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Abstract: The endothelial glycocalyx (eGC) is a dynamic hair-like layer expressed on the apical
surface of endothelial cells throughout the vascular system. This layer serves as an endothelial cell
gatekeeper by controlling the permeability and adhesion properties of endothelial cells, as well as by
controlling vascular resistance through the mediation of vasodilation. Pathogenic destruction of the
eGC could be linked to impaired vascular function, as well as several acute and chronic cardiovascular
conditions. Defining the precise functions and mechanisms of the eGC is perhaps the limiting factor
of the missing link in finding novel treatments for lifestyle-related diseases such as atherosclerosis,
type 2 diabetes, hypertension, and metabolic syndrome. However, the relationship between diet,
lifestyle, and the preservation of the eGC is an unexplored territory. This article provides an overview
of the eGC’s importance for health and disease and describes perspectives of nutritional therapy for
the prevention of the eGC’s pathogenic destruction. It is concluded that vitamin D and omega-3 fatty
acid supplementation, as well as healthy dietary patterns such as the Mediterranean diet and the
time management of eating, might show promise for preserving eGC health and, thus, the health of
the cardiovascular system.

Keywords: endothelial glycocalyx; lifestyle diseases; cardiovascular health; obesity; diabetes; hypertension;
nutrition therapy; Mediterranean diet; vitamin D; dietary sulfur; dietary nitrates; mechanotransduction;
endotoxemia; intermittent fasting

1. Introduction

The endothelial glycocalyx (eGC), sometimes referred to as the endothelial surface
layer, is a protective layer of glycoconjugates (e.g., carbohydrates covalently linked to
other molecules such as amino acids, proteins, lipids, etc.) that covers the luminal side
of the endothelial cells (see Figure 1). In homeostatic conditions, this layer serves as an
endothelial cell gatekeeper by controlling the permeability of substances from the blood to
the interstitium and initiating the adhesion of blood-carried molecules to the cell surface [1].
In addition, the eGC is crucial for proper endothelial nitric oxide production and vasodi-
latation. Thus, the eGC serves an important regulatory function for the cardiovascular
system [2]. Pathogenic destruction of the eGC is detected in a large number of cardiovas-
cular conditions, including atherosclerosis [3,4], hypertension [5], diabetes mellitus [6],
chronic kidney disease [7], ischemia reperfusion syndrome [8], and septic shock [9]. Most
of the current research regarding the eGC is aimed towards acute care surgery and peri-
operative care, because derangement of the eGC is proposed to increase the severity of
sepsis. Presently, little is known about the regeneration or prevention of its pathogenic
destruction in randomized controlled clinical trials [10,11]. It is suggested that the main
reason behind this is a lack of reliable detection techniques is due to the ex vivo instability
of the eGC [12]. In addition, this important structure of the cardiovascular system has
been overseen by researchers, funding bodies, and pharmaceutical companies [13]. Nev-
ertheless, newly developed methods, such as side-stream dark-field imaging, orthogonal
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polarization spectral imaging, and improved fixation techniques, have shed new light
on the eGC and its role in health and disease [14,15]. The in-depth eGC knowledge is a
missing link in primary, secondary, and tertiary cardiovascular disease prevention and
treatment. The eGC is, therefore, a novel target for various healthcare professionals such as
nutritionists, dietitians, clinicians, surgeons, oncologists, researchers, and many others. The
relationship between diet and eGC destruction and/or restoration is still an unexplored
territory, but it might be particularly important in cardiovascular disease prevention and
treatment. The aims of the present review are the following: (1) to provide an overview of
current eGC knowledge—including factors that influence eGC structure and function in
microcirculation—in healthy conditions and in chronic vasculature-related inflammatory
pathologies; and (2) to describe perspectives of nutritional therapy, as well as diet- and
lifestyle-related behaviors for eGC destruction prevention and regeneration.
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Figure 1. A model of the position of endothelial glycocalyx, which covers the apical surface of the
endothelial cells (1). The circled area presents a part of the vessel without the glycocalyx (2). In
this area, leukocytes, platelets, and other blood components can reach the endothelial cell receptors
more easily and start blood clot formation, leukocyte migration, and other processes. This quicker
adhesion is important in wound healing but might contribute to chronic disease progression as well.
(3) Various blood components passing through a blood vessel. Created with BioRender.com.

2. The eGC in Healthy Conditions—Extended State of eGC

The eGC is a dynamic hair-like layer expressed on the apical surface of the endothelial
cells, facing the lumen, throughout the vascular system. It is described as a “hair-like
layer” because the structures of eGC resemble microscopic hair when observed under
the microscope [16] (Figure 2). Additionally, the eGC is described as a “dynamic layer”
because it undergoes continuous metabolic turnover that is dependent on the local en-
vironment; as such, in healthy, homeostatic conditions, the eGC is in a state of dynamic
equilibrium with plasma proteins and exists in an ‘extended state’. Most commonly, the
components consist of a proteoglycan backbone with many glycosaminoglycan attachment
sites. Syndecans, glypican-1, biglycans, and perlecans are the typical proteoglycans of
the glycocalyx. These proteoglycans mainly bind to heparan sulfate, which is the most
abundant glycosaminoglycan of the eGC (50–90% of the total glycosaminoglycan pool).
Other glycosaminoglycans that contribute to eGC integrity and permeability control are
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chondroitin, dermatan, and keratan sulfates [17,18]. The final integral part of the eGC
is hyaluronan. Hyaluronan—which is a longer disaccharide polymer compared to chon-
droitin and heparan sulfate—is synthesized directly on the cell surface and anchored with
a CD44 cell receptor [19]. Preventing hyaluronan loss has been suggested as particularly im-
portant in preventing the vascular complications of diabetes mellitus [6,20]. Dogné et al. [20]
suggest that one therapeutic approach could be the inhibition of hyaluronidase 1, an en-
zyme responsible for cleaving hyaluronan from CD44 cell receptors. However, given that
proteoglycans and glycosaminoglycans are not specific to the endothelial cells, but are
ubiquitous in the human organism, the inhibition of cleavage enzymes might negatively
affect functions in other cells. Singh et al. [21] found that immunoglobulin G (IgG) N-
glycosylation patterns in type 2 diabetes were associated with a faster decline of kidney
function, thus reflecting a pro-inflammatory state of the IgG. In that regard, studying the
glycosylation patterns of eGC components might provide a more precise way of combating
vascular symptoms.Nutrients 2023, 15, x FOR PEER REVIEW 4 of 20 

 

 
 

(A) 

(B) 

Figure 2. (A) The extended state of the endothelial glycocalyx. Due to their negative charge, the
glycocalyx components are in dynamic equilibrium with positively charged plasma proteins, which
are depicted as orange ellipses (1). Some of the components are not membrane-bound but contribute
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to the thickness of the whole structure. The thickness and the net negative charge prevent the blood
components from adhering to the cell receptors. The cell membrane (2) does not contain many
adherence receptors. (B) The collapsed state of the endothelial glycocalyx. Different disruptors
can cause eGC to diminish or collapse, either directly or by triggering proteolytic enzymes that
cleave different structures, which, therefore, destroy the equilibrium with plasma proteins. Those
kinds of proteolytic enzymes are usually upregulated in inflammation. The eGC structures detach
from the cell surface and become bloodborne. They may be measured in the blood. The high
plasma concentration of, for example, heparan sulfate (3) or syndecan-1 (4) indicates eGC injury. In
inflammation, blood components, such as red blood cells (5) or platelets (6), have easier access to the
cell surface, and the expression of the adherence receptors on the cell membrane is upregulated (7).
eGC–endothelial glycocalyx.

To date, the main functions of the eGC layer in homeostatic conditions are protection
of the endothelial cell membrane, mechanotransduction, the regulation of vasodilatation,
and the prevention of blood clot and plaque formation (Figure 3) [22]. Another important
function of this layer is the promotion of blood flow homogeneity, which may be a useful
strategy for improving tissue perfusion in many [23]. Most eGC components, especially
the glycosaminoglycans, have anionic-ending molecules such as uronic or salicylic acid,
thereby giving the eGC a net negative charge in homeostatic conditions. The net negative
charge allows the eGC to interact with blood proteins through ionic interactions or create
repulsion against platelets and leukocytes (Figures 1 and 2A) [22,24]. A healthy eGC may
act as a sodium buffer by controlling the influx of sodium into the endothelial cells [25]. This
was proposed because positively charged sodium is most likely to be bound to negatively
charged organic material, which would provide for its osmotic inactivity. The ‘perfect’
sodium storage place would be the eGC, given its ubiquitous position and net negative
charge in homeostatic conditions [25]. Related to this, eGC components, such as chondroitin
sulfate, may have a therapeutic application in the targeted delivery of medical substances.
This suggests an important role of eGC in the docking of oxidants, which may be the base
for developing novel enzymatic antioxidant treatments [26]
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understood. Solid lines are established connections, dashed lines are potential connections. In an
eGC diminished/collapsed state, the functions of the endothelial glycocalyx are practically reversed.
The collapsed state allows blood clot formation and plaque formation, while mechanotransduction
function is reduced. Created with BioRender.com.
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In a healthy human body, the eGC is present in an extended state [27]. This means that
the glycocalyx components exist in equilibrium with blood proteins, thus forming a thick
and dense structure (see Figure 2A) [28]. The thickness and density of the eGC provide
significant protection for the endothelial cells by preventing the platelets and leukocytes
from adhering to the cell receptors on the cell surface. This is possible because the eGC is
much wider, and the proteoglycans extend much further into the lumen of the blood vessel
than the active sites of adherence receptors [29]. In addition, in homeostatic conditions, the
rate of synthesis of adherence receptors is lower than in acute or chronic diseases, which
further reduces the chance of blood component adherence [30] (Figure 2B).

The homeostatic eGC is often described as a vascular gatekeeper. Indeed, the firm
and thick, but flexible and adjustable, structure can be imagined as a protective wall
surrounding the castle, providing great protection against intruders, with the castle being
the endothelial cell.

3. Extended eGC Activates Mechanotransduction and Endothelial Nitric Oxide Release

The so-called wind-in-the-trees conceptual model is sometimes used to describe one
important function of the eGC: the mechanotransduction of blood-flow-induced fluid shear
stress (Figure 4) [22]. Mechanotransduction is a process by which the eGC senses forces caused
by fluid passage through the blood vessels and translates that information inside the endothelial
cell to initiate intracellular signaling cascades. Upon receiving the signal, the endothelial cell acts
in accordance with the given information by implementing, for example, structural maintenance,
vasodilatation, senescence, or an inflammatory response [31]. This conceptual model describes
the eGC components as the trees in a forest and the blood flow as the wind. The branches are
the glycosaminoglycans, the tree trunks are the proteoglycan backbones, the cell receptors are
the grass, and the endothelial cell membrane is the ground [22].
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Those cytoskeletal structures activate the G-protein (5), which activates the transient receptor potential
(TRP) channels and causes Ca2+ influx (6). Ca2+ ions are needed to activate caveolin proteins on the
cell membrane (7), which attach to the endothelial nitric oxide synthase (eNOS) system and activate
it. Activated eNOS generates nitric oxide (NO) (8). NO can then diffuse into the lumen of the blood
vessel or the smooth muscles and cause vasodilatation. Created with BioRender.com.

When the wind (fluid shear stress) blows through the forest, the treetops (glycosamino-
glycans) sense it and move back and forth accordingly. The sensed force is then transduced
onto the three trunks (proteoglycan core) and into the roots. The roots, in this case, would
be the cytoskeletal structures and intracellular eGC domains. When the eGC is preserved
(in the extended state), the winds’ impact (blood flow shear stress) is scattered between
the branches of the treetops, whereas the ground senses little to none of the wind’s impact.
However, the important information about the state of the blood flow is transduced via
the trees into the roots. If the trees were not present or were sparse, the wind would
directly interact with the ground and impact the ground, while the information could not
be properly transmitted into the deeper structures.

Another theoretical review of the glycocalyx describes the mechanotransduction prop-
erties of the eGC by using a bumper car conceptual model. This model explains the
processes inside the endothelial cell upon the arrival of signals from the blood. The bumper
car analogy came to be after an experiment which showed that dense peripheral actin
bands (DAPABs) were disrupted by uniform shear stress. In addition, the movement of
vinculin, a cytoskeletal protein, closer to the cell membrane was detected. Both observa-
tions were enhanced when higher shear stress was implemented [32]. These observations
suggest that cytoskeletal reorganization indeed occurs as a consequence of mechanical
signal transduction of the eGC. The same effect of cytoskeletal reorganization inside the
endothelial cell was not observed when the eGC was destroyed by proteolytic enzymes.
Mechanotransduction is an important mechanism used to trigger different pathways in
the endothelial cell. For example, eGC mechanotransduction initiates the process of nitric
oxide (NO) production through the activation of endothelial nitric oxide synthase (eNOS)
through calcium/calmodulin activation and consequential Ca2+ influx [31] (Figure 4).
Endothelial-derived NO exerts powerful localized vasodilatory effects on the vascular
smooth muscle cells [33]. Additionally, NO contributes to the inhibition of platelet ag-
gregation and leukocyte adhesion. As NO is produced when eGC is preserved, the same
functions can be contributed to a healthy eGC, and a proper NO production could be an
indicator of eGC health.

4. The eGC in a State of Low-Grade Inflammation—Diminished eGC
4.1. eGC Response to Inflammation

The state of inflammation, led by the activation of the TNF-α pathway, triggers the
collapse of the eGC (described in the chapter below). The collapse of the eGC is much
needed in acute conditions such as injury or infection, as this promotes endothelial cell
interaction with leukocytes/platelets and blood clot formation. However, certain eGC
disruptors (described in detail later) can induce low-grade chronic inflammation, which
may lead to the development of vascular consequences of chronic diseases if disruptors
continuously trigger the shedding or endocytosis of eGC. Shedding and endocytosis are
two main responses of eGC components to various disruptions from the environment. Both
responses cause the collapse of the eGC and disrupt the dynamic equilibrium. For example,
acting on an environmental cue, a family of enzymes collectively known as sheddases
or secretases can be released and proteolytically cleave the proteoglycans’ ectodomain,
leaving it virtually intact (Figure 2B, element 4). Little is known about the exact structure
of the eGC sheddases. Novel findings by Yang et al. [34] revealed that a sheddase called
disintegrin and metalloproteinase 15 (ADAM15) cleaved the CD44 surface anchor for
hyaluronan. These kinds of shedded ectodomains travel via the bloodstream, where
they may function as autocrine or paracrine effectors. The shedding mechanism both
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generates soluble ectodomains and rapidly reduces the amount of cell surface heparan
sulfate [35]. Heparan sulfate reduction is much needed in conditions following acute injury,
where platelet aggregation is needed for wound healing [36]. On the other hand, different
ligands from the blood can bind to surface glycosaminoglycans and be internalized into the
endothelial cell and serve as the cell’s nutrient source. Viruses can sometimes hijack this
mechanism of ligand transport. For example, early-stage research has shown that the spike
protein of SARS-CoV-2 interacts not only with angiotensin-converting enzyme 2 (ACE2),
but with heparan sulfate as well, via the process of endocytosis or internalization [37]. These
findings suggest that eGC knowledge might be important in formulating virus treatments,
especially for the vascular consequences of the disease such as hypercoagulability and
acute coronary symptoms.

4.2. Mechanisms of eGC Collapse

TNF-α and TNF signaling are hallmarks of inflammation and have been related to the
cardiovascular pathophysiology of atherosclerosis, sepsis, diabetes, and obesity, among
others [38]. TNF-α is a master regulator of proinflammatory mediators, and the activation
of the TNF-αmetabolic pathway has a major impact on the eGC structure [38]. Studies have
demonstrated that acute exposure to TNF-α or thrombin, another inflammatory mediator,
causes rapid shedding of the glycocalyx structure [16,39]. This process results in increased
vascular permeability, tissue oedema, coronary leakage, and mast cell degranulation [40].
TNF-α activation has a negative impact on the eGC integrity through several mechanisms,
e.g., by the induction of reactive oxygen and nitrogen species (ROS/RNS) [12] or by
activating the NF-κB metabolic pathway [41]. Certain ROS/RNS can then cleave the
ectodomains of eGC constituents via the activation of matrix metalloproteinases (MMPs)
and inactivation of endogenous protease inhibitors [15]. Enhanced NF-κB signaling leads
to the syndecan-4 domain synthesis [42]. In these inflammatory conditions, the synthesized
syndecan-4 domains are rapidly shed from the endothelial cell surface. This shedding
causes a disruption in the eGC integrity, but it is also proposed that, when present as a
soluble molecule in the blood, syndecan-4 may facilitate tissue fibrosis [42]. SIRT-1-deficient
endothelial cells have been shown to exhibit increased NF-κB pathways, thus shedding
syndecan-4 ectodomains [43,44].

5. eGC in Chronic Diseases

Given that eGC destruction, due to environmental factors is inherent to several chronic
pathologies, it is difficult to ascertain the contribution of eGC integrity to vascular dis-
ease progression/severity. As seen with metabolic syndrome, these kinds of diseases can
be unified when constructing prevention tactics to preserve the eGC. The pathophysi-
ology of important chronic conditions and the importance of eGC is highlighted in the
following section.

5.1. Hypertension

As mentioned previously, one of the proposed eGC functions is to buffer plasma
sodium and control its influx into the endothelial cells [25]. These findings are particularly
important when studying hypertension. In one cross-sectional study, newly diagnosed
hypertensive patients (n = 320) had decreased eGC thickness compared to healthy controls
(n = 160). Reduced eGC thickness was related to signs of impaired vascular function,
including increased central systolic blood pressure, as well as increased pulse wave veloc-
ity. These findings suggest that eGC thickness is reduced in untreated hypertension [5].
However, the question of the primary disruptor of eGC destabilization in hypertension
is not yet definitively answered. Is it merely a consequence of mechanical destruction by
increased blood pressure, or is it due to high salt intake, which may cause eGC collapse
that has arterial stiffness and increased blood pressure as a consequence? The current
evidence seems to suggest the latter. One study showed that a mere 2% increase in plasma
sodium beyond 140 mM may stiffen the endothelial cells by approximately 20% [45]. In
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a related study, five days of sodium overload led to a ~50% eGC destabilization and 68%
reduction of heparan sulfate [46]. It seems that, in the state of daily sodium excess, the eGC
diminishes (Figure 2) and loses the sodium buffer capacity.

The first study to investigate the effect of salt (sodium chloride) on microvascular den-
sities using in vivo sublingual imaging was performed by Rorije et al. [47]. The researchers
aimed to determine if high salt intake would reduce sublingual microvascular density and,
therefore, reduce eGC thickness in normotensive individuals (n = 18, all-male, mean age
29 ± 5 years). No blood pressure or sublingual microvascular differences were found when
comparing high and low salt intake groups. However, an increase in salt consumption
significantly correlated with a lower recruitment rate of sublingual capillaries after the ad-
ministration of nitroglycerin, thus indicating lower structural microvascular density. These
findings also suggest that a high salt load by itself might be one of the first disruptors of
the eGC, which may lead to the cardiovascular damage observed in hypertensive patients.
This study opens an array of questions and discussions worth exploring further in the
attempt to prevent cardiovascular disease occurrence.

5.2. Atherosclerosis

Although research in humans is scarce, the role of the eGC in atherosclerosis in animal
models is well recognized. A healthy, extended eGC prevents the occurrence of atheroscle-
rotic plaque by ionically repelling macromolecules and mechanically preventing their
adherence to the endothelial cell, thus lowering the chance for their migration and oxida-
tion [4]. In animals, vascular sites with compromised eGC and lower mechanotransduction
function seem to be more vulnerable to inflammatory consequences and the formation of
atherosclerotic plaque [48,49]. The results from animal studies have led to an attractive
hypothesis, which suggests that clinically assessing the thickness of the eGC might allow
for the early detection of atherosclerosis. However, studies conducted in humans display
contradicting results. For example, a clear connection between eGC thickness and vascular
risk or progression/severity of vascular diseases has not been demonstrated. In one multi-
ethnic cross-sectional study (n = 6169, 42.4% male, mean age 43.6 ± 13), the eGC thickness
was assessed by using side-stream dark-field imagining, which is considered to be the most
suited method according to some sources [50]. Reduced eGC thickness was associated
with the female sex and diabetes after correcting for possible confounders such as age,
diastolic blood pressure, and body mass index. Reduced eGC thickness was not associated
with prevalent cardiovascular disease [51]. This study questions the viability of the used
measurement technique as a proper measure of eGC thickness and the involvement of the
eGC in atherosclerosis pathophysiology.

However, the cardiovascular biomarkers used in the study by Valerio et al. [51]
(LDL cholesterol, HDL cholesterol, and triglycerides) might not show a full picture of
the cardiovascular disease risk and, therefore, might not be reliable in comparing the
consequences of reduced eGC thickness [52]. In a certain part of the population, namely,
people with insulin resistance, the measures of LDL cholesterol can be in discordance
with apolipoprotein B (apo B) and LDL particle concentration [53]. The number of apoB-
containing lipoprotein particles is sometimes more predictive of high cardiovascular disease
risk than the cholesterol content (LDL-C). In addition, the smaller size of the lipoproteins
could be more indicative of future cardiovascular disease than the number of LDL-C packed
in these molecules, due to their greater reactivity [54]. When assessing the connection
between the eGC thickness and cardiovascular disease risk, other cardiovascular risk
assessment parameters might be a good addition to the lipid panel.

5.3. Abdominal Obesity

The discordance in atherosclerosis risk assessment described in the chapter above
is particularly important in people with diagnosed metabolic syndrome and type 2 dia-
betes [53]. Those conditions are usually accompanied by increased visceral and ectopic fat,
which are metabolically different from subcutaneous fat and contribute to proinflammatory,
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proatherogenic, and procoagulant states [55]. Visceral fat in the abdomen and ectopic
fat surrounding the liver, heart, kidneys, or pancreas accumulate as a consequence of a
chronically positive energy balance. When a person reaches their so-called “fat threshold”,
the subcutaneous fat loses its ability to expand through adipocyte hyperplasia. In that state,
the body responds by increasing visceral fat deposits, thus increasing the production of
proinflammatory cytokines such as TNF-α and interleukin 6 [55]. In addition, ectopic fat
deposits can increase the hepatic production of glucose, which is a process linked to glu-
cose intolerance. The increased TNF-α activity leads to an eGC degradation by activating
ROS/RNS and NF-κB metabolic pathway [55]. Furthermore, increased glucose production
can lead to AGE formation and further eGC destruction (see ‘The effects of elevated blood
glucose on eGC’).

5.4. Hyperglycemia, Type 2 Diabetes, and Metabolic Syndrome

Chronically increased blood glucose (i.e., hyperglycemia), a hallmark of diabetes,
metabolic syndrome, and obesity, causes the increased production of advanced glycation
end-products (AGE) [56]. AGEs are glycated proteins, lipids, and nucleic acids commonly
present in homeostatic conditions but can be rapidly generated in pathological condi-
tions, such as insulin resistance [56]. Generated AGEs upregulate the iNOS system in
chronic uncontrolled hyperglycemia. When upregulated, the iNOS system causes eNOS
dysfunction and contributes to the inflammatory conditions of the body [57]. Both eNOS
and iNOS systems used L-arginine and molecular oxygen to produce L-citrulline and
NO. However, when NO is produced in inflammatory conditions, it quickly reacts with
superoxide (O2

−) and generates peroxynitrite (ONOO−), which causes nitrosative stress
and damages proteins, lipids, and DNA [58]. When activated, iNOS further enhances
the generation of oxidative stress, which is a powerful process in eliminating microbial
infections and tumor cells but may also contribute to chronic disease development [59,60].
Reactions between O2

− and NO lower NO bioavailability, which can cause arterial stiffness
and promote atherosclerotic events [61]. AGEs form a cross-link between the basement
membrane molecules of the extracellular matrix [62], thus implying their close relationship
with the eGC; however, the interaction between AGEs and eGC, as well as the implications
for chronic disease development, are largely unknown.

AGEs activate various intercellular signals through receptor- and non-receptor-mediated
mechanisms. For example, receptors for advanced glycation end-products (RAGEs) may,
in part, explain the relationship between the eGC and AGEs. Accumulated AGEs activate
RAGE receptors that have been shown to be present on the endothelial cells and can be
shed from the surface in a manner similar to eGC components, thus forming soluble RAGEs
(sRAGEs) [63]. sRAGEs upregulate the NF-κB pathway and facilitate the inflammatory
cascade through the release of ROS/RNS. ROS/RNS contribute to the shedding of eGC
components and enhance endothelial dysfunction. It has been shown that AGE-bound
RAGEs increase endothelial permeability to macromolecules and block NO signaling activ-
ity [64]. This is perhaps explained by the destruction of the eGC (i.e., the removal of the
endothelial gatekeeper), thus promoting the accessibility of blood component migration to
the endothelial cell.

A growing body of evidence finds that AGEs can derive from food sources and to-
bacco, and they suggest dietary AGE restriction [65,66]. In addition to AGE pro-oxidative
effects, hyperglycaemia might also be responsible for altering the sulfation patterns of
glycosaminoglycan chains and can prevent hyaluronan binding to the glycocalyx [40]. We
have shown that 14 days of sucrose supplementation (3 × 75 g of sucrose per day) impairs
vascular function in young healthy male subjects that was indicated by blood flow during
passive leg movement, which is a method suited for determining the impacts on mechan-
otransduction in vivo [67]. The high sucrose ingestion affected the vasodilatory properties
of the vessels, reduced eNOS activation, and upregulated PECAM-1. Given that a healthy
eGC is important for proper mechanotransduction and that PECAM-1 is upregulated in
oxidative stress that might have been caused by increased sucrose intake, these findings



Nutrients 2023, 15, 2573 10 of 20

suggest a disruption of the eGC. Future research is warranted to investigate the influence
of dietary sugar on the eGC, particularly regarding eGC shedding and integrity.

The effect of accumulated abdominal fat is further augmented by chronically ele-
vated glucose levels, which can cause insulin resistance, which is a hallmark of metabolic
syndrome, diabetes, and prediabetes [68]. In addition, high postprandial glucose lev-
els generate AGEs, which further activate proinflammatory signaling pathways [66] (see
‘The effects of elevated blood glucose on eGC’). Pertynska-Marczewska and Merhi [69]
researched the role of the AGE–RAGE axis in the prevention of atherosclerosis in women in
menopause. They found that circulating sRAGE levels could be correlated with increased
abdominal fat, insulin resistance, diabetes, and metabolic syndrome. They suggested that a
therapeutic inhibition of the RAGE signaling pathway might be beneficial for decreasing
cardiovascular disease risk in women in menopause [69]. Indeed, as discussed previously,
Valerio et al. [51] reported a correlation between diabetes and low eGC thickness, thus
implying “a small glycocalyx size in people with diabetes” (i.e., the diminished/collapsed
state of the eGC). This is in accordance with other research that showed that both acute
and chronic hyperglycaemia significantly reduced eGC size, particularly in patients with
microalbuminuria [70]. Both acute and chronic effects of hyperglycaemia on vasculature
have been recorded and are evident from the fact that the comorbidities of type 2 diabetes
are closely related to the degradation of the vascular system and eGC health [70].

5.5. Chronic Kidney Disease

One of the adverse consequences of diabetes is diabetic nephropathy, which is, next
to hypertension, a major cause of end-stage renal disease [71]. The role of the eGC in
the pathophysiology of diabetic nephropathy is well recognized, and efforts have been
currently made to produce specific therapies that target the regeneration of the glycocalyx
of the fenestrated glomerular endothelial cells and the prevention of albuminuria [72].
Albuminuria is a pathologic state of increased urine albumin due to improper glomerular
filtration partially caused by the destruction of the glomerular endothelial cell’s glycoca-
lyx [72]. It has been shown that people with albuminuria caused by diabetic nephropathy
have drastically increased levels of heparinase and hyaluronidase, which cause shedding of
the glycocalyx [73]. One of such efforts is the inhibition of monocyte chemotactic protein-1
(MCP-1), which is a protein that activates the migration of inflammatory cells such as
monocytes and macrophages to the kidney. Those infiltrated glomerular macrophages
can secrete cathepsin L, which is proposed to be responsible for heparinase activation [74].
Boels et al. [75] showed that MCP- 1 inhibition significantly reduced albuminuria in diabetic
nephropathy and restored glomerular eGC dimensions.

5.6. Chronic Inflammation

Lipopolysaccharides or endotoxins are components of the outer membrane of Gram-
negative bacteria and are often used to trigger inflammation in experimental studies.
In humans, lipopolysaccharides usually originate from the skin, local infections, and
mucosal membranes. In some instances, lipopolysaccharides may cause endotoxemia,
which is marked by the activation of TNF-α and iNOS inflammatory pathways and a
consequential increase in oxidative stress and inflammation [76]. Inagawa et al. [77] noticed
that the eGC of the lungs was severely diminished under experimental endotoxemia
conditions. These findings suggest a causal relationship between the disruption of the
eGC and microvascular endothelial dysfunction, which is a characteristic of sepsis-induced
acute respiratory distress syndrome. In one pioneer research, Li et al. [78] showed that
100 ng of maresin conjugates in tissue regeneration 1 (MCTR1) increased the survival
rates of mice from lipopolysaccharide-induced sepsis. These researchers also found a
reduction in serum heparan sulfate and syndecan-1 levels in mice treated with MCTR1
compared to the control group, which indicates lower rates of eGC shedding. MCTR1 is
produced in macrophages by the 14-lipoxygenation of docosahexaenoic acid (DHA) [79].
This fact may show importance in researching the connection between the eGC and the
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dietary intake of DHA (discussed later). eGC destruction might be connected to chronic
inflammatory bowel diseases (IBDs) such as Crohn’s disease and ulcerative colitis. IBDs
are marked by chronic low-grade inflammation, which is believed to originate from the gut
endotoxins [80]. People with IBD have higher rates of intestinal permeability and serum
levels of lipopolysaccharides, which may negatively influence the eGC by activating the
TNF-α inflammatory pathway, which destroys the eGC integrity [81].

Sodium glucose co transporter 2 (SGLT2) inhibitors are administered in the treatment
of both type 2 diabetes and chronic kidney disease, and the positive effect of SLGT2 in-
hibitors on vascular function may be related to eGC recovery. Decreased oxidative stress
seem to be one of the mediators of the effects of SGLT-2 inhibitors, and since ROS are
known disruptors of the endothelial glycocalyx, SGLT2 inhibitors may improve mechan-
otransduction, restore nitric oxide production, and improve vasodilation. Future research
should aim to confirm this hypothesis.

6. Perspectives of Nutritional Therapy for eGC Health

The presented evidence suggests a close connection between the pathophysiology of
various chronic diseases and points towards eGC destruction as a driver of endothelial
dysfunction and consequent vascular injury. Any chronic damage to the eGC can result
in vascular permeability, oedema, platelet aggregation, and aprothrombotic environment,
which are consequences that are well recognized in the end stages of chronic conditions
such as diabetes, hypertension, metabolic syndrome, and obesity [40]. Defining the eGC
disruptors and regenerative compounds might be the future of eGC prevention or recovery
therapy in both healthy and diseased individuals. A few potential nutritional and behavior-
related therapies are discussed in the chapter below.

6.1. Preventing Vitamin D Deficiency

The first described functions of vitamin D were related to immunity, viral disease, and
autoimmune disease prevention [82]. This ancient function is being rediscovered, with
findings suggesting an association between vitamin D deficiency and COVID-19 symptoms,
particularly thrombosis and coagulopathy, which are the same symptoms related to heparan
sulfate loss [83,84]. Given that heparan sulfate is one of the SARS-CoV-2 receptors, a logical
postulate would be that improper heparan sulfate synthesis in COVID-19 is responsible
for some of the observed symptoms. In recent times, vitamin D has also been connected to
the preservation of the endothelial function through monocyte adhesion prevention and
inflammation reduction [85]. This suggests that vitamin D could be an essential element for
preserving or regenerating the eGC. Future research studies are warranted to investigate
the role of vitamin D on eGC health and patient groups that will administer vitamin D as
therapy for, e.g., hyperparathyroidism or osteoporosis, which might provide the first line
of evidence.

6.2. Vitamin D and eGC Connection Hypothesis

For vitamin D to be activated, it needs to be converted into the hormonal 1,25-OH
vitamin D. The enzymes needed for that conversion are the vitamin D receptor (VDR)
and 1-a-hydroxylase, both of which can be found in cardiovascular tissues. Particularly,
the VDR is expressed on the endothelial cells and is upregulated under stress [86]. When
activated, the VDR affects calcium influx across the endothelial cell membrane, which
is needed for eNOS activation and proper nitric oxide release. As mechanotransduction
signals arising from the eGC activate this process, a close interaction between vitamin D
and eGC has been suggested [87].

Vitamin D has a role in immunity; particularly, it has been shown that vitamin D
regulates apoptosis and autophagy. One of its protective mechanisms is thought to be the
inhibition of superoxide anion generation, NF-κB, and TNF-α [88]. In one randomized
controlled trial, Omidian et al. [89] found a significant reduction in TNF-α levels when
supplementing diabetic patients with 4000 IU/day of vitamin D for three months. This
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evidence is another argument in favor of the protective role of vitamin D on eGC, as TNF-α
degrades the glycocalyx.

6.3. Supplementing with Omega-3 Fatty Acids and Probiotics

Combined supplementation with probiotics and omega-3 (Ω-3) fatty acids might be
important in eGC regeneration. Probiotic strains such as Lactobacilli and Bifidobacteria
lower lipopolysaccharide-dependent chronic low-grade inflammation by inhibiting the
binding of lipopolysaccharide to the CD14 receptor, thereby reducing the overall activation
of NF-κβ. Ω-3 fatty acids have been shown to increase Bifidobacteria—via unclarified
mechanisms—which then suppress lipopolysaccharide and decrease lipopolysaccharide-
producing bacteria, such as Enterobacteria [90]. Supplementation with Ω-3 has repeatedly
been shown to decrease endothelial dysfunction and increase vasodilation and vessel
elasticity, as well as decrease inflammatory pathways [91–93].

Taken together with the proposed vitamin D connection, the presented evidence
suggests that interactions between lipid metabolism and eGC might be particularly relevant
to research further. When conducting such studies, the type of dietary fat is an important
factor to consider. Some studies suggest that fat-rich and energy-rich diets are the main
source of increased endotoxemia, whereas unsaturated fatty acids have been associated with
lower postprandial circulating levels of lipopolysaccharides [90,94,95]. Caution must be
taken with the potential cofounders. Dietary sugars and salt might also be eGC disruptors,
so their influence should be considered when forming further hypotheses and experiments.

6.4. Providing the eGC Building Blocks

Currently, there are two nutraceuticals on the market that have been developed with
the purpose of eGC regeneration. Various other therapies such as metformin, rosuvastatin,
hydrocortisone, sulodexide, and heparin have been proposed as having eGC regenerative
properties [96]. The main premises of the developing therapies are to provide the eGC
with the building blocks for quicker regeneration or to remove eGC disruptors. An impor-
tant animal study showed that a 10-week treatment that targeted the eGC by using high
molecular weight hyaluronan and other eGC components improved eGC properties and
ameliorated age-related arterial dysfunction in old mice. The findings suggest that the eGC
may be a potential therapeutic target for treating age-related arterial dysfunction [97].

Healthy dietary patterns, particularly the Mediterranean diet (MedDiet), Nordic
diet, Traditional Asian diet, and Dietary Approaches to Stop Hypertension (DASH), have
been shown to be beneficial in reducing the risk of arterial dysfunction and other diet-
related chronic diseases [98–100]. Compared to a typical Western-style diet, these kinds of
dietary patterns are characterized by lower trans fat and lower excess sodium and sugar
consumption (lower meat and processed food intake), higher fiber intake (from whole
grains and legumes), higher fruit and vegetables content, and higher Ω-3 content (from fish
and nuts) [101]. Studies suggest that the MedDiet is suitable as a type 2 diabetes therapy,
as it was associated with improved glycemic control when compared to a control dietary
pattern [102]. In addition, some long-term randomized controlled trials and meta-analyses
showed a greater chance of remission from metabolic syndrome following the MedDiet
and a significant reduction in stroke incidence [102,103]. One possible explanation for
the observed health benefits could be that healthy dietary patterns contain the building
blocks for preventing the pathological destruction and/or regenerating the eGC, thus
decreasing cardiovascular disease risk. Further large-scale studies are needed to confirm
the connection to healthy dietary patterns, which might also be useful as a source of the
eGC building blocks and, therefore, may decrease cardiovascular disease risk. Further
large-scale studies are needed to confirm the connection [104]. Other potential beneficial
dietary components are discussed in the chapters that follow.
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6.5. Dietary Sulfur

Sulfur-containing compounds might help reduce eGC damage by exhibiting antiox-
idative and anti-inflammatory properties and are, therefore, good candidates to be imple-
mented in preventative nutritional therapy [105]. High levels of sulfur can be found in meat
and fish, as sulfur is a part of the sulfur-containing amino acids (methionine and cysteine).
However, Doleman et al. [106] state that an impressive 89.5% of dietary sulfur in a typical
diet derives from other sources due to the differences in the distribution of types of food.
Intake from alliaceous and cruciferous vegetables contributed to almost half of the total
sulfur intake. Both alliaceous vegetables (for example onion, garlic, or leek) and cruciferous
vegetables (such as broccoli, kale, asparagus, or mangold) are abundant in various healthy
dietary patterns. In alliaceous vegetables, sulfur is a part of organosulfur compounds and is
known for its effectiveness in eliminating viral and bacterial infections [107]. Interestingly,
one double-blinded placebo-controlled randomized study found that aged garlic extract
may protect and slightly improve the microcirculation in patients with a Framingham Risk
Score ≥ 10 (increased risk for cardiovascular disease) [108]. To date, this is the largest study
researching the effects of garlic extract on microcirculation.

Sulfur is also a structural part of isothiocyanates, which are, in a broad range, found
in cruciferous vegetables, which are staples of healthy dietary patterns [105]. Sulforaphane,
the most researched isothiocyanate, exhibits anti-inflammatory and antioxidative properties
that have been confirmed in various in vivo and epidemiological studies and may reduce
levels of fasting blood glucose and glycated hemoglobin [109], as well as AGE concentra-
tion [110]. When researching the effects of sulforaphane in mice models of skin cancer,
Alyoussef and Taha [111] found that sulforaphane blocked sulfatase-2 activity which, when
activated, significantly elevated heparan sulfate proteoglycan concentration in plasma. The
main function of sulforaphane is thought to be the activation of the antioxidative nuclear
factor E2-related factor 2 (Nrf2) metabolically pathway, which ameliorates excess oxidative
stress upon activating numerous cytoprotective proteins [111]. One of those proteins is
metallothionein, a cysteine protein that binds copper and zinc as cofactors. When activated,
metallothionein can extinguish ROS/RNS due to its high thiol content [112]. In animal
models of type 1 diabetes, sulforaphane and zinc have proven to be more cardioprotective
when combined [112]. Human studies are needed to further substantiate this evidence. The
eGC is a ubiquitous structure with a relatively high amount of sulfur-containing compo-
nents such as heparan and chondroitin sulfates, which are in an almost constant state of
metabolic turnover [17]. Aside from its antioxidative properties, dietary sulfur might be an
important sulfur donor and could provide the building blocks for eGC regeneration.

6.6. Dietary Nitrates

Dietary nitrates are high in green leafy vegetables and some root vegetables, such
as beetroot. In research, dietary nitrates are usually provided as beetroot juice or sodium
nitrate and have been shown to reduce inflammation and thrombosis; however, the findings
are not conclusive [113]. The explanation behind the beetroot juice intervention is based on
the hypothesis that providing an exogenous source of nitric oxide might improve endothe-
lial function. Most of the acute and short-term research on hypertensive patients in this
area shows substantial improvements in resting blood pressure and muscle microvascular
function, as well as reduced arterial stiffness [114,115]. On the contrary, longer (7 days) but
similarly designed studies did not find improvements in cardiac function or endothelial
integrity in healthy non-smoking adults [116]. Furthermore, two-week supplementation of
beetroot juice was insufficient to improve blood pressure or endothelial function in type 2
diabetics [117].

One of the possible explanations for the discordance in evidence might be the fact
that a healthy and extended eGC is responsible for proper nitric oxide production [31].
Providing the end product (nitric oxide) will not regenerate the eGC but can be beneficial
in providing nitric oxide in, for example, people who are newly diagnosed with a chronic
vascular disease, based on the observation that eGC is destroyed in these conditions. In
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that case, beetroot juice provides a secondary source of nitric oxide and acutely helps in the
preservation of vascular function until the eGC is fully restored and regains the ability to
produce endogenous nitric oxide. This hypothesis would explain the acute beneficial effect
and long-term stagnation of the results seen in some studies and in healthy subjects.

6.7. Lifestyle Changes

Dietary and lifestyle modifications that promote weight loss in overweight and obese
individuals have been shown to be beneficial in decreasing vascular fat storage and in-
flammatory molecule production [118]. In recent years, professional-led weight loss even
helped in completely reversing type 2 diabetes by impacting secondary insulin resistance
to reduced hyperinsulinemia [119]. In that sense, weight loss could be a powerful tool in
preventing eGC damage, as it combats many eGC disruptors simultaneously. Collectively,
weight loss can eliminate inflammatory cytokines generated by visceral fat, decrease blood
glucose levels, and prevent the formation of AGEs [54]. The combination of a healthy di-
etary pattern, caloric restriction, and physical activity has been used in clinical settings and
shows promising results for treating non-alcoholic fatty liver diseases, which are frequently
present in patients diagnosed with diabetes, insulin resistance, and obesity [120].

Intermittent fasting, prolonged fasting, time-restricted eating, and similar dietary
strategies are based on restricting daily time defined for eating and prolonging fasting
time [121]. The beneficial effect of intermittent fasting on vascular health parameters,
microcirculation, and vasodilatation has been detected, even in the absence of weight loss
in both healthy individuals and men with prediabetes [122,123]. The observed effects were
related to lower blood pressure, increased insulin sensitivity, decreased oxidative stress,
and higher levels of nitric oxide release. However, the mechanisms of the positive effects
are not yet fully discovered [124].

The eGC might hold the key in explaining the observed positive effects of time-
restricted dietary regimes; however, repeated uniform intermittent fasting studies with a
reliable measure for eGC thickness are needed to confirm this hypothesis. If confirmed,
intermittent fasting (or other interventions based on time restriction of eating) might be
useful in nutritional therapy for vascular consequences of chronic diseases. Recent findings
in this area suggest that setting the eating window earlier in the day may be optimal due to
the natural circadian rhythms of humans which control hormone release, thus influencing
stress levels and insulin resistance [125,126].

7. Conclusions

Deep and precise knowledge regarding the eGC seems to be the missing link in finding
novel treatments for lifestyle-related diseases such as atherosclerosis, type 2 diabetes,
hypertension, obesity, and metabolic syndrome. Changes in the eGC integrity might be
an early sign of cardiovascular disease development. The detection of these changes
could particularly be important for raising adherence to healthy dietary patterns and
lifestyle interventions that have proven to be cardio-protective. Studying vitamin D,
omega-3 fatty acids, probiotics, dietary sulfurs, and dietary nitrates could be promising
in exploring the connection between diet components and eGC regeneration. Lifestyle
interventions such as weight loss and time management of eating might be important for
eGC regeneration. Increasing research in this area could provide more precise guidelines in
chronic cardiovascular disease prevention.
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