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Abstract: Many Lactobacillus casei strains are reported to exhibit anti-proliferative effects on colorectal
cancer cells; however, the mechanism remains largely unknown. While there has been considerable
interest in bacterial small metabolites such as short chain fatty acids, prior reports suggested that
larger-sized molecules mediate the anti-proliferative effect of L. casei. Here, other possible ways of
communication between gut bacteria and its host are investigated. LevH1 is a protein displayed on
the surface of L. casei, and its mucin binding domain is highly conserved. Based on previous reports
that the cell-free supernatant fractions decreased colorectal cell proliferation, we cloned the mucin
binding domain of the LevH1 protein, expressed and purified this mucin binding protein (MucBP).
It has a molecular weight of 10 kDa, is encoded by a 250 bp gene, and is composed primarily of a
β-strand, β-turns, and random coils. The amino acid sequence is conserved while the 36th amino
acid residue is arginine in L. casei CAUH35 and serine in L. casei IAM1045, LOCK919, 12A, and Zhang.
MucBP36R exhibited dose-dependent anti-proliferative effects against HT-29 cells while a mutation of
36S abolished this activity. Predicted structures suggest that this mutation slightly altered the protein
structure, thus possibly affecting subsequent communication with HT-29 cells. Our study identified a
novel mode of communication between gut bacteria and their host.

Keywords: L. casei; mucin binding protein; SCFAs; anti-proliferative; colorectal cancer

1. Introduction

Gut microbiota plays an increasingly important role in human physiology, and it is
generally believed that short chain fatty acids (SCFAs) produced by gut microbiota bridge
their function to the host [1–5]. The production of SCFAs in the gut lumen and their hepatic
utilization results in a concentration gradient, decreasing from the lumen to the periphery,
where selective uptake of butyrate at the epithelium, propionate at the liver, and acetate in
the periphery takes place [6–8]. It is certainly unlikely that so many physiological outputs
are mediated by the limited number of SCFAs alone. However, it is not yet discovered
whether there are other patterns of interactions between gut microbiota and the host [9].
Hence, finding other ways of biological intervention between the gut microbiota and its
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host not only helps us understand the symbiosis at the molecular level but also fully explore
their prebiotic effects.

The outer colonic mucus layer is where the symbiotic bacteria reside, with large gel-
forming mucin being the major component [10]. L. casei is one of the earliest residents of
the human colon at the surface of the mucin layer [11]. As one of the lactic acid bacteria, it
exhibits multiple probiotic effects: maintaining the intestine integrity, preventing intestinal
tumorigenesis, inducing apoptosis in gastric cancer cells, reducing hepatic inflammation,
regulating immune responses, lowering the blood lipids and cholesterols, alleviating insulin
resistance and diabetes, and ameliorating learning and memory impairments [12–20]. Accu-
mulating evidence shows the anti-proliferative effect of L. casei strains against colorectal
cancer cells; however, detailed mechanisms of how the bacteria communicates with its host
remain poorly understood. There is usually a protein expressed on the outer surface of the
bacteria that binds to mucin in the colon, as found in Streptococcus pneumoniae, Lactobacil-
lus acidophilus, and Lactobacillus fermentum [21–24]. In Lactococcus lactis subsp., two types
of adhesion proteins are involved in the colonization of bacteria in the gastrointestinal
tract [25]. The AggL protein contributes to the bacterial non-specific hydrophobic adhesion
to mucous tissues, while a mucin binding protein (MucBP) binds to gastric-type mucin
proteins [25]. In all the L. casei strains with a known genome, there is an LevH1 gene coding
protein with domains of GH32 inulinase activity, mucin binding activity, and an Ig-like
domain. It is highly likely that the mucin binding activity domain in the LevH1 protein on
the surface of L. casei binds with mucin of the hosts.

The administration of L. casei prevented atypia of colorectal tumors in humans [26].
In the inflamed mucosa, L. casei could reduce the number of CD4 cells and TNF-α expres-
sion among intraepithelial lymphocytes but did not induce any change in non-inflamed
mucosa [27]. Meanwhile, both the supernatant and the extract of L. casei decreased Caco-2
cell proliferation and increased cell apoptosis, while its extract also led to cell necrosis [28].
Additionally, both live and irradiation-inactivated L. casei increased the apoptosis efficacy
of a colorectal cancer cell LS513 induced with 5-fluorouracil (5-FU); however, microwave-
inactivated L. casei reduced its apoptosis capacity [29]. Heat-killed L. Casei MG4584 in-
hibited the human colorectal carcinoma RKO cells in vitro and in xenograft models [30].
Further, cell-free L. casei 21L10 attenuated LPS-induced inflammation and might exert
anti-proliferative effects in HT-29 cells [31]. All these evidences indicated that there were
some structural components of the bacteria that exhibits antiproliferative activity against
colorectal cancer cells, regardless of the live state of the bacterium. Later, it was reported
that the cell-free supernatant of L. casei decreased colorectal cell invasion primarily via
the >100 kDa and 50–100 kDa fractions, suggesting the inhibitory compound(s) might be
macromolecules such as proteins, nucleic acid, or a polysaccharide [32]. As proteins usually
undergo denaturation via microwave treatment, it is highly possible that the structural
component exhibiting antiproliferative activity is a protein. Currently, all the studies are
suggesting other mechanisms of antiproliferative effects exerted by L. casei, but none of
them has pointed out which bacterial component plays the role. Here, the physiologi-
cal effects of MucBP on colorectal cancer cells were studied to evaluate a possible new
communication mode between L. casei and its host.

2. Materials and Methods
2.1. Molecular Cloning, Site-Directed Mutagenesis, and Protein Purification

The LevH1 gene sequences (GeneBank, AB185852.1) from different L. casei strains were
searched and annotated to different functions, and the region of the MucBP sequence was
used to design cloning primers: 5′CATCATCATCATCATTCTTCTGGTATTACTTCAATTTG
GAACAGTACTG3′ and 5′CTCCTGGATCTCGCGCTCATACAACAGACGCTTGGGACG3′.
L. casei CAUH35 was used as the template to amplify the MucBP gene with an anneal-
ing temperature of 56.7 ◦C in the presence of Pfu DNA polymerase (Sangon Biotech,
Shanghai, China). The amplified MucBP gene was purified with agarose gel electrophore-
sis, and integrated to the pET-30b plasmid with an annealing temperature of 60.8 ◦C.



Nutrients 2023, 15, 2314 3 of 9

Primers 5′TAGGACAAAGCTACACTTCTG3′ and 5′CAGAAGTGTAGCTTTGTCCTA3′

were used for site-directed mutagenesis on a PCR instrument with an annealing tempera-
ture of 57 ◦C [33].The plasmid was sequenced, and the verified plasmid was transformed
into E. coli BL21 (DE3) cells for protein expression under the induction of isopropyl-β-d-
thiogalactopyranoside (IPTG, Shanghai Macklin Biochemical Co. Ltd., Shanghai, China).
The over-expressed MucBP protein was purified essentially in the same way as described
previously [34].

2.2. Protein Sequence Alignment

The consensus regions of the MucBP gene in L. casei IAM1045, L. casei LOCK919, L.
casei 12A, L. casei Zhang, L. casei ATCC334, and L. paracasei CAUH35 were aligned and
analyzed as described previously [35].

2.3. Protein Structure Characterization

The purified 0.3 mg/mL MucBP protein was dialyzed into 10 mM phosphate buffer
saline (PBS) buffer, and its circular dichroism (CD) spectrum was recorded on a Chirascan
circular dichroism polarimeter (Applied Photophysics, Leatherhead, UK) by scanning the
sample from 200 to 260 nm at 25 ◦C with a bandwidth of 1 nm and step size of 1 nm, as
described previously [36]. Proportions of the secondary structures of the protein were
calculated with the Chirascan software (Applied Photophysics, UK). The I-TASSER and
RoseTTAFold servers were used to predict the three-dimensional structure of MucBP 36S
and 36R variants, as described previously [37,38]. The predicted structures were validated
with the ProSA-web Protein Structure Analysis server and the SAVES v6.0 server [39–42].

2.4. Cell Culture

The human colon adenocarcinoma cell line HT-29 used in this study was obtained from
the National Infrastructure of Cell Line Resource and cultured at 37 ◦C in a humidified
5% CO2 incubator using RPMI-1640 medium (Gibco, New York, NY, USA, 11875093)
supplemented with 10% fetal bovine serum (FBS, Gibco, 16140089) and 1% penicillin–
streptomycin (Sigma, St. Louis, MO, USA, V900929).

2.5. Cell Viability Assay

The effect of different concentrations (from 5 µg/mL to 200 µg/mL) of MucBP36R and
MucBP36S on HT-29 cells viability was assessed using the Enhanced Cell Counting Kit-8
(CCK8; Beyotime Biotechnology, Shanghai, China, C0042) according to the manufacturers’
protocol. HT29 cells were treated with MucBP36R and MucBP36S at different concentrations
(5, 25, 50, 100, and 200 µg/mL) for 72 h and then seeded onto 96-well plates (approximately
3 × 103 cells per well containing 100 µL of culture medium) overnight. The supernatant
was removed, and 10 µL CCK8 solution with 100 µL fresh medium was added to each
well before the plate was incubated at 37 ◦C for 2 h. The absorbance of each well was
measured at 450 nm on a microplate reader (TECAN, infinite F200). The Dunnett’s multiple
comparisons test was used to compare experimental groups with the control group.

3. Results
3.1. Cloning, Purification, and Sequence Comparison of MucBP from L. casei

The gene sequence of LevH1 in L. casei CAUH35 was identified (GeneBank, AB185852.1),
and the amino acid sequence was analyzed with BLAST, which was highly conserved as
in L. casei IAM1045 [43]. There are 1294 amino acid residues in the LevH1 protein, and
the MucBP domain ranges from amino acid residue 745 to 808. There is a KxYKxGKxW
signal peptide in the N-terminal of the LevH1 protein and an LPXTG cell wall anchoring
domain in the C-terminal, suggesting that this protein may be secreted and anchored to the
L. casei cell wall. Following the signal peptide is the inulinase domain, which is supposed to
hydrolyze the prebiotic inulin, and then the predicted mucin binding domain. Compared
with all the L. casei strains with reported genomes, including L. casei IAM1045, L. casei
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LOCK919, L. casei 12A, L. casei Zhang, L. casei CAUH35, and L. casei ATCC334, the core
region of MucBP is highly conserved (Figure 1A). It is noteworthy that the 36th amino
acid residue is serine in most of these bacteria, while it is arginine in L. casei CAUH35 and
proline in L. casei ATCC334.
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3.2. Secondary and Tertiary Structures of MucBP from L. casei 
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Figure 1. Sequence alignment, cloning, and purification of MucBP from L. casei. (A) Sequence
alignment of the core regions of all reported MucBP genes from L. casei IAM1045, L. casei LOCK919, L.
casei 12A, L. casei Zhang, L. casei CAUH35, and L. casei ATCC334. Red indicates amino acid residues
D, E; yellow indicates C, M; blue indicates R, K; violet indicates F, Y; dark green indicates I, L, V; cyan
indicates Q, N; light grey indicates A; tawny indicates P; orange indicates S, T; mauve indicates W;
white indicates G; pale blue indicates H. Red square indicates the conserved serine/arginine residue.
(B) Cloning of the MucBP gene shown on an agarose gel. M is the DNA molecular marker, and lane 1
is the cloned MucBP of 246 bp. (C) Purification of the MucBP protein shown on an SDS-PAGE gel. M
is the protein molecular marker, and lane 1 is the purified MucBP protein of 10.3 kDa.

Based on the MucBP domain of the LevH1 protein from L. casei CAUH35, a pair of
primers was designed to amplify the gene. Agarose gel electrophoresis was employed to
purify the gene sequence, and a band of around 250 bp was visualized (Figure 1B), which
was consistent with the theoretical 246 bp. Site-directed mutagenesis was used to study the
effect of mutation on the 36th amnio acid residue, and the mutation was examined with
DNA sequencing.

The MucBP sequence was inserted into the pET-30b plasmid, transformed into E. coli
BL21(DE3) cells, induced with IPTG, and MucBP was purified with Ni-NTA agarose chro-
matography. Finally, the purified protein was examined with SDS-PAGE gel electrophoresis,
and a band below 14 kDa was observed, which was consistent with the theoretical molec-
ular weight of MucBP of 10.3 kDa (Figure 1C). The calculated isoelectric point of this
protein is 6.63, and molar extinction coefficient is 12,950 M−1cm−1. There are 10 serine and
13 threonine residues in this protein.

3.2. Secondary and Tertiary Structures of MucBP from L. casei

The purified MucBP36R protein was subjected to circular dichroism analysis for deter-
mining its secondary structure. There was a minimum peak at around 210 nm, indicating
a mixture of mainly β-strands and disordered regions (Figure 2A). Quantitative analy-
sis indicated there was 29.4% β-strands, 17.7% β-turns, and 41% random coils within
this protein.
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the MucBP protein in phosphate buffer. (B) Predicted structures of the MucBP proteins. Blue indicates
the MucBP36R and green indicates the MucBP36S. (C) Overlay of the MucBP36R and MucBP36S at
the 36th amino acid residue. Purple stick indicates the arginine residue side chain, and orange stick
indicates the serine residue side chain.

The I-TASSER and RoseTTA fold servers were employed to predict the tertiary struc-
ture of MucBP36R, and a globular protein containing majorly β-strands and random coils
was generated (Figure 2B). The predicted structures were almost identical at the folded
region, and were validated with ProSA-web and SAVES v6.0, respectively. Based on the
validation results, structures predicted with I-TASSER were subjected to the following
analysis, and MucBP36R displayed positive, negative, and hydrophobic characters on its
surface, roughly consistent with the secondary structure analysis.

The MucBP36S protein structure was also predicted, and compared with the 36R
variant (Figure 2B). There was a slight structural deviation induced by this mutation, as an
RMSD value of 1.036 Å was obtained between these two proteins. The side chain of the
36th serine is pointing differently than the arginine side chain, whose orientation highly
likely induced the structural difference between these two protein variants (Figure 2C).

3.3. Antiproliferative Activity of MucBP from L. casei

Different proteins were co-incubated with HT-29 cells to evaluate their possible physi-
ological action on this human colorectal cancer cells. The addition of 0, 5, 25, 50, 100, and
200 µg/mL bovine serum album (BSA) protein and co-incubation for 72 h did not show
any effect on HT-29 cell proliferation (Figure 3A). The same co-incubation was performed
with MucBP36R and MucBP36S proteins. Initially, MucBP36R did not show any effect on
HT-29 cell growth at 5 µg/mL. Surprisingly, MucBP36R began to inhibit the proliferation of
HT-29 cells at 25 µg/mL, and the inhibition effect was further enhanced at higher protein



Nutrients 2023, 15, 2314 6 of 9

concentrations (Figure 3B). On the contrary, MucBP36S did not exhibit any effect on HT-29
cell proliferation up to a protein concentration of 200 µg/mL (Figure 3C).
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4. Discussion

We turned to the surface layer protein MucBP in L. casei as a potential candidate
exerting anti-proliferative activity against colorectal cancer cells. Although our purified
protein was smaller than the predicted >50 kDa functioning fraction, it is only a domain of
the LevH1 protein, which was more than 10 folds larger. Thus, it is likely that the MucBP
protein is virtually the functioning element in the >100 kDa protein fraction found in the
previous study [32]. In bacteria with similar mucin binding capacity, anti-proliferative
activity could be found. For example, L. paracasei K5 inhibits Caco-2 cell proliferation
and displays efficient adherence capacity to this colon cancer cell, similar to the strains
L. casei ATCC 393 and L. rhamnosus GG [44]. Our study is the first one, to the best of our
knowledge, proving that the cell surface protein MucBP inhibits human colorectal cancer
cell proliferation.

Mechanism wise, it was reported that L. casei ATCC 393 exhibited a dose- and time- de-
pendent anti-proliferative effect on HT-29 cells by up-regulating TNF-related apoptosis [45].
L. casei BL23 inhibited colorectal cancer growth via the IL-2 signaling pathway [46,47]. For
other types of cancer, cell-free culture supernatant of L. casei SR1, SR2, and SR4 isolated
from human milk inhibited cervical cancer by up-regulating the expression of apoptotic
genes [48]. L. casei Shirota enhanced the antiproliferative effect of geniposide in human oral
squamous carcinoma HSC-3 cells [49]. Here, we show the concentration-dependent antipro-
liferative effect of MucBP against human colorectal cancer HT-29 cells, which demonstrated
the cancer cell inhibition activity of this protein, regardless of whether it is on a cell or in a
solution. Compared to the BSA group, protein addition alone is not sufficient to induce the
inhibiting effect via perturbation of cell culture conditions. This is in line with observations
that surface layer proteins from L. casei Zhang, L. rhamnosus, L. gasseri, and L. acidophilus
NCFM protected the HT-29 cells from H2O2-induced oxidative injury [50]. It is obvious
that surface layer proteins could interact directly with HT-29 cells. Although we did not
investigate the detailed mechanism of how MucBP inhibits HT-29 cell proliferation, the
phenomenon that a single mutation of arginine into serine at the 36th amino acid under-
mined the anti-proliferative capacity of MucBP suggested that there might be a receptor
on the surface of HT-29 cells that could bind with MucBP and induce colorectal cancer
cell death.

Our study does not intend to limit the probiotic effect of L. casei only to the MucBP-
inhibited colorectal cancer cell proliferation. There are also other bacteria-related, small
or big molecules, exhibiting anti-proliferation effects on these cells. For example, ex-
opolysaccharides produced by L. casei SB27 inhibited the proliferation of HT-29 cells, and
ferrichrome in the supernatant of L. casei ATCC334 culture induced apoptosis in colon
cancer cells [51,52]. This evidence suggests that there are also other bacterial components
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or metabolites involved in the anti-proliferative effects of L. casei. Moreover, it was reported
that L. Casei Lcr35 prevented adjuvant 5-FU chemotherapy-induced intestinal mucositis
in colorectal cancer-bearing mice [53]. With all these anti-proliferative effects mediated
by many molecules from L. casei, this bacterium is of potential significance for the future
treatment of cancer. The MucBP protein is also found in Lactobacillus acidophilus, Lactobacil-
lus fermentum, and Lactobacillus fermentum; the role of this protein in these bacteria-host
interaction should also be investigated in the future. In all, our study offers an insight of
how probiotics interact with their hosts via other ways than microbial metabolites.
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