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Abstract: Beyond brain deficits caused by strokes, the effectiveness of neurorehabilitation is strongly
influenced by the baseline clinical features of stroke patients, including a patient’s current nutritional
status. Malnutrition, either as a pre-stroke existing condition or occurring because of ischemic
injury, predisposes patients to poor rehabilitation outcomes. On the other hand, a proper nutritional
status compliant with the specific needs required by the process of brain recovery plays a key role
in post-stroke rehabilitative outcome favoring neuroplasticity mechanisms. Oxidative stress and
inflammation play a role in stroke-associated malnutrition, as well as in the cascade of ischemic
events in the brain area, where ischemic damage leads to neuronal death and brain infarction, and,
via cell-to-cell signaling, the alteration of neuroplasticity processes underlying functional recovery
induced by multidisciplinary rehabilitative treatment. Nutrition strategies based on food components
with oxidative and anti-inflammatory properties may help to reverse or stop malnutrition and may
be a prerequisite for supporting the ability of neuronal plasticity to result in satisfactory rehabilitative
outcome in stroke patients. To expand nutritional recommendations for functional rehabilitation
recovery, studies considering the evolution of nutritional status changes in post-stroke patients
over time are required. The assessment of nutritional status must be included as a routine tool in
rehabilitation settings for the integrated care of stroke-patients.

Keywords: nutritional status; malnutrition; stroke; oxidative stress; rehabilitation; neuroplasticity;
healthy dietary patterns

1. Introduction

Relevant reports highlight that despite the implementation of effective prevention
strategies aimed at reducing the influence of risk factors and the consequences of a high
economic burden for society due to stroke-related long-term sequelae, which are often the
cause of severe disability, the incidence of strokes, namely, ischemic strokes, will realisti-
cally increase worldwide as a new or recurrent event [1–5]. Indeed, hemiparesis, paretic
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muscle atrophy, and spasticity, together with frequent cognitive impairments, lead to the
development of permanent neurological disability resulting in unsatisfactory and limited
independence in activities of daily living. The brain’s self-repair mechanisms and most
of the mechanisms of neuronal plasticity, which enable the reorganization of damaged
neuronal circuits, even among elderly people, play a key role in the recovery of neurological
deficits. Neurorehabilitation is still the gold-standard stroke treatment for reducing func-
tional disability by promoting new functional communications in the remaining neuronal
circuits and enhancing neuronal activity in damaged networks [6–8]. Beyond the brain
deficits brought on by the ischemic insult, the pre-existing baseline clinical features of stroke
patients—including a patient’s current nutritional status, constituting an undeniable index
of their general health status—have a significant impact on the effectiveness of a rehabilita-
tion treatment [9]. Old age, cognitive impairment, depression, insufficient physical activity,
and comorbidities represent risk factors favoring a poor nutritional status/malnutrition
in stroke patients [10,11]. In addition, in patients who are not malnourished prior to suf-
fering a brain ischemic event post-stroke, dysphagia, hemiparesis, reduced mobility, and
psychiatric diseases can exacerbate poor nutritional status/malnutrition existing prior to
the stroke’s occurrence, thereby severely worsening functional recovery by establishing
malnutrition [12–14]. On the other hand, a proper nutritional status, compliant with the
specific and urgent needs required by the process of brain recovery, plays a key role in
post-stroke rehabilitative outcome favoring neuroplasticity mechanisms [14–22]. Therefore,
the assessment of nutritional status is of remarkable interest in stroke patient care, and
the programming of specific nutritional interventions essential to controlling risk factors,
as well as scanning for the actual presence of malnutrition due to its negative effects on
rehabilitative outcomes, should be prioritized. However, despite the widespread agreement
that stroke patients’ nutritional status is a crucial factor to achieving a satisfactory clinical
recovery both during and after rehabilitation, the studies that are currently available do not
allow to draw conclusive results about the mechanisms involved in the patient’s nutritional
status examined before and after rehabilitation treatment. Additionally, nutritional status
assessment scales are not typically included in the clinical scales used to evaluate rehabili-
tation outcomes. Hence, the sharp comment made by Engelhardt et al. [23] that nutrition is
still inadequately integrated into health systems is very relevant. To elaborate nutritional
recommendations regarding post-stroke care and functional rehabilitation recovery, studies
that consider the evolution of the changes in the nutritional status of stroke patients over
time are required.

The current narrative review focuses on the available evidence regarding the involve-
ment of redox balance and inflammation in the nutritional status of post-stroke patients
and their influence on neuroplasticity processes and rehabilitative outcomes.

2. Nutritional Status and Healthy Brain

The World Health Organization (WHO) defined nutritional status “as the condition
of the body, resulting from the balance of intake, absorption, and utilization of nutrients
interacting with individual physiological and pathological status” [24–26]. Accordingly,
nutritional status, which is measurable at a given time, in different age ranges, and in
physiological or pathological conditions, represents the result of the interaction of the
intake, absorption, and utilization of macro- and micronutrients (Figure 1).

Bodily functions measured through biochemical parameters provide useful insights,
primarily into the utilization of macro- and micronutrients according to a specific function.
The energetic balance and the balance of any single nutrient can be used to estimate short-
term changes in nutritional status and the body composition represents its long-term
index. Therefore, the tools required for an adequate nutritional assessment should include
eating habits/dietetic reports, anthropometric and functional indices, and the assessment
of nutritional risk factors. However, due to the many variables involved in assessing
nutritional status, no single set of accepted standards for its assessment is available. As a
result, to identify risk factors for malnutrition that are known to be associated with poor
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rehabilitative recovery, functional impairment, a reduced quality of life, and increased
morbidity and mortality, the assessment of the nutritional status of stroke patients remains
complex but necessary in clinical practice [27,28]. Among the most-used tools [29–31],
the Mini Nutritional Assessment (MNA) and the MNA short form (MNA-SF) are valid in
identifying nutritional risk and may be useful to clinicians for developing interventions to
improve the nutritional status of patients. Recent studies [32–35] support the use of the
Controlling Nutritional Status (CONUT) score—developed by Ignacio et al. [31]—and the
Prognostic Nutritional Index (PNI) score as sensitive screening tools for nutritional status
assessment. Both these rating scales could help to identify patients who would benefit from
early nutritional therapy. There is a general agreement that dietary patterns, rather than a
single bioactive substance, nutrient, or their groups, can impact the nutritional status of
any individual, regardless of gender, age, and race, and exert beneficial or negative effects,
which are either immediate or long-term [36–38]. As any other organ, the brain utilizes
nutrients from foods, and evidence shows that several nutritional factors related to one’s
eating habit can affect the structure and function of the brain [39]. Appropriate lifestyle
behaviors, including maintaining proper nutrition and regular exercise, are essential first
steps in avoiding many diseases, including ischemic strokes, and their harmful effects.
Findings have confirmed that unhealthy dietary habits increase the burden of the risk
factors in the onset of many diseases by increasing the susceptibility to oxidative stress and
inflammation, which are strongly interrelated [40–43].
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status”. WHO, World Health Organization.

Oxidative Stress, Inflammation, and Healthy Nutrition

Oxidative stress occurs because of an imbalance between the production of free radicals
(reactive oxygen species—ROS—and reactive nitrogen species—RNS) and the antioxidant
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system’s effectiveness/availability. Free radicals are short-living reactive chemical species
that, under physiological conditions, remain confined to their site of formation because
of their short life span and endogenous antioxidant defense mechanisms that counteract
their progression and damaging oxidative effects. A disturbance in this balance leads
to oxidative stress, which causes damage to important macromolecules such as DNA,
proteins, and lipids, resulting in the production of oxidative metabolites that persist in
the systemic circulation as critical elements with multiple functional targets [43–46]. As is
widely known, a strong relationship exists between oxidative stress and inflammation. In a
sort of reverberating and vicious circle, the excessive availability of circulating oxidative
metabolites can activate inflammatory-signaling pathways, while inflammation induces
oxidative stress [43,45] (Figure 2).
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Healthy eating habits can maintain and control balanced crosstalk between oxidative
stress and inflammation, thereby assuming a fundamental role in clinical care.

Proper dietary patterns based primarily, but not exclusively, on vegetables—such as
the Mediterranean (MD) or Nordic diets, the Dietary Approaches to Stop Hypertension
Trial (DASH) diet, and the Mediterranean-DASH Intervention for Neurodegenerative Delay
(MIND) diet—may support the achievement of a proper nutritional status [46–49]. The
apparent health benefits of the foods at the center of these eating habits (legumes, fruits, veg-
etables, fish, and extra virgin olive oil) and of a general healthy diet can be ascribed to the
properties of a variety of active compounds with complex chemical structures (phytochemi-
cals, vitamins, and poly-unsaturated fatty acids, etc.). Active compounds work as powerful
synergic modulators of oxidative stress and inflammation [50]. Beyond heart disease, effec-
tive nutritional strategies for health, at both primary and secondary levels of prevention,
and disease management, such as that for strokes, cognitive impairment, depression, and
neurodegenerative diseases, are—or should be—significantly based on stemming inflam-
mation and restoring redox balance by managing circulating levels of inflammatory and
oxidative stress metabolites and boosting antioxidant defenses [36,40,42,43]. Studies have
emphasized the promising influence of healthy dietary habits and a resultant proper nutri-
tional status on neuroplasticity, which represents the ability of a healthy brain to undergo
structural and functional changes in response to internal bodily and environmental changes



Nutrients 2023, 15, 108 5 of 18

and damage. Accordingly, findings underline the positive effects of the omega-3 (n-3) fatty
acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), contained mainly
in fish and nut oils and in leafy vegetables, towards improving neurotransmission and
modulating cholesterol-induced decreased membrane fluidity, which are fundamental to
supporting cell signaling and synaptic plasticity [51–53]. Evidence shows that the regular
consumption of polyphenol-rich foods can promote neurogenesis, neurodevelopment, and
synaptogenesis, as well as have positive effects on cognition and cerebral blood flow [54–56].
Recently, a potential influence on neuroplasticity, neurogenesis, and cerebral blood flow
was attributed to flavonoids, a complex family of compounds present in many edible plants
with well-known antioxidant and anti-inflammatory activity [57–60]. Interestingly, atten-
tion was focused on the effects of trans-resveratrol, a polyphenolic phytoalexin present in
many consumed foods, on neuroplasticity, neurogenesis, and neuroprotective mechanisms.

In addition to an increased expression and activity of endogenous antioxidants such
as catalase, superoxide dismutase, and glutathione peroxidase, such significant effects are
mediated by the activation of nuclear erythroid 2-related factor 2, a regulator of cellular
resistance to oxidants that controls the basal and induced expression of an array of genes
dependent on the response to oxidative injury [61].

Therefore, it is clear that dietary elements influencing the crosstalk between inflamma-
tion and oxidative stress (e.g., MD) may provide neuroprotective effects and promote the
activation of pathways involved in the mechanisms underlying the molecular mechanisms
of neuronal plasticity. Overall, dietary patterns rich in health-promoting foods, combined
with other aspects of daily living, such as physical activity, positively impact nutritional
status and health outcomes, thus guaranteeing the optimal conditions for maintaining a
healthy brain.

3. Ischemic Stroke and Nutritional Status

There is a consensus on the importance of evaluating the nutritional statuses of
patients who have suffered an ischemic stroke in order to have a full picture of their
clinical profile, to check for early malnutrition or its pre-existence, and to identify the
main factors involved in worsening nutritional status, with the main goal of developing a
rehabilitative strategy tailored to patients’ neurological deficits and medical history. Indeed,
malnutrition resulting from a deficiency or from an excess of nutrients predisposes patients
to poorer functional outcomes following a stroke. In fact, the fundamental role of the
common and final denominators of factors, both interconnected with one another and
not, related to pre-existing stroke comorbidities and acute ischemic sequelae explains the
lack of recovery [9,10]. Malnutrition, which is frequently observed in stroke patients, is of
a multifactorial origin, and may depend on the patient’s pre-existing stroke diseases, as
assessed by their medical history; on consequences directly resulting from a stroke-induced
systemic cascade of events that is synergistically responsible for metabolic adaptive and
maladaptive changes; and on both conditions [62].

A patient’s age should also be considered, as the elderly are more susceptible to
strokes and undernutrition/malnutrition. Indeed, it is well known that the mechanisms
orchestrating nutrient intake (hunger, satiety, and thirst) tend to change with advancing
age, so changes in body composition (body mass index (BMI), anthropometric measures,
fat mass, and fat-free mass) and in several functions (hormones, gastrointestinal motility,
the immune system, etc.) are further altered in old stroke patients [12,14]. Dysphagia, along
with all its associated symptoms and consequences, represents the most important cause of
a reduced intake of nutrients and of increased susceptibility to changes in the nutritional
status of stroke patients [14]. Furthermore, neurological deficits, mild or severe cognitive
impairment, and stroke-induced catabolic processes contribute to promoting the difficulty
of oral feeding and, above all, rendering it insufficient. Pre-existing stroke conditions
such as unhealthy lifestyle behaviors, poor socio-economic conditions, the presence of
chronic diseases, and polypharmacy also lead to malnutrition, namely, to protein-energy
malnutrition [63]. Notably, an ischemic brain injury induces or exacerbates diseases, which,
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in part, may depend on insufficient/incorrect nutrition, such as anemia, altered plasma
glucose levels, hypocalcemia, and sarcopenia, for which evaluation is important with
respect to their negative influences during and after rehabilitation [21,22,64].

3.1. Malnutrition and Stroke-Modified Cross-Talking between Oxidative Stress and Inflammation

Free radicals such as superoxide, nitric oxide, and hydroxyl radicals, and other re-
active species such as hydrogen peroxide, peroxynitrite, and hypochlorous acid, when
over-produced, as in the case of an ischemic stroke, start complex chain reactions lead-
ing to the production of oxidative metabolites capable of maintaining oxidative stress in
the systemic circulation and thus interfering as critical factors with multiple functional
targets [43,44]. A wide array of enzymatic and non-enzymatic compounds acting as antiox-
idants have been ascribed to play a crucial role by synergically cooperating to maintain the
homeostasis of redox balance and inflammation [44]. The neuronal redox state represents a
particular model of homeostatic equilibrium that is established between the generation of
radicals and the antioxidant defense. Brain cells are susceptible to the harmful effects of
oxidative injury because neuronal membrane components are rich in polyunsaturated fatty
acids, highly susceptible to oxidation, require large amounts of oxygen for energy produc-
tion, and are relatively poor with respect to antioxidant defenses, which are mostly localized
in glia cells [65]. The ischemic injury triggers a fast excessive increase in the generation
and release of free radicals, such as superoxide anions (ROS) and reactive nitrogen species
(RNS), and a simultaneous depletion of endogenous antioxidant defenses, thus activating
cellular pathways responsible for neuronal necrosis and apoptosis [65–68]. Indeed, it is
known that superoxide dismutase (SOD) is responsible for scavenging superoxide radicals,
and that glutathione peroxidase (GPx), a selenocysteine-dependent enzyme, is the most im-
portant hydrogen peroxide-scavenging enzyme. SOD and GPx can directly counterbalance
an oxidative attack and protect the cells against DNA damage [43,46,64]. A noteworthy
point is that uric acid functions as an important endogenous antioxidant in blood plasma
where it represents more than half of the plasma total antioxidant capacity and may play a
beneficial role in endothelial function by preventing the degradation of Cu/Zn superoxide
dismutase, an extracellular enzyme that belongs to the family of oxidoreductases and
prevents nitric oxide (NO) decomposition by scavenging superoxide anions [69]. Research
findings have demonstrated the importance of the intake of minerals to decreasing in-
flammatory and oxidative stress, and thereby their involvement in decreasing the risk for
several diseases. Consequently, a nutritional deficiency of minerals such as copper, calcium,
zinc, iron, selenium, and magnesium may cause the inappropriate function of endogenous
antioxidant enzymes (e.g., selenium deficit and GPx activity; copper and zinc deficits; and
Cu/Zn superoxide dismutase), thus contributing to the long-lasting cytotoxic effects of free
radicals and to the development of an inflammatory status. According to a recent study,
disturbed mineral homeostasis may play a significant role in the pathogenesis of ischemic
stroke, and the significant disruption of the serum Cu/Zn and Cu/Se molar ratios could
be as a sensitive indicator of oxidative stress and nutritional status of stroke patients [70].
Magnesium deficiency worsens inflammation and oxidative stress and raises the risk of
several diseases, including strokes, especially in the elderly [71]. Zinc has been identified to
play a significant part in the regulation of nutrition via its involvement in appetite mecha-
nisms. In fact, experimental evidence showed that dietary zinc deficiencies impair appetite
and food intake and decrease body mass [72]. Therefore, it may be possible to modulate
the molecular mechanisms regulating inflammation and redox balance by intervening to
maintain proper mineral availability through dietary supplementations and/or pharmaco-
logical interventions. There is evidence that oxidative stress elicited during the initial phase
of cerebral ischemia initiates the signaling of molecular sequelae leading to the activation
of transcription factors and proinflammatory gene expression that secrete inflammatory
cytokines [66,69,71]. The development of brain-resident cell-mediated inflammation is the
main source of oxidative stress after a stroke’s onset and promotes the expansion of the
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ischemic lesion, blood–brain barrier dysfunction, and systemic inflammatory response
syndrome, which negatively affect the stroke’s outcome [63,68,73,74].

3.2. Stroke-Induced Modifications of Gut-Brain Axis: Involvement of Oxidative Stress and Inflammation

The systemic inflammatory response occurring after an ischemic insult is a complex
and articulated mechanism in which inflammation and oxidative stress concur to induce
dysfunction in other organs and systems. The gut microbiome influences intestinal barrier
function and facilitates the maintenance of the immune, nutritional, and metabolic home-
ostasis that influences appetite and food intake, thereby preserving a proper nutritional
status [75–77]. Several reports have shown the impact of ischemic stroke on the gut mi-
crobiome and the consequence of intestinal dysbiosis mediated by oxidative stress and
inflammation [78–80]. Stroke-induced alterations in the gut–brain axis compromise gut
microbiome metabolites that influence intestinal barrier, appetite, and satiety-regulating sys-
tems, thus precipitating or worsening malnutrition. Consuming nutrients with properties
that counteract free radicals such as fruit, vegetables, and legumes, along with maintaining
a proper fiber intake, may enhance the gut microbiome and intestinal peristalsis, which
concur to normalize the acid–base balance and reduce the production of proinflammatory
cytokines [80]. From the results, the gut microbiome could be a therapeutic target for an
effective management of nutrition of stroke patients and a valid support for the treatment
of malnutrition. The available findings have long proven the relationship between sev-
eral cytokines and malnutrition [81]. Recently, it has been reported that serum levels of
interleukin-18 (IL-18), which is involved in the mechanisms controlling food intake by
appetite regulation, acutely ill older hospitalized. This suggest that interleukin-8 (IL-8) may
play a role in malnourished stroke patients—who are often elderly, too [82]. Consistent
with the association between inflammation and malnutrition, evidence has been provided
concerning an inverse correlation between BMI in malnourished, healthy individuals and
increased plasma levels of tumor necrosis factor α (TNF-α) [83]. It is interesting to note that
severely malnourished patients’ neutrophils have a reduced capacity to fight infectious
illness by producing ROS [83]. Moreover, it is conceivable that an impaired ability to pre-
serve immune homeostasis by balancing the production of oxidative and pro-inflammatory
mediators may contribute to the increased susceptibility of malnourished stroke patients
to infections, constituting the most common complication after stroke, which worsens
clinical recovery.

Therefore, the modulation of the cross-talk between oxidative stress and inflammation
induced by brain ischemic injury could be a strong and modifiable factor involved in the
malnutrition of patients after a stroke and, consequently, in the global prognosis of stroke
patients (Figure 3).
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4. Neural Plasticity and Stroke-Induced Redox Imbalance and Inflammation

The brain’s undoubted need for a high quantity and uninterrupted availability of
energy substrates, together with the lack of an energy storage system, can account for the
functional significance of the neurovascular unit (NVU), a complex functional structure
for communication between brain cells and cerebral vessels whose function has long been
known and was confirmed as “the symbiotic relationship between brain cells and cerebral
blood vessels, calling attention to their developmental, structural and functional interde-
pendence in health and disease” at the 2001 Stroke Progress Review Group meeting of
the National Institute of Neurological Disorders and Stroke [84]. The blood–brain barrier
(BBB) and neuronal homeostasis are maintained in physiological conditions through the
proper crosstalk between the NVU’s components parts. Glial cells are heterogeneous and
highly specialized cells integrated in many mechanisms for preserving brain homeostasis,
for which examples include the role of astroglia in providing nutritional substances and mi-
croglia/macrophages’ ability to carry out immune responses against brain damage [85–87].
As in other cells, the normal respiratory metabolism of brain cells results in the production
of ROS, which comprise free radical and non-radical/molecular forms. This is particularly
true of the mitochondria but it also occurs in other subcellular structures such as the plasma
membrane, peroxisome, cytosol, endoplasmic reticulum, and extracellular space [88–92].
Moreover, neuronal and endothelial nitric oxide synthases (nNOS and eNOS, respectively)
generate RNS in the form of NO, a gaseous radical involved in vascular homeostasis, neu-
ronal signaling, and brain plasticity, and highly reactive peroxynitrite, which is produced
by the interaction of nitric oxide with O2

− [93,94]. Although the brain is relatively poor
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of antioxidant defense, which is a complex system of constitutive and non-constitutive
antioxidant defenses that cooperate to maintain brain redox homeostasis [95], enzymes
such as superoxide dismutases, catalases, thioredoxin reductases, glutathione peroxidases,
and non-enzymatic molecules (ROS scavengers) available in the cell via synthesis or diet
(e.g., alpha-tocopherol, ascorbic acid, β-carotene), mediate a static antioxidant defense.
Pathways such as Nrf2-ARE (nuclear factor erythroid 2-related factor (Nrf2), which is a
transcription factor recognizing the antioxidant response element (ARE), predominant in
glial cells) and the JNK/AP-1 system (the c-Jun-N-terminal Kinase (JNK) pathway is a
‘death’-signaling pathway controlling cellular responses to harmful extracellular stimuli;
AP-1 is a transcription factor controlling several cellular processes including differentiation,
proliferation, and apoptosis) are involved in the adaptive antioxidant defense and promote
the transcription of genes encoding antioxidant response proteins [95,96].

Neuronal Redox Status: A Dynamic Mechanism for Maintaining Adequate Neuronal Cell–Cell
Signaling in Healthy Brains and after Ischemic Stroke

The hypothesis that ROS and RNS represent keystone mechanisms regulating a variety
of physiological processes ranging from neuronal development and structural adjustments
to synaptic transmission and neuroplasticity, as well as triggering oxidative injury within
the nervous system, is of current and particular interest. The involvement of ROS in
physiological conditions and the overall redox balance in the regulation of cytoskeletal
modification, neural polarity, signaling modulation, and synaptic transmission has been
demonstrated [95]. The redox equilibrium is also known to be implicated in the physiologi-
cal processes of neuroplasticity such as neurogenesis, synaptogenesis, and neurochemical
changes of the central nervous system (CNS), which express the healthy brain’s ability
to adapt its structures and functions in response to environmental changes, or the need
to learn new skills through forming new synaptic connections and deconstructing old
ones [96]. Evidence has been provided for the role of ROS/RNS following neuronal activity
and in the long-lasting increase in synaptic efficiency, the long-term potentiation (LTP) and
long-lasting decrease in the strength of synaptic transmission, and long-term depression
(LTD) [97]. Overall, the neuronal redox equilibrium is designed as a dynamic mechanism
which is an integral part of the physiological processes preserving homeostasis and the
complex functions of nervous system. Current findings reinforce the results of studies
carried out over the last decade and emphasize the role of a controlled generation and
release of ROS/RNS, which is operated by all the complex subcellular structures of neurons,
in the processes of neuronal remodeling, intracellular signaling, synaptic transmission, and
the communication between neurons and glial cells, and open the stage for the develop-
ment of novel, interventional, protective procedures that many natural compounds might
potentially promote by interfering with specific sites of the signaling pathways involved in
brain plasticity [57,98–100]. In a damaged brain, as in ischemic stroke, the critical conditions
brought about by neuronal degeneration, edema, and inflammation strongly influence the
brain’s capacity to restore the lost functions previously performed by the damaged area,
and spontaneous recovery proceeds with compensatory plasticity mechanisms based on
the reorganization of neural circuits, new functional communications in the remaining
neuronal circuits, and enhancing neuronal activity in pre-existing damaged networks [101].
After an ischemic injury, the NVU loses its function, BBB permeability is enhanced, and
multiple mechanisms trigger a cascade of events starting from the decrease in blood flow
in the ischemic core until the processes that concur to repair damaged neurons are halted.
In the penumbra zone surrounding the ischemic core, the rapid rise in ROS and RNS
generation caused by the acute phase of ischemic injury overwhelms antioxidant defenses,
resulting in a substantial redox unbalance that is further exacerbated upon reperfusion. The
consequent oxidative-nitrosative stress and inflammatory cytokines released by activated
microglia and astrocytes critically affect various structural and functional targets, which
also predisposes the sufferer to an increased susceptibility of stroke recurrence and other
cardiovascular events [101]. Currently, there is general agreement that certain post-ischemic
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stroke mechanisms may play an apparently opposite role, which is either beneficial or harm-
ful. ROS and RNS, particularly NO, are usually considered neurotoxic chemical species
exerting their detrimental effects via the oxidation of essential macromolecules (DNA,
RNA, and proteins) and lipid peroxidation [44]. Under a steady-state equilibrium between
oxidants and antioxidants, as occurs in healthy conditions, ROS and NO may represent
suitable mediators for accomplishing the signaling functions required to maintain adequate
cell–cell signaling within the NVU [95–97]. In ischemic conditions, as occur in ischemic
stroke, the oxidative stress due the overwhelming of the ROS and NO associated with
lowered antioxidant potential may provide an adequate environment for the regeneration
and repair of the damaged NVU, thus mediating parallel processes of neuroplasticity [102].
The post-ischemic reorganization of cortical representational maps that requires a long-
lasting increase in synaptic efficiency (LTP) may explain the apparently controversial role
of ROS/RNS, in which the oxidant long-lasting cytotoxic mechanism for both exacerbating
neuronal damage (clearance of debris and dead cells) and mediating remodeling cell–cell
signaling (neurogenesis and angiogenesis) is essential. It is interesting to note the feedback
loop between excessive ROS production and reduced antioxidants availability. ROS gen-
eration is somehow allowed by weak antioxidant defense, which is then required for the
radicals to burst during the electron transfer step of oxidative metabolism. In this regard, it
is intriguing to note that Nrf2 activation is induced by excessive ROS production after a
stroke, and that Nrf2 protects the brain against ischemia/reperfusion injury primarily by
inducing its target antioxidant genes to counteract excessive ROS production [103]. Experi-
mental findings have shown that the neuroprotective influence of resveratrol is associated
with the activation of the Nrf2 pathway by increasing the expression and activity of superox-
ide dismutases, glutathione peroxidases, catalase, and reducing lipid peroxidation in brain
tissue. Furthermore, the activation of the Nrf2 pathway induced by resveratrol administra-
tion inhibits neuroinflammation, apoptosis, oxidative stress, and strokes [104,105]. A recent
review underlined the possible mechanisms by which peripheral immune components
may influence neuronal repair after a stroke, and emphasis is provided on the potential
role of metabolites of the gut microbiome in stroke recovery through immunological repair
processes, thus outlining an interesting scenario in which malnutrition and dysbiosis can
intervene in the processes of plasticity and stroke outcome [106].

5. Impact of Malnutrition on Post-Stroke Neurorehabilitative Outcome

Malnutrition, as a pre-stroke existing condition or occurring during the post-acute
ischemic injury, is significantly correlated with poor rehabilitative outcome [107–109].
The control of the trunk and its functional recovery are significantly impacted by the
impaired functional motor recovery concerning actions such as standing and moving [9].
Hypomobility or bed rest and post-stroke fatigue syndrome, very common conditions in
stroke patients, limit their compliance with rehabilitative treatments, namely, rehabilitative
exercise, resulting in poor neurological recovery outcomes and motor functions [110–113].

Malnutrition and its associated sarcopaenia, as well as cardio-respiratory-muscle
deconditioning, also worsen as a result. Notably, the vicious circle that arises between
hypomobility and sarcopenia aggravates malnutrition, also occuring due to a quantita-
tively and qualitatively insufficient dietary intake, which, in turn, negatively affects the
antioxidant and anti-inflammatory balance.

Due to its pleiotropic property, nutritional intervention, which includes the improve-
ment of the redox state, combined with rehabilitative aerobic physical activity, can con-
tribute to diminishing stroke-associated inflammatory and oxidative statuses and to pro-
moting better motor recovery in malnourished stroke patients [113,114]. Therefore, in order
to prevent the burst of oxidative and inflammatory stress, which interfere with neural
plasticity and neurological recovery processes, it is crucial to adopt adequate and pertinent
nutritional behavior. Protein-energy malnutrition, whether originating before or after an
acute stroke, is a risk factor for a worse outcome, prolonged hospital stay, higher frequency
of respiratory and urinary infections, bedsores, and increased mortality rates at 3–6 months
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after stroke [115]. Malnutrition is also involved in post-stroke cognitive impairment, mainly
in global cognition and frontal domain functions. In the subacute rehabilitation stroke set-
ting, nutritional support based on increased supplementation of amino acids is associated
with improved global cognitive outcomes due to the enhanced synthesis of neural proteins
that favor axonal sprouting and new cortical connections. [114]. Malnutrition, particularly
in elderly stroke patients, results in muscle mass loss, muscle fatty infiltration, and skeletal
muscle atrophy in the affected limb(s). Such phenotypic skeletal muscle modifications,
known as “stroke-related sarcopenia”, are recognized as useful predictors of limited mobil-
ity and poor rehabilitative outcomes [116]. On the contrary, neurorehabilitation treatment
in elderly non-sedentary stroke patients with a proper nutritional status may promote
skeletal muscle remodeling and predispose patients towards satisfying global motor and
functional recovery [16]. Interestingly, a low BMI and low serum albumin levels lead
to poor functional recovery. The combination of these parameters may be considered a
valuable and prognostic marker of malnutrition, which may be more efficient than the
single factor alone [117]. Obesity is the opposite of malnutrition. Evidence has shown that a
high BMI may compromise functional recovery and that the recovery of functional indepen-
dence in activities of daily living (ADL) in obese stroke patients after a neurorehabilitation
intervention is related to decreased fat mass and catabolic processes [17]. According to
the WHO recommendation concerning the BMI cut-off, a BMI value that falls within the
range of a correct nutritional status may represent an independent prognostic factor for
functional recovery after a stroke [118]. Although it has long been known that obesity is a
real and effective risk for suffering a stroke, some studies have provided evidence on its
positive influence on rehabilitative functional recovery, known as the so-called “obesity
paradox” [119]. However, the assumption that “the fatter, the better” may be questionable.
In fact, it remains to be considered that the evaluation of a patient’s BMI as a single index of
stroke functional recovery may present some limits that are impossible to deduce from the
evaluation of this single parameter, for instance, which component of body composition,
fat mass, or fat free mas, is involved in the best rehabilitative functional recovery of obese
stroke patients with respect to normal or underweight patients [17,120]. Findings from a
sizable prospective cohort enrolled in the Feed Or Ordinary Diet (FOOD) study highlight
that the nutritional status early after a stroke is independently associated with the long-term
outcome [121]. Therefore, maintaining an adequate nutritional status or restoring it to
levels matching the nutritional demands of post-stroke patients should be considered as
significant requisites for achieving successful rehabilitation outcomes [1,2].

6. Nutritional Interventions in Post-Stroke Malnourished Patients Admitted
to Rehabilitation

To prevent or stop the detrimental effects of poor nutritional status on the success of
rehabilitation, malnutrition in stroke patients must be reversed or stopped. Nutritional
strategies focused on planning dietary interventions for restoring impaired energy bal-
ance and protein synthesis, addressing mineral deficiencies, and lowering excess ROS and
inflammatory mediators, link and complete the medical management of post-stroke pa-
tients, and could be essential to reducing some of the malnutrition-associated consequences
that hinder rehabilitation programs [14,22]. Furthermore, the positive effects of a leucine-
enriched amino acid supplement on muscle mass, muscle strength, and physical function
were observed in post-stroke patients with sarcopenia performing low-intensity resistance
training in addition to a post-stroke rehabilitation program [122]. Supplementation with a
hyperproteic nutritional formula (250 kcal and 20 g of protein in addition to the baseline
diet) in subacute stroke patients admitted to rehabilitative treatment seems to have en-
hanced neurological recovery, which was measured using the National Institute of Health
Stroke Scale (NIHSS). Interestingly, the carbohydrate/protein intake ratio was directly
related to the NIHSS score, while increased protein intake was associated with significant
improvements evidenced by the inverse correlation between the protein intake and NIHSS
score [123]. Although the question concerning resting the energy expenditure of stroke
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patients remains controversial, which is mainly due to the heterogeneity of the patients and
methodologies used [124], there is general agreement that during rehabilitative treatment,
an increased energy requirement due to an intensive regimen of mobility-associated activ-
ities is burdensome, especially in malnourished patients [125]. In a retrospective cohort
study, it has been reported that the higher the energy levels at rehabilitation admission,
the higher the Functional Independence Measure (FIM)’s efficiency and nutritional status
improvement. It has also been observed that energy intake ≥ 26 kcal/kg/ day per ideal
body weight is required to promote a greater increase in the improvement of ADL and
nutritional status improvement [126]. A recent meta-analysis on the effects of nutritional
supplementation on rehabilitation for stroke patients showed increased ADL and reduced
incidence of infections, but no statistically significant effect on functional outcomes as well
as disabilities, complications, and laboratory data [127]. Evidence was provided regarding
the positive effects of antioxidant supplementation (vitamin C and E, polyphenols and
flavonoids from fruits and vegetables, whole grains, and so on) on rehabilitation effective-
ness owing to their neuroprotective properties [14,22,128]. It was demonstrated that the
effectiveness of vitamin D supplementation on rehabilitation recovery is dependent on
its vitamin-related roles as neuromuscular and neuroprotective factors and on its positive
influence on bone mineral density [24,129]. Finally, evidence showed that omega-3 fatty
acid supplementation was linked to improving rehabilitation outcomes [125].

7. Limitations

The results regarding the positive effects of antioxidant and anti-inflammatory food
components or foods with respect to the rehabilitation outcome in malnourished stroke
patients are not fully conclusive, because most studies only include a small number of
participants and use multiple outcome measures (e.g., the Barthel Index, the modified
Rankin Scale, the Functional Independence Measure, the National Institute of Health Stroke
Scale, etc.) to assess patients’ recovery. Additionally, the heterogeneous assessment of
malnutrition across centers and the non-uniform selection of stroke patients (based on age,
gender, dysphagia or not, stroke severity, comorbidities, pharmacological treatment, etc.)
might have prevented the generalization of the findings of each study. Notably, no data are
available on the efficacy of supplementation after a patient’s reintegration into society and
daily life.

8. Five-Year Perspective

It has been shown through compelling evidence that translational research plays a
crucial role in providing a more precise description of the recovery process that neurore-
habilitation is able to achieve, even in elderly and weak patients. In order to promote
recovery from neurological deficits, there is currently a great deal of interest in establishing
the stage of the rehabilitation process at which dietary patterns can modulate and boost
neuronal plasticity. The neural signals driving plasticity are modulated by gene expression,
whose variability influences stroke patient’s capacity to respond to rehabilitation treatment
and functional recovery. [67,130]. Nutrigenomics studies will be useful for understanding
the mechanisms by which antioxidant and anti-inflammatory dietary patterns, with their
neuroprotective properties, may activate cellular signaling pathways that modify neuronal
plasticity. Nutritional systems biology is indeed an emerging approach to favor the evo-
lution from traditional medicine toward personalized medicine (5P medicine: Predictive,
Preventive, Participatory, Personalized, and Precision Medicines) [131]. Rehabilomics, a
branch of the -omics sciences, uses the analysis and dosage of biomarkers as a tool to ana-
lyze the effectiveness of exercise and, afterwards, create a tailored therapeutic proposal for
each patient. However, to date, biomarkers have found rather limited uses in the validation
of rehabilitation treatments and in the evaluation of their therapeutic efficacy. Biomarkers
can be used in the evaluation of the efficacy of a correct nutritional status for promoting the
modulation of the oxidative balance during neuromotor recovery [132]. For that reason, in
the future, rehabilomics should be considered as an interesting approach towards more
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comprehensively understanding the mechanisms and interactions between malnutrition,
oxidative unbalance, neuroplasticity, and functional recovery [133].

Further research is required to understand how changes in the gut microbiota and
the consequent chronic intestinal inflammation can determine the worsening of a patient’s
nutritional status and the occurrence of a detrimental impact on neuroplasticity [134].

9. Conclusions

In the coming future, with a translational approach, it will be appropriate for neu-
rorehabilitation clinical units to follow a structured and standardized assessment of the
nutritional status and body composition of patients with neurological deficits to set specific
dietary corrections. The assessment of nutritional status may be included as a routine
tool in rehabilitation settings to verify the degree to which its modification can influence
rehabilitative outcomes.
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