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Abstract: The way that males and females react to environmental exposures and negative impacts
on their neurological systems is often different. Although previous research has examined the cog-
nitively impairing effects of solitary metal exposures, the relationship between metal mixtures and
cognitive function, particularly when considering an individual’s sex, remains elusive. This study
aimed to investigate the sex differences in the association between multiple metal combinations and
cognitive function in older Americans. This research employed the 2011–2014 NHANES survey of
elderly Americans. The association between five mixed metals and four cognitive tests (the animal
fluency test (AFT), the digit symbol substitution test (DSST), the instant recall test (IRT), and the de-
layed recall test (DRT)) were investigated with generalized linear regression model (GLM), Bayesian
kernel machine regression model (BKMR), weighted quantile sum regression model (WQS), and
quantile g-computation regression model (Qgcomp). A total of 1833 people, including 883 males
and 950 females, enrolled in this cross-sectional study. We discovered that blood lead and blood
cadmium were negatively associated with cognitive performance, while blood selenium demon-
strated a positive association with cognitive function in older people. The negative relationship
of heavy metal combinations on cognitive function might be somewhat reduced or even reversed
via selenium. The IRT, AFT, and DSST are three of the four cognitive tests where men had more
dramatic positive or negative results. There was a sex-specific connection between blood metal ratios
and cognitive function among older Americans, as evidenced by the more significant relationship
between mixed metals and cognitive performance in men (either positively or negatively). These
results emphasize the impacts of ambient heavy metal exposure on cognitive function by employing
sex-specific methods.

Keywords: heavy metals; mixture; cognitive function; joint effect; sex-specific

1. Introduction

Older people frequently experience cognitive impairment, which harms their quality
of life and social interactions. Declining cognitive function significantly increases both per-
sonal and public health burdens as the percentage of the elderly population rises quickly [1].
According to reports, several physical, psychological, social, and living variables and health
factors combine with inherited and external factors to trigger cognitive decline [2]. Current
evidence indicates that environmental factors, such as heavy metals, may impact the cogni-
tive function of older people [3,4]. Although metals are naturally existing elements, diffuse
air pollution, cigarette smoke, and contaminated food and water are the main artificial
sources of exposure [5]. Individuals with elevated levels of heavy metals face a risk of
developing renal injury, neuropathy, coronary disease, and other serious illnesses [6].
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When examining illness burden, gender differences in metal toxicity should be taken
into account. Metals can cause cellular reactive stress after entering the body through many
different paths, leading to various physiological, metabolic, and behavioral dysfunctions.
Differences in the dopaminergic system and neuroimmune axis make males more vulnera-
ble to exposure to metals such as mercury [7]. Evidence for sex-specific neurotoxic effects
of manganese may also derive in part from the metal’s differential assimilation, absorption,
and storage [8]. It has been documented that exposure to dangerous metals, including
lead, cadmium, tungsten, and manganese, is related to lowered cognitive function [7,9–11].
However, it has also been discovered that some heavy metals, such as selenium and zinc,
can benefit cognitive function [12,13]. Laboratory data suggest that there might be sex
disparities regarding how heavy metals affect cognitive performance due to variations
in hormone levels, body makeup, and brain architecture [14,15]. Given that there are
sex disparities in both the prevalence and manifestations of cognitive-related diseases, as
well as in how well these disorders respond to treatment, it is crucial to examine how sex
differences in changes in cognitive ability relate to these differences. The sex-specific rela-
tionship between mental exposure and cognitive function [16,17], however, is still poorly
understood since there lacks sufficient population-based research that concentrates on such.
The findings of this study regarding sex variations in cognitive function may be crucial
for understanding cognitive disease, but this epidemiological study has no individual
predictive value.

Humans are exposed to multiple environmental chemicals concurrently, which can
contribute to interactions between co-managed chemicals and confound the study of ef-
fects. Individuals are inevitably exposed to multiple metals at once, and these metals can
interact with one another. The majority of previous epidemiological research has been
on the relationship between individual metal exposures and cognitive function. Only
single pollutant models have been used in studies on the effects of heavy metal exposure
on cognitive function; this may have an impact on effect estimates by neglecting mixed
data [9,18]. Combinations of metals might function either effectively or antagonistically, as
different metals may facilitate or prevent the absorption of other metals [3,4]. According
to the research conducted on teenagers in Bangladesh, selenium is favorably correlated
with cognition, whereas manganese, arsenic, and cadmium are negatively correlated with
working memory, visual recognition, and memory [19]. Prenatal metal combination expo-
sure has been linked to neurocognitive development in children, according to studies on
neonates [20–22]. In this study, we investigated the correlation between cognitive function
and five heavy blood metals in senior people participating in the National Health and
Nutrition Examination Survey (NHANES) between 2011 and 2014. Additionally, we looked
into correlations between sex and cognitive function, pinpointing individual metals with
the most important mixtures. We expect that the academic and clinical communities will
benefit greatly from the information this study will contribute, which should result in more
efficient prevention for both men and women.

2. Materials and Methods
2.1. Study Design and Population

The National Health and Nutrition Examination Survey (NHANES) is a cross-sectional
population health survey conducted by the National Center for Health Statistics (NCHS) of
the Centers for Disease Control and Prevention (CDC) among the non-institutionalized U.S.
population [23]. The representative samples for this investigation were selected through
a complex multi-stage, hierarchical sampling approach. The protocol for NHANES has
been approved by a review committee affiliated with CDC. All participants completed
informed consent forms. This study combined and evaluated demographic, examination,
laboratory, and questionnaire data from participants enrolled in the NHANES. Our study
was limited to 3632 participants aged 60 or older out of 19,931 respondents who participated
in the NHANES between 2011 and 2014. Throughout the investigation, we removed
respondents with missing sociological characteristics and laboratory test results for serum
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heavy metals (n = 1486), as well as older persons who lacked four complete cognitive
assessments (n = 313). Finally, this study comprised a total of 1833 individuals aged 60 or
older, including 883 males and 950 women. The specific selection process for inclusion in
the study is shown in Figure 1.
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2.2. Measurements of Blood Heavy Metals

The processing, storage, and shipment of whole blood specimens to the NCHS, CDC
for study. Serum concentrations of lead (Pb), cadmium (Cd), mercury (Hg), manganese
(Mn), and selenium (Se) were measured employing inductively coupled plasma mass spec-
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trometry with quadrupole ICPu20MS technology. The serum heavy metal concentrations
of the participants in this investigation are provided in Table 1. In order to comply with the
standards of statistical analysis, the serum heavy metal assay values were log-transformed
during subsequent data processing according to the results of the statistical description.

Table 1. Descriptive statistical results of serum heavy metal content in the population were included.

Percentile

Mean 25th 50th 75th Skew.2SE a Kurt.2SE b Normtest.W c Normtest.p

Blood lead 1.90 1.03 1.49 2.24 50.96 265.31 0.60 <0.001
Blood cadmium 0.55 0.27 0.40 0.65 23.98 43.02 0.72 <0.001
Blood mercury 1.87 0.56 1.04 2.11 42.98 176.52 0.57 <0.001
Blood selenium 195.25 177.90 193.50 208.30 52.00 364.67 0.72 <0.001
Blood manganese 9.48 7.04 8.79 11.18 37.83 177.17 0.75 <0.001

a The skewness coefficient g1 (skewness), its significant criterium (skew. 2SE, that is, g1/2. SEg1; if skew. 2SE > 1,
then skewness is significantly different than zero). b The kurtosis coefficient g2 (kurtosis), its significant criterium
(kurt. 2SE, same remark than for skew.2SE). c The statistic of a Shapiro–Wilk test of normality (normtest.W) and
its associated probability (normtest.p).

2.3. Measurement of Cognitive Performance

The animal fluency test (AFT), the digit symbol substitution test (DSST), and the Con-
sortium to Establish a Registry for Alzheimer’s Disease (CERAD) word list learning test
were employed to evaluate the cognitive function of participants. The reliability of these
tests in determining the cognitive level of the individuals is quite considerable [24]. The
instant recall test (IRT) and delayed recall test (DRT) are part of the CERAD word learning
tests utilized to evaluate the immediate and delayed acquisition of new linguistic material.
AFT was used to measure executive function, wherein participants had 60 s to identify
as many animals as they could, with the total number of adequately identified animals
counting toward the final score. Finally, the researchers employed the DSST to evaluate re-
action speed, sustained attention, and working memory among participants, with the total
number of adequately matched numbers and symbols serving as the score. There is cur-
rently no golden standard for determining poor cognitive performance on the four previous
cognitive tests, with higher scores on all tests indicating superior cognitive performance.

2.4. Covariates

In addition to the five serum heavy metals described above, we investigated a number
of potentially confounding variables, including age (60–69 years; 70–79 years; 80+ years),
sex (male; female), race/ethnicity (non-Hispanic White; non-Hispanic Black; other Hispanic;
other/Multi-racial; Mexican; Other Race, Including Multi-Racial), education level (less
than 9th grade; 9–11th grade; high school grad/GED; some college or AA degree; college
graduate or above), smoking status (never smoker; current smoker; former smoker), alcohol
intake (1–5 drinks/month; 5–10 drinks/month; 10+ drinks/month; non-drinker).

2.5. Statistical Analysis

The data analysis in this study was performed with R (version 4.2.2, R Core Team,
Vienna, Austria). Categorical variables are expressed as the number of instances (n) and
frequency (%), whereas non-normally distributed continuous variables are expressed as the
median (IQR = Q75 − Q25). For group comparisons of data with a normal distribution, we
utilize Student’s t-test, or for group comparisons of skewed variables, we used the Wilcoxon
rank sum test. The chi-square test was performed to examine the variations in rates for cat-
egorical variables amongst groups. p < 0.05 for a two-sided test was considered statistically
significant. In this investigation, a subgroup analysis was conducted to investigate the sex
differences in the relationship between serum heavy metals and cognitive function in older
persons, taking into account the substantial variations between the four cognitive tests in
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the sex stratification. In addition, Pearson correlation analysis was employed to examine
relationships between blood heavy metals.

2.5.1. Statistical Model 1: Generalized Linear Regression Model (GLM)

During the initial stage, this research employed weighted generalized linear regression
models in a complex sampling environment to investigate the connection between four
cognitive scores and serum heavy metal concentrations separately, adjusting for relevant
demographic and behavioral confounders. Serum heavy metals were included in the
analysis of generalized linear regression models with continuous and categorical variables
due to the likelihood of nonlinear correlation between serum heavy metals and outcome.
Dominance ratios and related 95% confidence intervals summarize the statistical results.
Model was adjusted for age, sex, race/ethnicity, education level, smoking status, and
alcohol intake.

2.5.2. Statistical Model 2: Bayesian Kernel Machine Regression (BKMR) Model

The combined effects and potential interactions between serum heavy metals and
cognitive function were then examined via BKMR statistical modeling [22,25]. The nonlin-
ear relationship between exposure and outcome was investigated in this research using
exposure–response cross-sections for a single variable and outcome while other variables
were held constant at the median. Bivariate exposure–response profiles represent how mix-
ture compositions interact, which could be understood as potential interactions between
the slope of the curve for one chemical at the 10th, 50th, and 90th modifications of another
chemical (with the remaining variables fixed at the median). The association plot of the
overall effect of the mixture with outcome shows the change in estimated outcome when
all exposure variables are set at different percentiles simultaneously compared to when
they are fixed at the median. Using the Markov Chain Monte Carlo method, iteration was
set at 30,000.

2.5.3. Statistical Model 3: Weighted Quantile Sum (WQS) Regression Model

The cumulative impact of metal mixture components on cognitive function was esti-
mated by employing WQS regression. The WQS statistical model for multiple regression
in high-dimensional data sets calculates the effects of all exposure factors on outcomes
by constructing a weighted index and determining whether that index is related to out-
comes [26]. The relative intensity of the weights given to each variable by the model allows
the researcher to subsequently evaluate the contribution of each environmental chemical
to the overall index impact, allowing for the identification of significant substances in
the mixture.

2.5.4. Statistical Model 4: Quantile g-Computation (Qgcomp) Regression Model

We further employed the Qgcomp model to overcome the limitations of the WQS
regression model on the direction of association. The G-computation procedure has some
advantages relative to traditional regression, including the decoupling of confounding
adjustment and effect estimation and the causal parameter interpretation [27]. Qgcomp
combines the inferential simplicity of weighted quantile sum regression with the flexibility
of g-computation without the requirement of homogeneity assumption and the linearity
and additivity of exposure. Qgcomp is a straightforward and computationally efficient
method for estimating the association between a combination of exposures and the desired
health outcome. Qgcomp can be used to consistently estimate effects of the exposure
mixture in settings in which WQS regression may be biased or inconsistent but also yield
equivalent estimates with WQS regression in large samples when its assumptions hold [28].
Using the qgcomp.noboot function, a linear model of cognitive function was fitted to
evaluate the total effect through allocating positive or negative weighting indices to each
blood heavy metal by segmenting each metal into quartiles. In order to determine the
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mixing effect’s linearity and display it using a g computation to show the mixed effect, the
qgcomp.boot function (R package, “qgcomp”) was used.

3. Results
3.1. Characteristics of the Study Participants

This study enrolled 1833 eligible participants, including 883 men and 950 women.
As shown in Table 2, the results of the sex subgroup analysis differed in terms of age,
education, smoking, and alcohol consumption. Additionally, males were far more inclined
to smoke and consume alcohol than women. There were significant sex differences on
three of the four cognitive assessments, with males achieving lower cognitive scores than
females (IRT, DRT, DSST). All five serum heavy metal concentrations exhibited a skewed
distribution, as presented in Table 1 of the statistical description of serum heavy metal
concentrations. Analysis of correlation revealed no correlation between serum heavy metal
concentrations included in the study (Figures S1–S3).

Table 2. Characteristics of the study population.

Characteristic Overall, N = 1833
(100%) 1 Male, N = 883 (45%) 1 Female, N = 950 (55%) 1 p-Value 2

Age 0.031
60–69 years 921 (51%) 460 (55%) 461 (48%)
70–79 years 516 (29%) 247 (28%) 269 (29%)
80+ years 396 (20%) 176 (17%) 220 (23%)

Race/ethnicity 0.200
Non-Hispanic White 862 (80%) 389 (80%) 473 (81%)
Non-Hispanic Black 436 (7.8%) 220 (7.2%) 216 (8.4%)
Other Hispanic 203 (3.9%) 100 (4.0%) 103 (3.9%)
Other/Multi-Racial 166 (3.5%) 82 (3.4%) 84 (3.5%)
Mexican American 138 (2.9%) 74 (3.2%) 64 (2.6%)
Other Race, Including Multi-Racial 28 (1.7%) 18 (2.2%) 10 (0.6%)

Education <0.001
Less Than 9th Grade 219 (6.0%) 124 (7.0%) 95 (5.1%)
9–11th Grade 246 (9.4%) 116 (9.4%) 130 (9.3%)
High School Grad/GED 421 (22%) 188 (18%) 233 (25%)
Some College or AA degree 514 (31%) 222 (27%) 292 (34%)
College Graduate or above 433 (32%) 233 (39%) 200 (27%)

Smoking status <0.001
Never smoker 894 (48%) 297 (34%) 597 (60%)
Current smoker 234 (11%) 147 (13%) 87 (8.3%)
Former smoker 705 (41%) 439 (53%) 266 (31%)

Alcohol intake <0.001
1–5 drinks/month 864 (44%) 497 (49%) 367 (40%)
5–10 drinks/month 89 (6.5%) 51 (6.9%) 38 (6.1%)
10+ drinks/month 307 (23%) 198 (31%) 109 (16%)
Non-drinker 573 (27%) 137 (13%) 436 (38%)

IRT 20.0 (17.0, 23.0) 19.0 (16.0, 22.0) 21.0 (17.0, 23.0) <0.001
DRT 6.00 (5.00, 8.00) 6.00 (4.00, 7.00) 7.00 (5.00, 8.00) <0.001
AFT 18.0 (14.0, 22.0) 19.0 (14.0, 22.0) 18.0 (14.0, 22.0) 0.100
DSST 54 (42, 65) 50 (40, 62) 56 (43, 67) <0.001

Notes: 1 n (unweighted) (weighted%); Median (IQR). 2 chi-squared tests with Rao and Scott’s second-order
correction; Wilcoxon rank-sum test for complex survey samples.

3.2. Single Metal Exposures and Cognitive Function

According to the results provided by Tables S1–S6, a correlation existed between
blood selenium and cognition. Blood selenium at Q2 equates was found to have the most
positive effect on cognitive function according to the analysis of GLM based on quartiles
of exposure variables. Additionally, blood lead was negatively correlated with DSST
scores across all variables ((β(95% CI): −0.52 (−0.93, −0.11), p < 0.01); blood cadmium
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was negatively associated with IRT ((β(95% CI): −0.73 (−1.50, −0.03), p = 0.03); blood
cadmium was negatively correlated with DSST (β(95% CI): −3.00 (−5.10, −0.99), p = 0.03);
blood manganese was negatively correlated with AFT ((β(95% CI): −0.05 (−0.11, −0.01),
p = 0.04).

3.3. Multi-Metal Exposures and Cognitive Function
3.3.1. Multi-Metal Exposures and Cognitive Function: BKMR Model

We examined the relationship between five blood heavy metal co-exposures and
cognitive function through the BKMR model (Figures 2, 3, S4 and S5). The results of four
cognitive assessments were positively correlated with blood heavy metal co-exposure
among the male participants. The general impact of blood heavy metal in the female
subset was positively correlated with DRT and DSST scores but negatively correlated
with AFT. Other blood heavy metals were set at their 50th percentile exposure amounts to
evaluate unilateral impacts in univariate exposure–response functions (Figures S6 and S7;
Tables 3 and S7–S9). Blood selenium was found to be a significant component for improved
cognitive performance in the study, and its association with cognitive performance was
more remarkable in males (IRT: 0.99; DRT: 0.71; AFT: 0.81; DSST: 0.99) than in women (IRT:
0.56; DRT: 0.63; AFT: 0.25; DSST: 0.71). Additionally, there was a difference between male
and female groups in the negative association between blood lead, blood cadmium, and
blood manganese and cognitive capacity. For instance, the DRT scores of blood manganese
among males showed an “inverted U-shaped” curve; however, the relationship with blood
manganese in females was DSST. The DSST scores of blood lead and females exhibited an
“inverted U-shaped” curve, yet the connection was falling in males. Notably, when the other
five metals were set at the 10th, 50th, and 90th percentiles, blood manganese and blood
selenium may have possible associations with other metal concentrations (Figures S8–S10).

Table 3. Summary results from BKMR and Qgcomp analysis in the whole population.

Variable BKMR PIP Qgcomp

IRT DRT AFT DSST IRT DRT AFT DSST

Blood Lead 0.15 0.29 0.26 0.49 −0.42 −0.37 0.42 −0.12
Blood Cadmium 0.36 0.37 0.33 0.83 −0.58 −0.63 −0.58 −0.88
Blood Mercury 0.05 0.17 0.06 0.21 0.21 0.08 −0.14 0.02
Blood Selenium 0.99 0.94 0.47 1.00 0.78 0.52 0.58 0.57
Blood Manganese 0.21 0.75 0.25 0.93 0.054 0.40 −0.28 0.41

Models adjusted for gender, age, race/ethnicity, education level, alcohol intake, and smoking status.

3.3.2. Multi-Metal Exposures and Cognitive Function: WQS Model

We initially examined the combined effect of serum heavy metals on cognitive function.
As observed in Figure 4, the IRT, AFT, and DSST are three of the four cognitive tests where
men had more dramatic positive or negative results. Likewise, the beneficial effects of
five blood heavy metals on cognitive performance in males were further supported by
favorable WQS model analysis results (IRT: 3.00 (0.01, 6.00); DRT: 1.49 (0.24, 2.74); DSST:
13.80 (4.61, 22.99). No statistically meaningful variations were found in the negative WQS
model. According to the weighing study of all the demographic factors, blood selenium
had the most significant protective impact on brain performance, while blood cadmium and
blood lead had the opposite effects (Figure 5, Table 4). Similar tendencies were observed
in the sex subgroups. (Figures S11 and S12, Tables S10–S12). Remarkably, blood lead
produced a protective effect in the female AFT test results but not blood selenium.
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Table 4. Summary results from WQS analysis in the whole population.

Variable IRT
Positive

IRT
Negative

DRT
Positive

DRT
Negative

AFT
Positive

AFT
Negative

DSST
Positive

DSST
Negative

Blood Selenium 0.94 0.00 0.68 0.02 0.80 0.00 0.82 0.00
Blood Manganese 0.01 0.34 0.25 0.02 0.04 0.17 0.14 0.01
Blood Mercury 0.04 0.02 0.04 0.07 0.08 0.04 0.03 0.07
Blood Lead 0.00 0.38 0.01 0.41 0.06 0.12 0.00 0.40
Blood Cadmium 0.00 0.25 0.02 0.48 0.02 0.66 0.00 0.52

Models adjusted for gender, age, race/ethnicity, education level, alcohol intake, and smoking status.
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3.3.3. Multi-Metal Exposures and Cognitive Function: Qgcomp Model

Compared to the WQS model, the Qgcomp model allows for direct evaluation
of the effects of different input variables on the dependent variable as it refrains
from making assertions about the combined impacts before testing. The findings of
Figure S13 and Table S13 demonstrate that in the whole population, the cumulative
effects of blood heavy metal levels exhibited a favorable tendency with DRT and
DSST. In the male elderly population, a positive trend within blood heavy metal levels
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was connected with DRT and AFT; in the female population, a negative trend was
associated with IRT and AFT; instead, a positive trend was associated with DSST. Blood
cadmium had a significant negative impact on the DRT test findings (DRT: −0.56),
but blood selenium had the most important positive effect in the IRT, AFT, and DSST
tests in the male group (IRT: 0.95; AFT: 0.70; DSST: 0.83) (Figures S14–S17; Table S14).
Results for the female group revealed that blood cadmium had the greatest negative
effects in IRT, DRT, and DSST (IRT: −0.66; DRT: −0.78; DSST: 1.00), while a substantial
positive impact of blood lead (AFT: 1.00) could be identified in the AFT test (Figure S17,
Table S15). The combined impact of serum heavy metals in the evidence for the entire
community was similar to the earlier findings (positive: blood selenium; negative:
blood cadmium) (Figure 6, Table S15).
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4. Discussion

Our study attempted to determine whether there is a relationship between cognitive
function and blood heavy metals levels in older people and whether there are sex differ-
ences within this association. In this investigation, the GLM, BKMR, WQS, and Qgcomp
models were utilized to evaluate the complex effects of five serum heavy metals on cog-
nitive function. We identified a positive correlation between selenium levels in the blood
and cognitive function in the elderly. Cadmium and lead were significantly and negatively
associated with cognitive function. Men, on average, had weaker cognitive skills than
women, according to studies that considered age into view. Moreover, both in the positive
and negative related directions of the study, older male participants demonstrated a more
marked reaction in cognitive capacity to blood heavy metals. Our main results imply that
the negative correlation of other heavy metals with cognitive function may be reduced
or even reversed by selenium. This study emphasizes the significance of determining
the typical effects of metals in blood on cognitive function using various statistical tech-
niques and contrasting the outcomes while considering the advantages and limitations of
multiple methods.

Organs prone to metal ion enrichment and elevated metabolic activity include the
nervous system in general and the brain in specific. Nerve deterioration and reactive
stress may result from disturbances in metal balance [29]. This study discovered that in
both monometallic and polymetallic models, selenium was favorably linked with brain
performance. Due to its distinct neurophysiological characteristics and beneficial qualities,
selenium is generally considered necessary [12,30]. The redox activity of metal elements
and reactive stress constitute important biochemical signaling pathways for cognitive
function [31]. Selenium, in the shape of selenoproteins, plays an assortment of roles in
normal metabolic processes and metabolism. Glutathione peroxidase, a typical selenopro-
tein, has an antioxidant impact and may protect against cellular damage from reactive
oxygen species [12]. Food sources are a substantial contribution to blood heavy metal
levels [5], and dietary patterns have a considerable impact on serum elemental metal
concentrations [28]. Through the correction of metabolic imbalances and the reduction
of inflammation and oxidative stress, moderate selenium supplementation may enhance
cognitive performance [32]. Notably, although the association of blood selenium on cogni-
tive function was robust in this study, the strongest positive association was observed at
moderate levels. Consideration should also be given to the health concerns associated with
consuming too many foods high in selenium [33,34].

Concerns have been expressed with the increasing proportion of older individuals in
the global population and their potential increased susceptibility to multiple metal expo-
sures due to physiological factors [35]. According to this study, blood levels of lead and
cadmium are negatively correlated with cognitive ability in the elderly. The same trends
have been discovered in health investigations conducted in other areas [10,11]. People are
continuously subjected to numerous elements at the exact moment rather than just one.
Metals can have varying health impacts in situations of mixed exposure due to combined or
adverse interactions [34,36]. Our core findings suggest that the protective effect of selenium
might mitigate or even reverse the negative association between other heavy metals and
cognitive function. All elements of the growth, operation, aging, and illness of the central
nervous system depend on redox balance, and an imbalance causes neurodegeneration [31].
Redox homeostasis is readily impacted by abnormalities in metal homeostasis. Reduced
selenium levels result in neural malfunction, which has been linked to gender in animal
research [37]. Testes may make males more susceptible to the physiological effects of sele-
nium antioxidants, offering neuroprotection [37]. According to several studies, oxidative
stress caused by heavy metals like lead and cadmium causes a variety of physiological,
biochemical, and behavioral dysfunctions in people [29,38,39]. This may be one of the
possible mechanisms by which selenium counteracts the cognitive impairment associated
with other heavy metals. We are, to our understanding, one of the few studies to have
examined the impact of lead and cadmium, as well as selenium alone, on older people’s
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cognitive function. For the variables affecting this joint result to be confirmed, more in vivo
research is required.

Subgroup studies offered distinctive perspectives on metal exposure in various groups.
According to the results of the mixed exposure study, males and females may be affected
differently by exposure to mixed metals; a more excellent relationship (positive or negative)
between mixed metals and cognitive performance in males was also shown. The dispar-
ities in the bodily loads of metal buildup between men and women may explain these
sex-specific correlations [40]. Selenium metabolism and expression of selenoproteins are
sexually dimorphic [30]. The liver and kidney of male and female rats differ in producing
the proteins selenoprotein GPx1, selenoprotein P, and iodothyronine deiodinase 1, with fe-
males producing more selenoprotein when given identical amounts of selenium [30]. Males
have a more significant load of heavy metals and are more vulnerable to the deleterious
impacts of heavy metals, including impaired cognitive development, focus impairments,
and behavioral issues, according to epidemiological and laboratory research [40,41]. Neu-
rotoxic effects that are particular to one sex may be caused by sex variations impacting
these processes, such as differences in accumulation, antioxidant capacity, nutritional needs,
sex hormones, and methylation/gene expression. There are several interrelated variables
that impact metal-related neurotoxicity, ranging from molecular, hormonal, and epigenetic
processes influencing gene regulation, expression, and function to sexually dimorphic
changes in absorption and metabolism [14,17,40,42]. The relationship between mental and
physical makeup may also partially contribute to sex variations in the cumulative impacts
of heavy metals [15]. In addition, additional hypotheses, such as those involving endocrine,
genetic, biochemical, structural, and environmental variables, may explain the sex-based
unequal vulnerability [16,43].

Previous research on the effects of blood heavy metals on cognitive function has only
used single pollutant models, which may result in biased impact evaluations due to the
neglect of mixed effects [9,18]. Therefore, it is crucial to employ specialized techniques
to investigate the mixed implications of multiple pollutants. Determining which statis-
tical method is most appropriate for this research is challenging as there is no a priori
information. To investigate the impact of serum heavy metals on cognitive function in
the elderly, this study employed a variety of statistical models, including the Bayesian
kernel machine regression (BKMR) model, the weighted quantile sum (WQS) regression
model, and the Quantile g-computation (Qgcomp) regression model [34,44]. The findings
will vary depending on particular approaches because these statistical techniques place
varying emphasis on handling distinct statistical characteristics (high dimensionality, mul-
ticollinearity, interaction, and nonlinear effects). Combining different statistical approaches
can help provide reasonably comprehensive information and avoids the one-sidedness of a
single approach [45]. Nevertheless, additional study is required to address mixture and
interaction effects using statistical methods and to clarify biological processes due to the
intricacy of the real environmental effects of multiple metals.

The application of multiple statistical models in this study, which enabled us to
thoroughly evaluate the relationship between metal mixtures and individual metals with
cognitive abilities and ensure the validity of our results, is one of its major advantages.
Additionally, we determined the weight between each metal pair metal mixture and
cognitive ability, which was infrequently evaluated in earlier research. Moreover, NHANES
is broadly representative, so our findings could be applied to various American groups.
However, some limitations should be acknowledged. The data used in this research
originates from a cross-sectional survey. There is no longitudinal follow-up of cognitive
status nor of heavy metals concentrations, which means that a causal relationship cannot
be envisaged, as there may be reverse causality. Additionally, a single measurement might
not accurately reflect exposure over the day because each metal has a distinct distribution
and half-life in the human body. The physiological operation of the brain depends on
the homeostasis of metal ions [38]; through a variety of biochemical mechanisms, trace
mineral components, including iron, copper, zinc, and manganese, may have an impact
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on brain health [43]. Base metals such as copper, zinc, and iron were not included in
this study, which limits the usable scope of the findings. The chance of unmeasured
factors distorting the outcomes cannot be ruled out, although important predictors were
included in our model. The chance of unmeasured factors distorting the outcomes cannot
be ruled out, such as covariates vascular risk factors, although important predictors were
included in our model. Although we adjusted for potential confounders to the best of
our ability, residual confounders are inevitable in the observation environment, including
age, education, lifestyle habits, etc. BKMR, WQS, and Qgcomp do not currently have
weight-based statistical analyses, which may impact the validity of the study results.

5. Conclusions

In conclusion, we discovered that blood selenium was positively correlated with
cognitive performance in older people. In contrast, levels of cadmium and lead in the blood
were negatively associated with cognitive ability. Selenium might partially mitigate or even
reverse the negative correlation of heavy metal mixtures on cognitive function. In addition,
a significant result of our research was that males performed cognitively, on average, worse
than women. It appears that males are more susceptible to the impacts of exposure to mixed
metals, either positively or unfavorably, and the relationship between mixed metals and
cognitive function has been demonstrated to be stronger in men. These findings need to be
confirmed by additional cohort studies, nevertheless, given the cross-sectional approach of
our research.

Supplementary Materials: The following supporting information can be downloaded at https://www.
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on elderly. Table S5. Associations of single blood heavy metals (quartile conversion) and cognitive
function on male elderly. Table S6. Associations of single blood heavy metals (quartile conversion)
and cognitive function on female elderly. Table S7. Summary results from BKMR analysis in the
whole population. Table S8. Summary results from BKMR analysis in males. Table S9. Summary
results from BKMR analysis in females. Table S10. Summary results from WQS analysis in the whole
population. Table S11. Summary results from WQS analysis in males. Table S12. Summary results from
WQS analysis in females. Table S13. Summary results from Qgcomp analysis in the whole population.
Table S14. Summary results from Qgcomp analysis in males. Table S15. Summary results from Qgcomp
analysis in females. Figure S1. Spearman correlation plot of concentrations of individual metals in older
people. Figure S2. Spearman correlation plot of concentrations of individual metals in males. Figure S3.
Spearman correlation plot of concentrations of individual metals in females. Figure S4. Combined
effects of the metal as a mixture on cognitive function in males. Figure S5. Combined effects of the
metal as a mixture on cognitive function in females. Figure S6. Univariate exposure–response functions
and 95% confidence interval for each heavy metal with the other metals fixed at the median in males.
Models adjusted for age, race/ethnicity, education level, alcohol intake, and smoking status. Figure S7.
Univariate exposure–response functions and 95% confidence interval for each heavy metal with the other
metals fixed at the median in females. Models adjusted for age, race/ethnicity, education level, alcohol
intake, and smoking status. Figure S8. Estimated effects (95% CIs) of single aldehydes on cognitive
function of elderly people when the levels of other aldehydes were fixed at 25th, 50th, and 75th. Models
adjusted for sex, age, race/ethnicity, education level, alcohol intake, and smoking status. CI, confidence
interval. Figure S9. Estimated effects (95% CIs) of single aldehyde on cognitive function of males when
the levels of other aldehydes were fixed at 25th, 50th, and 75th. Models adjusted for age, race/ethnicity,
education level, alcohol intake, and smoking status. CI, confidence interval. Figure S10. Estimated effects
(95% CIs) of single aldehydes on cognitive function of females when the levels of other aldehydes were
fixed at 25th, 50th, and 75th. Models adjusted for age, race/ethnicity, education level, alcohol intake,
and smoking status. CI, confidence interval. Figure S11. WQS model regression index weights for a
total of four cognitive tests in males. The WQS models were adjusted by age, race/ethnicity, education
level, alcohol intake, and smoking status. Figure S12. WQS model regression index weights for a total
of four cognitive tests in females. The WQS models were adjusted by age, race/ethnicity, education
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level, alcohol intake, and smoking status. Figure S13. Qgcomp model regression joint effect (95% CI)
for blood heavy metals and four cognitive tests in older people. The Qgcomp models were adjusted
by sex, age, race/ethnicity, education level, alcohol intake, and smoking status. Figure S14. Qgcomp
model regression joint effect (95% CI) for blood heavy metals and four cognitive tests in males. The
Qgcomp models were adjusted by age, race/ethnicity, education level, alcohol intake, and smoking
status. Figure S15. Qgcomp model regression joint effect (95% CI) for blood heavy metals and four
cognitive tests in females. The Qgcomp models were adjusted by age, race/ethnicity, education level,
alcohol intake, and smoking status. Figure S16. Qgcomp model regression index weights for blood heavy
metals and four cognitive tests in males. The Qgcomp models were adjusted by age, race/ethnicity,
education level, alcohol intake, and smoking status. Figure S17. Qgcomp model regression index weights
for blood heavy metals and four cognitive tests in females. The Qgcomp models were adjusted by age,
race/ethnicity, education level, alcohol intake, and smoking status.
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