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Abstract: Atrial fibrillation (AF) is a severe and most common supraventricular arrhythmia in humans,
which, if left untreated or treated ineffectively, can lead to ischemic stroke or heart failure. It has been
suggested that serum vitamin D (VitD) deficiency may be one of the critical factors influencing the
onset of AF, especially in the period after cardiac surgery, such as coronary artery bypass grafting.
Several papers have indicated that VitD supplementation reduces the risk of AF, significantly reducing
the proportion of patients between the control and study groups in both the pre- and postoperative
periods. Factors that increase the risk of AF from VitD deficiency are also further indicated, and these
are age, gender, weight, season or comorbidities. In addition, the cardiodepressive mechanism of
VitD is not fully understood; however, it is suggested that it acts through at least two pathways. The
first indicates a direct effect of VitD on atrial muscle degradation, while the second is related to the
modulation of cardiovascular depression factors. Despite many reports showing correlations between
no VitD concentrations on the development of AF, this topic is still widely debated and the results
from these papers are still subject to doubt. Therefore, this review aims at describing in detail the
problem of correlation between VitD deficiency and the development of AF associated mainly with the
postoperative period, i.e., after cardiac surgery, especially pathogenesis, and results of this correlation,
taking into account recent studies, limitations and future perspectives. Due to the fact that this is still
a topical problem, we believe that the collection of the latest reports and a detailed description of the
problem is most appropriate in this case.

Keywords: atrial fibrillation; vitamin D deficiency; vitamin D supplementation

1. Introduction

Vitamin D (1,25(OH)D) deficiency is seen in various populations around the world
regardless of ethnicity [1–4]. Vitamin D (VitD) status is determined by serum testing and
can vary widely depending on age, gender, complexion, season or location. VitD can
be ingested in the diet as well as synthesized in a complicated metabolic process involv-
ing hydroxylation reactions in two stages. The initiation of VitD synthesis takes place
in the skin as a result of UVB radiation. Its precursor is 7-dehydrocholesterol, which is
an intermediate of cholesterol synthesis, and its activity depends on the concentration of
7-dehydrocholesterol reductase (DHCR7), so the intensity of preVitD synthesis depends
on the concentration of DHCR7 and exposure to sunlight. PreVitD is taken up in the
blood by vitamin-D-binding protein (DBP) and transported mostly to the liver. Here,
through the action of specific CYP450 hydrolases, such as CYP2D11, CYP2D25 and CYP2R1,
another form of VitD, 25-hydroxyvitamin Dt, is obtained through hydroxylation of the
carbon ring at position 25 [5]. Of these three hydroxylases, CYP2R1 is the most important,
and its activity has also been found in the testes [6]. Subsequently, there is a reuptake,
still inactive form of VitD, via DBP transporting it to the kidneys; where, under the ac-
tion of α-1 hydroxylase, also known as CYP27B1, an actively biological form of VitD
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(1,25-dihydroxyvitamin Dt) is produced. Activation occurs due to a second hydroxyla-
tion at 1 position of the carbon chain [7]. It is well known that the hormonally active
form of VitD controls calcium metabolism, but in recent decades, it has been shown to
be a very important regulator of other organismal systems. It is difficult to argue with
the importance of VitD in the face of numerous papers proving the usefulness of VitD
in the treatment of musculoskeletal disorders, as well as its effect on immune function
or correlation with overall body condition [8–12]. However, not only the coexistence of
musculoskeletal and cardiovascular conditions associated with VitD deficiency is indicated,
but also the independent effect of VitD on the cardiovascular system [13]. One of these
is atrial fibrillation (AF), which is the most commonly diagnosed arrhythmia nowadays.
The worldwide incidence of AF has increased significantly over the past three decades
and is now approximately 60 million cases [14]. In addition to the high prevalence of the
disease, the costs associated with hospitalizing and treating patients require large amounts
of funding. It has been calculated that the resources devoted to AF-related treatment and
campaigning range between $6 and $26 billion per year in the US [15]. Despite the financial
outlay and treatment strategies developed, this arrhythmia is still associated with a high
number of complications related to thromboembolic stroke, progressive congestive heart
failure, reduced quality of life or even sudden cardiac death [16]. Its treatment includes
rhythm control through the use of antiarrhythmic drugs which prevents its recurrence
and also anticoagulant therapy reducing the risk of thromboembolic stroke [17]. Another
option is to undergo surgical ablation of the AF initiating center as an alternative to the
conventional treatment [18]. Currently, there are two types of AF, the first of which is
incidental AF (IAF) that is caused by the chronic effects of profibrogenic factors, while
the second arises most often from heart surgery and is referred to as postoperative atrial
fibrillation (PoAF).

The purpose of this review will be to identify the relationship and function played
by VitD in the pathogenesis of AF, as well as to summarize recent years of research on its
supplementation in the context of IAF and PoAF prophylaxis and prevention.

2. Pathogenesis of AF and Role of VitD in Its Induction

The pathogenesis of IAF is not fully understood; however, researchers have identified
factors that appear to be critical elements in the development of IAF. Among them are
disorders of the renin–angiotensin–aldosterone system (RAAS) (Figure 1), indicators of
inflammation and especially C-reactive protein (CPR), fatty acid metabolism and reduced
levels of VitD which correlate in some way with the previously mentioned factors [19–25].
In addition, a decrease in its activity in the blood affects the development of diseases that
contribute to IAF. Altogether, it significantly affects the balance of extracellular matrix
proteins, namely, collagen of various types which is the structural binder of surrounding
tissues. Therefore, the determination of biomarkers of synthesis and degradation, such
as carboxy-terminal telopeptide of type I collagen (ICTP) and N-terminal propeptide of
type III collagen, can indicate atrial structural changes [25,26]. Their labeling in the context
of structural changes in the heart is most reasonable due to the fact that type I and type
III collagens are most abundant there [27]. However, it should be remembered that the
determination of their values in single samples is not fully authoritative because it relates to
the degradation and synthesis of collagen in all tissues of the body, so regular determination
and development of patterns in a permanent study group allows to determine the actual
condition of a particular organ [26]. The exception is when interstitial atrial lesions occur
without comorbidities. Moreover, it seems that collagen III biomarkers are much more
reliable than collagen I due to their higher increase in plasma [23].

The RAAS is a widely understood regulatory axis involved in many processes in
the body. Among other things, it influences the regulation of blood pressure, the body’s
water and mineral balance or the secretion of hormones (antidiuretic hormone) [28]. Ab-
normalities in the functioning of this axis cause serious disorders related to the renal or
cardiovascular system [29]. Excessive and prolonged stimulation of the RAAS axis leads to
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chronic heart failure where angiotensin II plays a key role [30]. It leads to hypertrophy of
myocardial cells and hyperproliferation of fibroblasts which result in the accumulation of
collagen of various types and the appearance of an interstitial fibrosis [31,32]. In addition,
during high RAAS activity, the expression of cardiac receptors for aldosterone is increased
which further stimulates angiotensin-converting enzyme in myocardial cells increasing
the production of angiotensin II driving the process of structural remodeling of the heart
and inducing chronic heart failure [33]. The presence of fibrosis leads to impaired electrical
conduction resulting in re-entry loops or focal beats and inducing IAF [34]. VitD is known
to be one of the inhibitors of the RAAS axis, so the nuclear VitD receptor (VitDR) present in
myocardial cells prevents the above-described changes [35]. Its deficiencies are associated
with hypertension, which is dependent on RAAS axis activation [36]. Ozcan et al., 2015
indicated that patients with hypertension with simultaneous VitD deficiency developed
IAF [24]. The authors excluded patients with comorbidities, which eliminates the potential
role of other diseases in the development of IAF, indicating that the sympathetic nervous
system was overstimulated and thus the RAAS axis was hyperactivated. Similar conclu-
sions were reached by Kirchhof et al. (2014), who note the critical role of the RAAS in
the development of IAF in hypertensive patients [37]. Contradictory correlations were
noted by other authors, suggesting that VitD levels between the control group and the
study group with IAF were not significantly different. In addition, they noted reduced
angiotensin II levels with significant increases in renin and ICTP. However, it should be
noted that the study had a significant number of limitations such as a small group of
patients undergoing the study or lack of information on comorbidities or medications
taken [25]. Many studies indicate that the use of RAAS axis inhibitors reduces the risk
of IAF [31–35]. A study of 47,062 patients indicated that VitD deficiency had no positive
correlation with the occurrence of IAF, but reduced levels of VitD significantly reduced the
efficacy of RAAS axis inhibitors in the treatment of IAF [38], suggesting that VitD acts as a
synergist in inhibiting the RAAS axis, which is consistent with the earlier description of the
interaction between VitD and the RAAS axis.
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Figure 1. Scheme showing the link between atrial fibrillation and the renin–angiotensin system.
The renin–angiotensin–aldosterone system is a widely recognized regulatory axis involved in many
processes in the body. It affects, among others, the regulation of blood pressure, and disorders in the
system appear to influence the pathogenesis of atrial fibrillation.

Inflammatory factors are believed to lead to IAF in various pathological conditions, in-
cluding through adipose tissue in obese individuals, hypertensive disease, coronary artery
disease or autoimmune reactions. In addition, a phenomenon such as “AF begets AF” has
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been observed, in that proinflammatory factors induce IAF through cardiac remodeling
and interstitial fibrosis, and existing IAF further drives the synthesis of proinflammatory
cytokines [21]. Structural remodeling occurs mainly through TNF which activates signaling
pathways for TGF-B and stimulates myofibroblasts. In addition, inflammation increases
the activity of myeloperoxidase II and IX, known as critical extracellular matrix metallo-
proteinases [39–41]. Others are platelet-derived growth factor A (PDGF) and also HSP27
and IL-6 [38,42,43]. To date, little is known about the effects of VitD on inflammatory
markers in the context of IAF, but it is known that VitD plays an important role in inhibiting
inflammation by acting on most of the inflammatory factors [21,44,45] and also induces
the synthesis of anti-inflammatory cytokines [46]. CRP factor is known to be a good and
independent indicator of IAF [47]. A correlation has been found between serum VitD
levels and the activity of the aforementioned protein in various disease states, including
the cardiovascular [48–50]. One study found that significantly reduced VitD levels, but
still without inflammation, did not induce cardiovascular problems, but reduced VitD
levels, along with high CRP levels, increased the likelihood of cardiovascular disease by
as much as 2.69 times [50]. Studies using a high intramuscular dose of cholecalciferol
VitD in COVID-19 patients indicated a reduced risk of IAF, as an adverse effect to the
underlying disease, compared to a group that received a low dose of oral VitD in the
form of alfacalcidol [51]. Although there is much evidence that VitD interacts closely with
inflammatory factors, research is still needed to determine their role in the occurrence and,
more importantly, in predicting IAF.

Obesity, as well as IAF, is a highly topical and growing problem. Figures provided
by the WHO for 2022 indicate that the number of obese people has exceeded more than
1 billion people worldwide. Unfortunately, this condition brings with it a number of
unpleasant consequences, including an increasing trend in the incidence of various diseases
which seems most alarming [52]. Among them, cardiovascular diseases such as heart
failure, IAF, hypertension and coronary heart disease account for a large percentage [53].
The development of IAF on a fatty background is related to the deposition of nonesterified
fatty acids (NEFAs) in epicardial adipose tissue (EAT) leading, as in previous cases, to
structural remodeling of the heart manifested by enlargement and morphological changes
of the left atrium [54]. The remodeling includes NEFA-induced myocardial fibrosis. In
addition, the already growing EAT activates immune responses, mainly through T cells [55]
and produces fibrotic factors, such as reactive oxygen species, proinflammatory cytokines,
metalloproteinases and TGF-beta1 [56–58]. Moreover, it has been proven that EAT has a
paracrine effect on the myocardium through the synthesis of adipofibronectin-activin A,
which has a fibrogenic effect on the atrial wall [59], thus, together with the above factors,
disrupting electrical conduction increasing the likelihood of IAF. To prevent excessive fat
accumulation in tissues, fatty-acid-binding proteins (FABPs) exist in the body in different
isoforms. In cardiovascular disease, adipose-FABP (A-FABP) and heart-FABP (H-FABP)
are the most important, and they counteract EAT deposition by transporting fat molecules
to intracellular sites [57]. H-FABPs, found in large amounts intracellularly, bind NEFAs
from the surface of cardiomyocytes and transport them into the cell to then be involved
in the citric acid cycle in the mitochondria [60]. Increasing damage and changes in the
myocardium cause H-FABP to be released into the blood, thereby reducing the ability
of cardiac muscle cells to bind NEFA and use it as an energy source [61,62]. Therefore,
it is believed that plasma H-FABP levels may serve as a potential marker in predicting
cardiovascular diseases, including IAF [61]; however, Odeh et al. indicate that each of the
FABP isoforms may play a role in the pathogenesis of IAF and serve as a potential diagnostic
biomarker. Although a study describing the direct effects and correlations between VitD
and anthropometric indices in obese individuals has yet to emerge, the data available in the
literature point to its potential role in the induction of IAF in this weight group. First, there
are papers summarizing several recent years of research indicating reduced VitD levels
in obese individuals, thus predisposing them to a number of diseases [63–65]. Second, it
was indicated that obesity and waist circumference were significantly associated with a
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higher incidence of IAF [66], and each 1 k/m2 increase in BMI increases the likelihood
of IAF by 4.7% [67]. The third is that factors secreted and regulated by adipose tissue
affect the molecular mechanisms that induce atrial remodeling [68,69]. Finally, the fourth,
overweight is associated with activation of the RAAS and a systemic response in the form of
hypertensive states, as well as local responses related to the profibrotic effects of angiotensin
II and aldosterone, as seen in the myocardium [70,71]. Although no data have yet been
published on the effect of VitD on IAF induction in individuals, there is plenty of evidence
that it may be one of the more important regulators of this pathomechanism; hence, it is
important to focus future research in this direction.

There are several hypotheses and evidence for the pathomechanism of PoAF, but
the exact cause has not yet been defined. It is believed that it is not a single mechanism
but a series of processes collectively triggering PoAF. The condition itself carries serious
consequences in the form of stroke, thromboembolic diseases or sudden cardiac death [72].
Moreover, it affects between 15 and 60% of the population after cardiac surgery generating
increased medical costs and hospital stay [73,74]. Induction of PoAF is associated with
a short postoperative period, reaching up to 6 days [75], with the most common cases
of PoAF reported between 24 and 72 h [76], which is also consistent with peak levels of
leukocytes or inflammatory markers [77]. Considering the pathophysiology of IAF from
VitD deficiency, it appears that POAF induction has a very similar basis. The majority
of patients showed increased activity of critical proinflammatory factors, i.e., IL-1, IL-6,
TNF-alpha and CRP [78], but it is worth mentioning that the activity of these cytokines was
not elevated in all PoAF cases [77,79]. In addition to generalized, subclinical inflammation,
pericardial fluid effusion occurs due to cardiac surgery, contributing to local inflammation
affecting cardiac tissue. Moreover, despite the availability of the best surgical technologies,
tissue irritation in the case of CABG or ablation of ectopic foci, as well as other cardiac
procedures, results in local inflammation, remodeling the microenvironment of the atrial
muscle, which consequently induces cardiomyocyte apoptosis and electrical conduction
disturbances [72,74]. VitD is one of the regulators against developing inflammation; hence,
it is believed that individuals undergoing cardiac surgery with concomitant VitD deficiency
are more likely to develop PoAF, and VitD supplementation may prevent PoAF in most
patients [80–82]. It has also been assumed that activation of the sympathetic nervous system
also contributes to PoAF by altering atrial refractoriness and also promoting ectopic activity
through noradrenergic stimulation [83]. It appears that VitD deficiency may also play a
role in this case. Although there have been no studies to date determining the effect of
VitD on PoAF when activating the sympathetic nervous system, a study on a group of
young, healthy individuals confirmed that VitD supplementation in young people with
deficiency modulates the sympathetic nervous system, which may prevent the onset of
heart disease in the future [84]. However, further studies are required to determine this
effect on the group entering cardiac surgery. Finally, another pathway for the induction
of PoAF from non-rebound VitD may be the activation of the RAAS axis, which is also
linked to sympathetic nervous system stimulation. In addition, the use of aldosterone
as a biomarker for the prevention of PoAF may serve as a good prognostic indicator for
those burdened with this condition [85,86]. As previously mentioned, VitD is one of the
inhibitors of this axis, and its deficiencies may be associated with excessive atrial fibrosis
and the formation of ectopic foci and re-entry loops. It has been documented that VitD
supplementation inhibits the development of PoAF in some patients with excessive RAAS
activation [87,88]. PoAF on the background of VitD deficiency is multifactorial, and there
are many indications that it acts through IAF mechanisms, but it seems that the critical
point is the level of VitD at the time of entering cardiac surgery, since such procedures
induce high stress and mobilize the body to counteract human-induced changes. This
mobilization is greater if lower the level of VitD recorded before the procedure [89,90],
where its inhibiting effects on the RAAS and inflammation are significantly regressed. For
this reason, determining VitD levels before cardiac surgery and possible supplementation
is quite important.
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3. Relationship of VitD Deficiency and Supplementation to the Risk of PoAF and IAF

The IAF and PoAF that we are discussing, which are caused by other processes
described above, differ both in terms of frequency, recorded VitD levels and the impact
of supplementation. In this section, we intend to discuss, separately for IAF and PoAF,
based on the available papers, the probability of AF occurrence in VitD deficiency, the VitD
concentration that was most often associated with AF, the most effective supplementation
dose and timing and the position of meta-analyses that have been conducted over the years
to evaluate the effect of VitD on AF occurrence.

3.1. PoAF

The vast majority of the papers reviewed below addressed the effect of VitD deficiency
and/or supplementation on the occurrence of PoAF in the context of coronary artery bypass
grafting (CABG) [91–94]. During the hospitalization period following this procedure,
patients often develop AF with varying frequency. Most commonly, a range of 20–30%
of patients is indicated, but much lower frequencies in the 12–16% range have also been
reported [20]. This is directly related to the level of VitD deficiency. As researchers point
out, as a result of the preoperative stress the patient is experiencing, there can be a sudden
drop in plasma VitD levels [80,95]. VitD deficiency, which is one of the elements of the
pathomechanism of PoAF, can be profound or moderate. Therefore, studies most often
use classifications of VitD levels: deficiency to [25(OH)D2] < 20 ng/mL; insufficiency to
20 ng/mL < [25(OH)D2] <30 ng/mL; normal to [25(OH)D2] > 30 ng/mL. AF has been
reported in both deficient, insufficiency and normal states, but most often the average VitD
level at which AF was reported was below 20 ng/mL [1,3,9,10]. Gode et al., whose PoAF
occurred with a VitD level of 9.0 ± 5.0 ng/mL, detailed that 66.6% with PoAF had levels
below 10 ng/mL, and 33.4% had levels of 10–30 ng/m [82]. Moreover, with similar data
(PoAF occurring at a VitD concentration of 7.49 ± 3.81), a cutoff point of 7.65 ng/mL was
set, which had a 60% sensitivity and 64% specificity [11]. Therefore, also the treatment of
the “deficiency” group is more effective than the treatment of the “insufficiency” group [96].
In the study, a difference of 11% PoAF was obtained between the “deficiency” treatment
group (18%) and the “insufficiency” control group (29%) using 50,000 IU 48 h before surgery.
Equally satisfactory results were obtained by supplementing with 600,000 IU 5 days before
surgery [97]. However, the best results were obtained using doses adjusted to the level of
VitD requirement 48 h before surgery [93]. Patients with “deficiency” received 300,000 IU
and “insufficiency” received 150,000 UI, resulting in a 15.52% difference between the study
and control groups [93]. Perhaps, this treatment reduced the number of patients who were
exposed to an excessively high-toxic dose of VitD.

The overwhelming number of studies point to an association between VitD and PoAF.
However, without overlooking studies that prove the opposite, there is evidence of an
inverse correlation between VitD and PoAF [98,99]. According to some, higher levels of
VitD should increase the likelihood of PoAF [94,100]. One should also consider whether
VitD is an independent predictor of PoAF. However, it should be noted that in a study that
debunks this value of VitD concentration, the PoAF+ group nevertheless has a high level of
VitD (19.5 ng/mL) [91].

Using the conclusions of meta-analyses devoted to this topic, the above uncertainties
can be partially answered. Of the seven meta-analyses that focused on the level of VitD and
its relationship to PoAF frequency, six indicated a significant effect of the VitD concentra-
tion [43,101–106]. One contrary paper also clustered papers on IAF and did not distinguish
between them, so we decided to treat the aforementioned four as prognostic [43].

3.2. IAF

Available attempts to determine the frequency of IAF involve different study groups, fre-
quently over many years, often grouping patients with comorbidities [24,107–110]. Therefore,
the frequency of IAF more than once ranges in probability from 1.4% to 27.59% [111–113]. The
increased risk of AF consists, for example, of cardiovascular diseases such as hypertension
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or valvular disease [19,24,107]. Moreover, in at-risk groups, lower VitD values contributed
to an increased incidence of IAF [107]. In addition, as VitD deficiency worsened, which
is also associated with elevated PTH levels, the incidence of AF also increased [114]. To
determine the level of deficiency, observational studies use a similar classification to PoAF.
Again, [25(OH)D2] values <20 ng/mL are predictive of AF incidence [19,115,116]. Deficient
values in one study were associated with 17.2% of AF in the group, while normal values were
10.9% [117]. In a study group from China, [25(OH)D2] values <20 ng/mL led to a twofold
higher risk of AF [115]. The values themselves vary widely and are likely influenced by
comorbidities. For example, the values that occur in cardiovascular diseases (valvular disease,
heart failure and hypertension) and are associated with AF are respectively 9.24 + 7.39 ng/mL;
11.05 ng/mL; 16.8 + −6.5 [19,24,111]. However, cutoff values for new-onset AF have been
found to be much higher, at 16.50 ng/mL or 22.5 ng/mL, according to some authors [24,111].
In healthy populations, on the other hand, VitD values associated with AF are, for example,
19.6 ± 7.4 ng/mL and −18.5 ± 10.3 ng/mL [115,116]. In the case of VitD supplementation,
very long periods (more than 5 years) did not result in a reduction in AF risk [108]. Another
study, on the other hand, showed the effectiveness of VitD supplementation over a period of
6 months [107].

Although most studies devoted to observing IAF do not show a correlation between
VitD concentration and AF frequency, three out of four meta-analyses devoted to this topic
show a significant correlation [43,103,118,119].

4. Why Is It So Difficult to Determine the Effect of VitD on AF
Incidence?—Limitations

Despite high hopes for the potential properties of VitD in reducing the likelihood
of AF episodes, there is still no clear answer to the question of the VitD utility in this
regard [101,103,105,120–122]. This has to do with the limitations posed to researchers by
the substance itself, whose metabolism is extensive and affects numerous tissues through
interactions with nuclear and membrane cell receptors [123–126]. In addition, VitD interacts
with hormones that globally affect the entire body [127,128]. There are also technical and
presumptive limitations related to the study group, the study methodology, the detection
of AF and the determination of its nature, as well as how VitD is supplemented.

VitD is a substance that is subject to seasonal variations [96,129]. Therefore, depending
on the season, we can expect different levels of VitD, and thus, there may be difficulties
in adjusting the appropriate dose of supplementation [93,103,108,130]. In some cases,
additional supplementation that was not included in the medical records could not be ruled
out [107,131]. Depending on the biosynthesis and administration in food or supplements,
VitD affects the degree of calcium resorption from the diet and also stimulates the release of
calcium and phosphate from bone, so it is a very important element in maintaining calcium–
phosphate homeostasis and musculoskeletal health [124]. Although researchers are not
sure which form, VitD2 or VitD3, supplemented most strongly influences the elevation of
serum VitD concentrations, they collectively assert that many factors model the absorption
of VitD from the gastrointestinal tract [132,133]. For VitD contained in food to be utilized,
it must be released from the food. First and foremost, the presence, amount and type
of fats are important for VitD, due to its hydrophobic properties [134]. The influence of
fiber, age, degree of obesity and vitamin status is also indicated [135,136]. The degree of
hydration of vitamin D used for supplementation is also important. It has been indicated
that hydroxylated vitamin D3, i.e., (25(OH)D3), has a higher potential to raise plasma
VitD concentrations than nonhydrated forms [132]. Thus, it is important to be mindful
of the actual amount of VitD intake, especially since there are reports of cardiotoxic and
proarrhythmic effects of too high VitD concentrations [113]. In turn, calcium deficiency and
VitD are known to cause secondary hyperparathyroidism, which results in loss of bone
mass and, most importantly, is associated with a higher frequency of AF [129]. Thus, the
measurement of PTH levels is not only one of the parameters that clarifies the knowledge
of VitD status but also the risk of AF [111]. One study indicated that in the PTH-deficient
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group, the frequency of AF (16.4 per 1000 person-years) was lower than in the group with
PTH deficiency and VitD (20.3 per 1000 person-years) [114]. Therefore, we believe that
papers on VitD that do not take PTH levels into account are less reliable [96,110,114,137].
Especially since most often VitD serum levels are measured at a single time point, making it
difficult to determine the duration of VitD deficiency [111]. Age and gender should also be
taken into account, as these two characteristics determine different values of VitD and PTH
in the body [138]. This is well demonstrated in each age group and results in VitD levels
being much higher in men, while PTH hormone levels are much higher in women [138].
It is also worth noting that calcium levels, according to studies, are significantly higher
in men, which is important because of the importance of this micronutrient in achieving
excitability potential, by cardiac muscle cells. Therefore, some studies in which calcium
was administered in addition to VitD cannot be expected to show the real effect of VitD,
especially since the interaction between the two—VitD and calcium—is still not fully
understood [112,139].

It is also necessary to discuss the limitations associated with the study group. There
are papers that appear in which the limitation is still the small size of the study group as
well as the very large size of the study group which is difficult to systematize [96,113,140].
Therefore, it is currently more difficult and important to complete a representative group
that will apply to a random patient [25,107,110]. The difference in skin pigmentation is
significant enough to influence the results of the study, thus obscuring important con-
clusions [111,141]. Therefore, studies on Caucasian populations, a complexion-diverse
study group from Turkey, or results obtained from measurements among veterans are
difficult to transfer to a random patient [25,107,110,111]. Finally, analyzing patients with
comorbidities, such as hypertension, diabetes mellitus and obesity, who in addition use
medications, is an important factor limiting the usefulness of the results, since these entities
are factors that increase the occurrence of AF regardless of the level of VitD [25,97,113,142].
Randomized, double-blinded clinical trials have advantages over other studies that present
results from selected patients because they are subject to greater control than retrospective
studies and are closer to the randomized patient [97]. On the other hand, when analyzing
data over several years that may be randomized, the questionnaires and medical records
used may be incomplete or unstructured due to changing standards over time [119]. In
addition, the risk of bias, unexpected confounders or overly cursory recording of events
relevant to the study cannot be excluded.

The onset of AF is associated with nonspecific symptoms, such as shortness of breath,
sweats, fainting, dizziness and rapid fatigue [143]. AF can also occur incidentally or be
provoked by a cardiac procedure performed [94,142]. This causes many moments of AF
to go unnoticed and often leaves no serious consequences, but undiagnosed AF is an
important limitation in studying the impact of VitD deficiency. Therefore, ECG is used to
detect AF [143]. However, some authors have focused only on the period of hospitalization
or used medical records, which are not always perfect [87,110]. In particular, those AFs
that are paroxysmal and asymptomatic pose difficulties; however, they are those that
make up a significant portion of the total, so knowing their frequency would be very
valuable [94,108,144]. One solution is to use Holter monitoring during hospitalization
and follow-up examinations after leaving the hospital, which would allow continuous
observation of the heart rhythm [91,93]. This would be particularly appropriate in studies
focusing on the postoperative AF [82].

5. Future Perspectives and Conclusions

Assuming a positive effect of higher concentrations of VitD, future research should
focus on determining an appropriate dose that takes into account the needs of the individual
patient. According to the study, the timing of perioperative administration of the vitamin
is also important. In turn, another part of the study should clarify how long persistent
VitD deficiency or insufficiency is a threshold for promoting IAF and PoAF. In addition,
in order to assess the exact impact and correlations between VitD deficiency and the
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induction of IAF and PoAF, it will be important to compare it with factors involved in the
pathomechanism of these two conditions such as IL-1, IL-6, TNF-alpha, metalloproteinases
and their inhibitors, biomarkers of collagen I and III synthesis and degradation, hs-CRP,
NEFA, FABP isoforms as well as angiotensin II and aldosterone. Prospective, randomized,
double-blinded, large clinical trials with a high degree of control over the study group and
VitD level are needed to complete the knowledge on this topic.

In the current review, we identified potential mechanisms during which VitD de-
ficiency enhances the induction of IAF as well as PoAF. Both types of arrhythmias are
multifactorial in nature, certainly not yet fully described. Before the initiation of IAF in the
heart, there are gradual changes indicative of interstitial fibrin deposition, hypertrophy and
partial necrosis of cardiomyocytes resulting in disruption of cardiac electrical conduction
and isolation of ectopic foci and formation of re-entry loops. Such induced remodeling of
cardiac tissue will lead to the occurrence of IAF within a certain time. Profibrotic effects
are based on metabolites of RAAS (angiotensin II, aldosterone), fatty compounds and their
binding proteins (NEFA, FABP) and also proinflammatory factors (IL-1, IL6 and TNF-alpha).
Although AF is divided into incidental and postoperative, the latter is triggered by similar
pathways, but the role of VitD and its level in the blood seems to be of greatest importance
shortly before cardiac surgery, due to the fact that the lower its activity, the factors described
above act even more strongly, leading to the induction of PoAF in a short period of time. In
addition, the stress of the procedure activates the sympathetic nervous system which only
intensifies the whole pathomechanism of AF.

According to clinical and observational studies, VitD levels can affect the incidence
of AF. Moreover, the risk of AF has been shown to increase depending on the degree of
deficiency. Although not all studies have shown that VitD is an independent factor, the
amount of evidence supports correlations between VitD and AF (Table 1). Therefore, the
dose and timing of VitD supplementation should be carefully determined for the patient,
as this can significantly reduce the number of patients who develop PoAF with IAF.

Table 1. Table showing a summary of studies regarding vitamin D supplementation.

Author
[Ref.] Country Study Design Study

Population
Patients
(n)

Age
(yrs) Gender (Males) State of VitD Dose of VitD Endpoint

Considered Major Findings

[108] USA

Randomized
Double-blind
Placebo-
controlled

Randomized 25,119 66.7 49.2% n/d 2000 IU Incidents of AF VitD supplementation had no
significant effect.

[107] USA Case-controlled Veterans 39,845 57.5 63.1%

Deficiency
(25-OH) D <20 ng/mL
/
Insufficiency
20 <(25-OH)
D <30 ng/mL

n/d Incidents of AF
(25-OH) D >20 ng/mL with VitD
for ≥6 months associated with
lower AF risk.

[114] - Prospective
study Older adults 2481 76.0 -

Deficiency
(25-OH) D <20 ng/mL
/
20 < Insufficiency
<30 ng/mL

n/d Incidents of AF Treatment of VitD deficiency may
contribute to lower the risk of AF.

[91] Cyprus Retrospective
study CABG surgery 128 67.6 85.4%

Present POAF–19.9 ±
6.1 (19.5) ng/mL
Absent PAOF-26 ± 8.2
(26.4) ng/mL

n/d New-onset
postop AF

VitD level was not an independent
predictor for POAF.

[97] -
Randomized
Prospective
study

CABG surgery 196 59.29 70.0% 14.43 ng/mL
600 000 IU
5 days before
surgery

POAF during
the first 5 days
after CABG
surgery

VitD supplementation reduces the
incidence of POAF.

[94] Germany Prospective
cohort study CABG surgery 201 66.6 84.6% Deficiency

17.7 ng/mL - New-onset
postop AF

Elevated 25(OH)D concentration
and VitD supplementation rather
revealed an increased OR for POAF.

[93] - Randomized
Double-blind CABG surgery 116 65.05 25%

Deficiency
10.77 ± 3.21 ng/mL
/
Insufficiency
25.13 ± 3.45 ng/mL

150 000 IU
/
300 000 IU
48 h before
surgery

New-onset
postop AF

Preoperative short-term high-dose
VitD supplementation significantly
preventive of POAF.

[87] Cyprus Case-controlled CAGB surgery 328 63.8 43.7%

Deficiency
11.4 ± 4.9 ng/mL
/
Insufficiency
24.6 ± 3.7 ng/mL

50 000 IU 48 h
before surgery

New-onset
postop AF

VitD administered 48 h before the
operation reduces the risk of PoAF
in the deficiency group but not in
the insufficiency group
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