as altered skeletal
muscle satellite cell activity. Finding strategies to mitigate skeletal muscle loss with age is deemed
paramount as the percentage of the population continues to shift towards having more older adults
with sarcopenia. Recent research indicates omega-3 fatty acid supplementation can influence anabolic
or catabolic pathways in skeletal muscle. Our brief review will provide a synopsis of some underlying
mechanisms that may be attributed to omega-3 fatty acid supplementation’s effects on skeletal muscle.
We will approach this review by focusing on cell culture, animal (pre-clinical models), and human
studies evaluating omega-3 fatty acid supplementation, with suggestions for future research. In older
adults, omega-3 fatty acids may possess some potential to modify pathophysiological pathways
associated with sarcopenia; however, it is highly likely that omega-3 fatty acids need to be combined
with other anabolic interventions to effectively ameliorate sarcopenia.
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1. Introduction

There is a great deal of interest surrounding the maintenance and improvement of
skeletal muscle mass and strength using a wide variety of interventions. In younger adults,
improving skeletal muscle mass and strength may be important for the performance-
enhancing benefits it can bestow in athletic or recreational activities. In older adults,
finding strategies to reduce the consequences of sarcopenia (i.e., low muscle mass, low
muscle strength, low functional ability) is deemed paramount to reducing the morbidity
and mortality associated with this condition [1]. Delineation of the different interventions
that can be used in the aging population to reduce skeletal muscle and strength losses is
believed to be one of the most pressing healthcare issues currently facing society [2]. While
there are many different types of interventions (exercise, pharmaceutical, nutritional) that
could be used to help delay muscle strength and mass loss, one nutritional intervention that
has received attention recently is the use of omega-3 (ω-3) fatty acid supplementation [3]
to help stimulate anabolic activity or reduce catabolic activity in skeletal muscle.

Omega-3 fatty acids are polyunsaturated fatty acids with a double-bond three atoms
away from their methyl end. The most predominant forms of ω-3 fatty acids that have
been investigated for their effects on muscle include docosahexaenoic acid (DHA), eicos-
apentaenoic acid (EPA), and alpha-linolenic acid (ALA). These ω-3 fatty acids incorporate
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into cellular phospholipid membranes and produce physiological effects via their ability to
produce various eicosanoids (i.e., leukotrienes, prostaglandins, prostacyclins, and throm-
boxanes) via the cyclooxygenase and lipoxygenase enzymatic pathways. Typically, the
traditional Western diet is composed of excessive ω-6 fatty acids (e.g., linoleic acid), which
may produce a more inflammatory environment if not balanced properly with a greater
intake ofω-3 fatty acids [4]. This may be one reason why older adults may be affected by
chronic low-grade inflammation (i.e., ‘inflammaging’). The anti-inflammatory function of
ω-3 fatty acids is needed to reduce the risk of developing chronic diseases and to balance
the ratio ofω-6:ω-3 fatty acids [5]. Inflammaging may result in the deterioration of skeletal
muscle mass through the release of cytokines (e.g., tumor necrosis factor-α (TNF-α)), stimu-
lating the process of myocyte destruction via apoptotic pathways [6]. Supplementing older
adults withω-3 fatty acids (or ingesting moreω-3s within the diet) to change theω-6:ω-3
ratio may be effective for reducing low-grade inflammation [7].

The mechanisms likely involved in the anabolic or anti-catabolic effects ofω-3 fatty
acid supplementation revolve around (1) inflammatory milieu modification, (2) activation
of the mechanistic target of rapamycin (mTOR) pathway in skeletal muscle, (3) improved
insulin sensitivity, and (4) the potential to alter skeletal muscle satellite cell activity (see
Figure 1) [8–12]. This narrative review describes the mechanisms wherebyω-3 fatty acids
increase skeletal muscle hypertrophy or prevent muscle catabolism. We will focus our
review on cell culture, animal, and human studies that have used ω-3 supplementation
strategies alone to affect skeletal muscle.
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Figure 1. Potential mechanisms by which supplementation with omega-3 fatty acids inhibit skeletal
muscle protein degradation, stimulate muscle protein synthesis, enhance insulin sensitivity, and
activate skeletal muscle satellite cells.
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2. Cell Culture Studies

Studies with cell cultures have determined how ω-3 fatty acids may affect pathways
associated with inflammation, insulin sensitivity, and synthesis of muscle protein. EPA and
DHA have been the most predominantly utilized fatty acids for the incubation of C2C12
cells (i.e., mouse skeletal myoblast cells) for in vitro studies. EPA and DHA are the fatty
acids that are thought to produce the greatest physiological effects.

One way in which skeletal muscle-induced protein degradation may occur is through
chronically elevated inflammatory milieu via TNF-α stimulated apoptosis of myocytes [13].
The nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) is a transcription
factor that, when activated, induces a strong pro-inflammatory response. The nuclear factor
of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), is an important
inhibitor of NF-κB. In C2C12 myoblasts, DHA treatment was more effective for inhibiting
protein degradation when compared to EPA, and DHA was able to decrease the phosphory-
lation of IκBα (i.e., the inhibitor of NF-κB) and increase the protein content of IκBαmore so
than EPA [14]. Further, in C2C12 myotubes, EPA, but not ALA, was able to decrease IκBα
phosphorylation and increase total protein IκBα levels which reduced NF-κB DNA-binding
activity [15]. This study also demonstrated that EPA incubation was able to reduce mRNA
for muscle RING finger 1 (MuRF1), an enzyme that stimulates the degradation of myosin
heavy chains in muscle when tested against a control (bovine serum albumin), as well as
enhance mRNA for the transcription factor peroxisome proliferator-activated receptor-γ
(PPAR-γ) [15]. The authors concluded that EPA was able to effectively inhibit the IκBα/NF-
κB/MuRF1 pathway via PPAR-γ. Additional results in C2C12 myoblasts incubated with
TNF-α demonstrated that introducing EPA to the media decreased the effects of TNF-α on
apoptosis and improved myotube formation by suppressing the inflammatory environment
created by the activation of NF-κB pathways via TNF-α stimulation [16,17]. This suggests
that one mechanism by which ω-3 fatty acids may enhance skeletal muscle is through
a dampening of NF-κB pathway activation, which could promote inhibition of skeletal
muscle protein degradation. Thus, it seems that EPA and DHA can effectively dampen the
NF-κB pathway; however, ALA may be less effective at modifying this pathway, at least in
cell culture. Interestingly, doses of EPA/DHA/ALA with ranges from 150–700 µM were
used to incubate cells, and it seems that moderate-high concentrations of ω-3 DHA and
EPA (i.e., 300–700 µM) decreased protein degradation more efficiently [14,15]. However,
physiological concentrations in young, healthy adults, without supplementation, range
from 12.0–186.9 µmol/L for ALA and 7.2–237.5 µmol/L for DHA, thus, not necessarily
reaching the levels used in cell culture to stimulate pathways that may enhance skeletal
muscle anabolism [18]. Nevertheless, the physiological concentrations of a combined 3 g of
EPA and DHA supplement that is bound to ethyl ester or monoacylglycerol can result in
a peak concentration of between 318–858 µmol/L, respectively, which may be enough to
enhance skeletal muscle effects [19].

Myogenic regulatory factors (MRFs) are a group of transcription factors that control
myogenesis during activation, proliferation, and differentiation of satellite cells [20] in
postnatal tissue and include Myf5, MyoD, myogenin, and MRF4 [21]. Satellite cells are
important muscle stem cells that can be incorporated into muscle fibers to form new
myonuclei to stimulate protein synthesis [20]. In mouse myoblasts, treatment of cells with
a common saturated fatty acid (palmitate) causes cell death, but EPA was able to effectively
preserve cell viability via inhibition of mitogen-activated protein kinase (MAPK) apoptosis
as well as stimulate MyoD, thus potentially reducing catabolic activity and increasing
anabolic activity in skeletal muscle [22]. In another study, DHA was able to produce
myotube hypertrophy when mouse myoblasts were incubated with palmitate and DHA
together, while palmitate incubation alone caused significant atrophy of the cells [23]. Also,
in C2C12 cells, the incubation and incorporation of DHA into the phospholipid membrane
was able to enhance the resilience of the cell membrane to mechanical stress and, thus, may
reduce cell breakage during a mechanical contraction when compared to arachidonic acid
(a predominantω-6 fatty acid) [24].
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C2C12 myoblasts were incubated with lipopolysaccharide (LPS, which are components
of membranes of toxic bacteria), inducing deficiency in insulin signaling, but when the
myoblasts were co-incubated with EPA, there was a restoration of insulin signaling [25].
This study further demonstrated the potential effect that EPA might have in preserving
phosphorylation of mammalian target of rapamycin (mTOR), a pathway important for
activation of translation and, therefore, muscle protein synthesis when cells are facing an
LPS challenge [25]. In this study, NF-κB and activation protein-1 (AP1, a transcription factor
controlling programed cell death, i.e., apoptosis) were inhibited by EPA, thus providing
a potential mechanism whereby mTOR phosphorylation could persist even when facing
an LPS challenge [25]. Further study in C2C12 myoblasts indicated that DHA was able
to rescue palmitate-induced atrophy by promoting protein kinase (Akt) activation, which
inhibits the transcription factor forkhead box O-3 (FoxO3), important for apoptosis [26].
Interestingly, a different study in C2C12 myotubes found that EPA incubation promoted
protein synthesis and lessened protein breakdown; however, DHA had no effect on the
synthesis or breakdown of proteins in the cell culture [27]. The two aforementioned studies
differed in terms of study design (i.e., one included palmitate incubation while the other
incubated only with EPA or DHA), and thus, this may explain the discrepancy in the results.

These cell culture studies have been performed under conditions that likely optimize
ω-3 fatty acids’ effectiveness. Even though cell culture studies are important to help
understand underlying mechanisms, the in vivo effects may be less pronounced given the
physiological milieu of intact organisms. In the next section, we review studies of animals
evaluating the effectiveness of supplementation withω-3 fatty acids.

3. Animal Studies

While pre-clinical animal-based study models are important for testing hypotheses
and determining outcomes, currently, there is limited animal data (especially in healthy
animals) on supplementing withω-3 fatty acids for affecting skeletal muscle. The following
section delineates the effects of supplementing withω-3 fatty acids on skeletal muscle in
mostly obese mouse and rat models, models that most likely potentiate muscle atrophy.
Obesity is known to produce many metabolic disturbances, which may be attenuated by
ω-3 intake, but does not necessarily represent a healthy condition to test the effectiveness
ofω-3 fatty acid supplementation on skeletal muscle [28].

In an obese male mouse model, chia oil (which is high in ALA) was fed to animals who
were also fed a diet high in fat to evaluate the effects on insulin signaling and fat and lean
tissue mass [29]. Fat mass was reduced, and lean mass improved in the mice that consumed
the chia oil when compared to the ones that only consumed the high-fat diet [29]. Further,
there was an improvement in insulin signaling, glucose tolerance, insulin sensitivity, as well
as glucose transport protein-4 translocation to the cell membrane (i.e., GLUT-4 translocation,
important for glucose transport into the muscle) in the mice who received the chia oil [29].
The enhancement of insulin sensitivity and insulin signaling via the increased amount of
ω-3 ALA in the diet would likely increase the signaling for cell growth (anabolism) and cell
survival and proliferation through insulin-mediated activation of the mTOR pathway [30].
Another study performed in obese, type-2 diabetic Swiss mice demonstrated that flaxseed
oil (high in ALA) combined with a high-fat diet was able to effectively reduce cytokines
involved in inflammation and increase insulin receptor substrate-1/Akt phosphorylation
when compared to the high-fat diet alone [31], thus confirming the previous study’s results.
However, in an obese Zucker rat model, flaxseed oil (high in ALA) at 10% of the diet
negatively altered insulin sensitivity, whole-body glucose homeostasis, and increased
reactive oxygen species formation in the electron transport chain, which can lead to cell
membrane damage and inflammation [32]. The interesting part of this study was the fact
that the animals were exercising (treadmill running) while consuming the high ALA diet.
Thus, there was a negation of the effectiveness of exercise for positively affecting insulin
and glucose homeostasis with the high ALA diet. Additionally, the increase in ROS is
troubling, given that this is linked to reduced skeletal muscle mass [33] and thus could



Nutrients 2023, 15, 2926 5 of 11

perpetuate sarcopenia. Nevertheless, this animal model used a high amount of ALA in
the diet, which is not likely typical in most human diets. The authors of the study provide
a caveat in their manuscript, which states that achieving a dietary intake of ALA that
represents 10% of the human diet is virtually impossible [32]. In fact, the authors point out
that even supplementing the diet with 3 g/day ofω-3 fatty acids only represents 0.02% of
daily fat intake if adopting a daily dietary intake for the fat of 40% [32].

In a rat model (13 months old), 8 weeks of supplementation with an EPA and DHA
blend of ω-3 fatty acids was able to increase the phosphorylation of phosphoinositide
3-kinase (PI3K) and ribosomal protein S6 kinase (p70s6k), two important upstream and
downstream components, respectively, of the Akt/mTOR pathway in the longissimus dorsi
but not the soleus muscle [34]. Accordingly, it appears that the EPA/DHA blend used in this
study may have muscle fiber type-specific effects as the longissimus dorsi is predominantly
type-II muscle fibers while the soleus muscle is type-I. This may be translatable to a human
model of sarcopenia as it is known that type-II muscle fibers predominantly are decreased
with aging [35]; however, this would need to be tested directly in humans to confirm the
results from the animal study. Further, a study in nephrectomized rats indicated that the
addition ofω-3 fatty acids in the diet was able to regulate peroxisome proliferator-activated
receptor gamma coactivator-1 alpha (PGC-1α) and, in turn, attenuate catabolism in skeletal
muscle in this experimental chronic kidney disease model [36].

In summary, there are potential advantages and disadvantages to skeletal muscle in
using various types ofω-3 fatty acids in animal models. In the two obese mouse models
explained above, high amounts of ALA were able to rescue cell signaling that may enhance
outcomes for skeletal muscle anabolism [29,31]. However, in the obese rat model, ALA
showed negative consequences in terms of skeletal muscle, while the healthy rat model
was able to show EPA/DHA supplementation effects were able to enhance certain aspects
of molecular pathways of skeletal muscle anabolism, at least in type-II muscle fibers [32,34].
More research on the underlying effects of various ω-3 fatty acids on skeletal muscle is
necessary to promote a greater understanding of the mechanisms whereby they may be
effective for reducing skeletal muscle loss.

4. Human Studies

Several clinical trials in humans have evaluated EPA and DHA supplementation
on skeletal muscle mass, strength, and functional ability [37–44]. The results of these
studies indicate discrepancies between various study designs where supplementation with
ω-3 fatty acids either positively influenced skeletal muscle parameters or had no effect.
However, the majority of the studies that utilized an EPA/DHA supplementation mixed
dosing strategy alone indicate increases in skeletal muscle function and size [37,41,42,44],
no change in muscle size or lean tissue mass after 2 weeks of immobilization [39], or
improvement in walking speed [43] after the combined EPA/DHA supplementation period.
Nonetheless, there are also studies that failed to show the effectiveness of combined
EPA and DHA supplementation on skeletal muscle strength or mass [38,40,45] as well as
functional ability in older adults [40,45], and our ALA supplementation study in older
adults was mostly ineffective at altering these parameters as well [46]. A recent study
has indicated that IL-6 and subjective muscle soreness were attenuated with omega-3
supplementation at 3 g/day for 4 weeks before the muscle-damaging exercise protocol
(downhill running) [47]. This reveals the potential benefit of using ω-3 fatty acids in the
prevention of some components of exercise-induced muscle damage. Further, a randomized
controlled trial that evaluated an ω-3 fatty acid-enriched diet with high whey protein
supplementation, as well as vibration/home-based resistance exercise, found that IGF-
1 was increased, inflammation decreased, and muscle power increased more so in the
group with ω-3 supplementation; however, based on sex-analyses, the male group was
the only group that showed effects on inflammation and muscle power [48]. It is likely
that the differences noted in the above studies are due to alterations in the length of the



Nutrients 2023, 15, 2926 6 of 11

supplementation period, the dose of EPA/DHA supplementation, the various parameters
measured, and the type of study design used.

Oxylipins are a group of key mediators of the metabolism of long-chain polyunsatu-
rated fatty acids in humans. A recent study determined the relationship betweenω-3,ω-6,
andω-9 oxylipin metabolites and markers of skeletal muscle biology (skeletal muscle mass,
strength, and functional performance) both before and after 24 weeks of supplementation
with combined EPA, DHA, and docosapentaenoic acid (DPA)ω-3 fatty acids [49]. There
was a negative correlation betweenω-6 andω-9 fatty acid metabolites with skeletal muscle
mass and strength at baseline; however, even when the ω-3 fatty acid metabolites were
increased after the 24-week supplementation period, there was no correlation with the
ω-3 fatty acid oxylipins and skeletal muscle parameters [49]. The authors concluded that
oxylipin status might have little to do with the health of skeletal muscle in humans of old
age and low muscle mass.

Some human-based studies have attempted to identify the mechanism(s) underlying
the positive effect of supplementing with ω-3 fatty acids on skeletal muscle mass and
function. Integrated myofibrillar protein synthesis (MyoPS) remained higher in a group of
healthy young females who supplemented with a combined EPA/DHA dose of 5 g/day
for 4 weeks before undergoing 2 weeks of limb immobilization and then 2 weeks of
recovery from the immobilization when compared to a placebo [50]. This resulted in
an attenuation of muscle disuse atrophy in the ω-3 supplemented group (8% decrease)
when compared to the control group (14% decrease) [50]. Further, activating transcription
factor-4 (a factor involved in amino acid synthesis) was elevated in theω-3 supplemented
group, thus suggesting a potential mechanism whereby supplementing with ω-3 fatty
acids may aid in the maintenance of skeletal muscle during disuse atrophy [50]. Another
study in healthy older adults evaluated 24 weeks of combined EPA/DHA supplementation
(2.16 g/day) on thigh muscle volume and various skeletal muscle genes involved in muscle
structure and growth [51]. Here, they demonstrated significant increases in skeletal muscle
mass and function as well as an attenuation of the inhibition of the mTOR pathway with
supplementation of ω-3 fatty acid via inhibition of the calpain- and ubiquitin-mediated
proteolytic pathways [51]. These results suggest that supplementation withω-3 fatty acids
in older humans may have a small but noticeable effect on the mTOR signaling pathway of
skeletal muscle protein synthesis. This finding contrasts with the earlier findings of McGlory
et al. [50], where there was no change in the phosphorylation of mTOR or the downstream
product p70s6k in immobilized limbs of younger females afterω-3 supplementation. This
may be due to the different ages of the participants and/or the differences in the two study
designs (immobilization versus normal day-to-day activities). Nonetheless, in younger
healthy, recreationally active young males, 4 weeks of supplementation with a combined
EPA/DHA (4.4 g/day) blend was able to significantly increase focal adhesion kinase (which
regulates cell survival and proliferation) from baseline to the 4-week time point in skeletal
muscle biopsies [52]. In this study, the protein content of mTOR increased after the first
week ofω-3 supplementation, suggesting an effect on this pathway in skeletal muscle [52].
Interestingly, in a series of two studies, Smith et al. [53,54] found that when combined
with insulin and amino acid infusion, supplementation with the ω-3 fatty acids EPA/DHA
(3.36 g/day) for 8 weeks improved synthesis rates for muscle protein as well as various
components of the mTOR pathway in both young and old adults. These results indicate
there may need to be other anabolic stimuli present to enhance the ability ofω-3 fatty acids
to produce an anabolic effect in skeletal muscle.

More recent studies have evaluated the effects of ω-3 supplementation strategies
on skeletal muscle in younger individuals as well. Relative and absolute upper body
strength and relative lower body strength were enhanced following 10 weeks of resistance
exercise when it was combined with an EPA and DHA supplementation protocol when
compared to a placebo supplement; conversely, body composition was improved with
the resistance exercise but was not different between the ω-3 and placebo groups [55].
Another study suggests an attenuation of decreases in range of motion and creatine kinase



Nutrients 2023, 15, 2926 7 of 11

blood concentrations with 4 weeks of supplementation (combined EPA and DHA) after
participants were subjected to a 60-repetition eccentric muscle action exercise using the
biceps brachii muscles [56]. Further research has indicated that 6 weeks of resistance-
exercise training combined with EPA/DHA supplement was able to effectively reduce the
inflammatory, muscle damage, and redox state in response to strenuous acute resistance
exercise versus placebo in a young, healthy cohort [57]. Thus, in younger adult cohorts,
it seems ω-3 may have a positive effect on some parameters associated with or directly
linked to skeletal muscle function.

Some population-based research has been carried out evaluating ω-3 intake on
strength and all-cause mortality. First, a cross-sectional study was conducted assessing ω-3
fatty acid intake in a large cohort of Korean adults, demonstrating that increasedω-3 intake
was positively associated with hand grip strength suggesting an effect on skeletal muscle
strength [58]. Other research indicated that data from the China Health and Nutrition
Survey (CHNS) and the National Health and Nutrition Examination Survey (NHANES)
showed varying results when evaluating dietary intake of ω-6 and ω-3 fatty acids [59].
Here, the researchers determined that the CHNS data indicates that increased dietary
intake of marine ω-3 was inversely associated with mortality; however, the NHANES
data specified that this relationship was not present [59]. Furthermore, the intake of
ALA was positively associated with all-cause mortality in the CHNS data, whereas in the
NHANES cohort, the relationship between ALA intake and all-cause mortality was inverse,
suggesting differing results dependent on the population studied [59].

In summary, some research in humans that have utilized ω-3 supplementation strate-
gies alone indicates a potential role for these fatty acids in maintaining or improving
skeletal muscle outcomes in both younger and older adults. As the studies by Smith
et al. [53,54] point out, the presence of another type of anabolic stimulus may be necessary
to promote the positive effects of ω-3 intake. Certainly, there are other human-based
studies that have evaluated supplementation ofω-3 fatty acids during resistance-exercise
training programs [45,46,60–67] with varying effects on skeletal muscle mass, strength,
and function. A recent meta-analysis has indicated that a longer (6-month) intervention
is likely needed at a dose higher than 2 g/day to contribute to small muscle mass gain,
strength increases, and functional improvements in older adults [68]. Nonetheless, other
meta-analyses have indicated that there is minimal effect on muscle mass and a slight
improvement in muscle strength in older adults [69,70]. The two previous meta-analyses
also indicated disparities in what occurred to functional ability with ω-3 supplementation,
with one indicating an improvement [69] and one indicating no effect [70]. Furthermore,
narrative reviews on the topic have indicated that more evidence is needed to support
the use ofω-3 supplementation strategies [71], the frequency and dosing pattern used to
reduce the risk of sarcopenia needs to be delineated [72], and the anti-sarcopenic influence
ofω-3 supplementation in older adults requires further clarification [73]. However, many
older individuals are largely sedentary and have reduced amounts of physical activity,
which makes it vital to find strategies, such as ω-3 intake, to improve muscle health in
aging adults and reduce the healthcare impact this has on individuals and society [74].

5. Future Directions for Research

Upcoming research in this area should focus on the underlying mechanisms whereby
ω-3 supplementation strategies may enhance skeletal muscle parameters in the absence
of other interventions. This will provide clear information on the potential benefits (and
possible drawbacks) of supplementing with ω-3 fatty acids. ω-3 fatty acid dosing is
extremely variable between different study designs. Finding the optimal dose that could
enhance skeletal muscle, particularly in aging individuals, is key to understanding the
potential positive effects this nutrient could have. Also, more research in inflammatory
non-communicable diseases (such as type-II diabetes, cardiovascular disease, autoimmune
disease, and cancer) management by ω-3 supplementation strategies will likely reveal the
underlying mechanisms whereby skeletal muscle could be enhanced in these conditions.
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6. Conclusions

The effects ofω-3 fatty acid intake alone on skeletal muscle form and function have not
been fully elucidated. For now, it seems that the main mechanisms thatω-3s are involved
with the aiding of skeletal muscle include (1) a decrease in inflammation, (2) enhancement
of muscle protein synthesis, (3) alteration in the sensitivity of insulin, and (4) improvements
in muscle satellite cell activity. Future work in this area will likely identify other underlying
mechanisms at work in the positive effects that these fatty acids may have in enhancing
and promoting skeletal muscle.
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