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Abstract: Recent scientific evidence suggests that traits energy and fatigue are two unique unipolar
moods with distinct mental and physical components. This exploratory study investigated the
correlation between mental energy (ME), mental fatigue (MF), physical energy (PE), physical fatigue
(PF), and the gut microbiome. The four moods were assessed by survey, and the gut microbiome
and metabolome were determined from 16 S rRNA analysis and untargeted metabolomics analysis,
respectively. Twenty subjects who were 31 ± 5 y, physically active, and not obese (26.4 ± 4.4 kg/m2)
participated. Bacteroidetes (45%), the most prominent phyla, was only negatively correlated with PF.
The second most predominant and butyrate-producing phyla, Firmicutes (43%), had members that
correlated with each trait. However, the bacteria Anaerostipes was positively correlated with ME (0.048,
p = 0.032) and negatively with MF (−0.532, p = 0.016) and PF (−0.448, p = 0.048), respectively. Diet
influences the gut microbiota composition, and only one food group, processed meat, was correlated
with the four moods—positively with MF (0.538, p = 0.014) and PF (0.513, p = 0.021) and negatively
with ME (−0.790, p < 0.001) and PE (−0.478, p = 0.021). Only the Firmicutes genus Holdemania was
correlated with processed meat (r = 0.488, p = 0.029). Distinct metabolic profiles were observed, yet
these profiles were not significantly correlated with the traits. Study findings suggest that energy and
fatigue are unique traits that could be defined by distinct bacterial communities not driven by diet.
Larger studies are needed to confirm these exploratory findings.

Keywords: trait mental fatigue and energy; trait physical fatigue and energy; gut microbiome;
gut microbiota

1. Introduction

Approximately 45% of the United States (US) population experiences elevated and
persistent fatigue, a common, costly, and poorly understood problem [1–3]. It has been
estimated that fatigue costs employers over $136 billion per year in lost productivity [4];
however, these estimates do not account for fatigue-related driving and other accidents [5,6],
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poor medical performance [7], school absences [8,9], and declines in school performance
and negative health outcomes [9]. Fatigue is underreported in medical care [10] and linked
to many diseases and disorders [3]. Despite fatigue’s high financial and social costs, it is
a poorly understood problem despite there being over 250 different instruments and no
consensus about how best to measure fatigue [11]. One challenge for fatigue researchers is
articulating the conceptual relationship between fatigue and energy.

Until recently, both colloquially and in research, feelings of fatigue were usually
defined as “a lack of energy,” suggesting that energy and fatigue were opposite ends
of the same continuum. However, recent evidence suggests that energy and fatigue are
two unique unipolar moods with distinct neurohormonal [12] and physiological [13,14]
correlations. Further complicating this matter is evidence that suggests there are distinct
mental and physical components of energy and fatigue (e.g., there are four moods, mental
energy (ME), mental fatigue (MF), physical energy (PE), and physical fatigue (PF)) [15–17],
and recent literature makes an additional distinction between the concepts of state and
trait mental and physical energy and fatigue. As is the case with all moods, the state
aspect of energy and fatigue are considered transient (short-term) and can be influenced
by outside factors such as physical activity [18,19], sleep [20], and certain foods [21,22].
Recent evidence suggests that there is a trait aspect of energy and fatigue [15,16,23], which
modifies the effects of various interventions on state energy and fatigue [15,23], objective
measures of energy and fatigue [23], fine motor control [23], and other moods such as
anxiety and depression [23].

In 2018, Loy and colleagues [12] provided evidence that state energy was associated
with dopamine, while state fatigue was associated with serotonin, histamine, and inflamma-
tory cytokines. Subsequently, Boolani and colleagues [13] provided cross-sectional evidence
that peripheral mitochondrial function and normalized resting metabolic rate (nRMR) were
associated with feelings of state energy; however, they did not report any physiological
associations with feelings of state fatigue. Dupree and colleagues [14], in a case-controlled
interventional study, reported changes in salivary Annexin A1 with feelings of ME, but no
changes in salivary biomarkers were reported with feelings of MF. In 2017, Eshragh and
colleagues [24] reported unique and overlapping epigenetic associations between feelings
of energy and fatigue measured over two-time points. While this study [24] measured state
energy and fatigue, as participants were asked how they felt in the moment, the stability of
the measures over 6 months suggests that the study actually captured the trait aspect of
energy and fatigue. However, these researchers [24] did not explicitly use a trait measure
of energy and fatigue and, additionally, they did not differentiate between the mental and
physical aspects of energy and fatigue. All of these studies suggest there may be unique yet
overlapping biologic correlates of trait energy and fatigue that require further examination.

The human gastrointestinal tract contains thousands of bacterial species, primarily
anaerobes, from two predominant phyla, Firmicutes and Bacteroidetes [25,26]. Most are
located in the large bowel, where they ferment nondigestible food, making available
nutrients and other substrates, like the short-chain fatty acid butyrate [27,28]. These
processes, among others, performed by the gut microbiota are essential for maintaining
homeostasis and normal gut physiology [29]. Several diseases have been linked to gut
microbiota dysbiosis, such as obesity, coronary heart disease, diabetes, and inflammatory
bowel disease [30]. The gut microbiota has also been implicated in mental health and
cognition, and the existence of the gut-brain axis is well established [31].

Diet is one of the predominant influencers of gut microbiota composition. It deter-
mines the relative abundance of many microbial species, and these changes in microbial
composition influence metabolic processes, and subsequently, the metabolome [32,33].
For example, long-term dietary patterns, particularly the intake of protein and animal fat
(Bacteroides) versus carbohydrates or plant-based foods (Prevotella), are associated with
so-called enterotypes [34]. Plants are rich in fiber and anti-inflammatory compounds, like
polyphenols, which enter the colon where colonic microbiota convert them to bioavailable
and biologically active compounds (e.g., apples) [35]. Evidence suggests that consuming
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polyphenol-rich diets may be associated with increased feelings of mental energy [16,36].
In addition, Mediterranean diets have been known to reduce fatigue; however, the authors
did not differentiate between mental and physical fatigue [37]. Taken together, it may be
hypothesized that diets associated with increased feelings of energy or reduced feelings of
fatigue may also be associated with gut microbiome changes.

Recently, several studies reported an association between gut microbiome and feelings
of fatigue [38–41]; however, these studies did not distinguish between the mental and
physical aspects of fatigue. These preliminary findings have reported reduced diversity
and altered gut microbiome among patients with cancer-related fatigue [38,40] and myal-
gic encephalomyelitis/chronic fatigue syndrome (ME/CFS) [39,41]. These studies were
exploratory in nature, with some studies not adjusting analyses to account for multiple
comparisons [38,40,41] and others comparing ME/CFS patients to healthy control pop-
ulations [39,41]. One limitation of these recent studies is that findings have cannot be
extrapolated to healthy populations. Another limitation is that previous studies [38–41]
have measured fatigue as a lack of energy rather than measuring energy and fatigue as two
separate unipolar moods with their own unique mental and physical components. Taken
together, these limitations suggest there is a need to examine the association between gut
microbiome diversity and feelings of mental and physical energy and fatigue uniquely
among healthy individuals. Due to the limitations of current literature and the costs of
performing these analyses, it is advisable to perform an exploratory study that may provide
researchers with interesting findings without worrying about false positives to guide future
targeted studies [42]. Therefore, this exploratory study will uniquely add to the literature
by documenting the gut microbiota that may be correlated with the four distinct trait
aspects of mental energy (ME), mental fatigue (MF), physical energy (PE), and physical
fatigue (PF).

2. Materials and Methods
2.1. Subjects

Subjects were recruited from thirty-nine individuals who previously participated in a
study investigating the gut microbiome. The potential subjects were contacted by email and
invited to complete a brief survey about traits mental and physical energy and fatigue. The
email described the study and explained that their survey responses would be correlated
with their fecal microbiome. Individuals were excluded if they met any of the following
criteria: (1) took an antibiotic over the last three months; (2) consumed an anti-diarrhea
medicine in the last week; (3) took a laxative in the last week; (4) consumed prebiotics in
the last week; (5) consumed probiotics in the last week; (6) been diagnosed with cancer;
(7) been diagnosed with Crohn’s disease; (8) taking prescription medications other than
oral contraceptives; (9) cutting weight for an upcoming competition; (10) under the age of
25 years; or (11) lived outside the contiguous United States. Informed consent was obtained
from all subjects involved in the study. A total of 20 subjects consented and completed
the survey. All study procedures were approved by the Institutional Review Board at the
American Public University System (2021–045–OL, 14 April 2021).

2.2. Survey

The survey was conducted online using Qualtrics (Qualtrics, XM, Provo, UT, USA). The
mental and physical state and trait energy and fatigue scales [18] were used to discriminate
between mental and physical energy and fatigue. The reliability and temporal stability
of these scales has been previously demonstrated [21–23,43–47]. For the current study,
reliability was tested using Cronbach’s Alpha test in SPSS (IBM Corp. Released 2020. IBM
SPSS Statistics for Windows, Version 27.0. Armonk, NY, USA: IBM Corp). The scores were
PE, 0.767, PF, 0.899, ME, 0.890, and MF, 0.893.
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2.3. Diet Recall

The subjects were asked to recall the foods they ate the 24 h prior to collecting their
fecal sample using an automated, web-based, self-administered 24 h dietary assessment
(ASA24) (https://epi.grants.cancer.gov/asa24/) (accessed on 1 January 2022) [48]. The
program is freely available and can be accessed on the internet and mobile devices.

Fecal sample collection and DNA isolation: Each subject participated in an earlier
study in which a stool sample was collected, the DNA was isolated, and the bacteria
DNA was analyzed to identify the microbes present. Briefly, for that study, the DNA
was extracted using the QIAamp DNA Stool Mini Kits (Qiagen, Germantown, MD, USA)
modified to include bead-beating and RNase A treatment. A negative control was set
for checking any potential bacterial DNA existing in chemicals or involved during the
DNA extraction process. Purity and quantity were determined using a Thermo Scientific™
NanoDrop™ spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA).

2.4. Microbial Community Analysis

Two amplification steps were performed to prepare a sequencing library using the
AccuPrime Taq high-fidelity DNA polymerase system (Invitrogen, Carlsbad, CA, USA). A
negative control with the control from DNA extraction and a positive control of Microbial
Mock Community HM-276D (BEI Resources, Manassas, VA, USA) were set during amplicon
library preparation. Next, 16S ribosomal DNA hypervariable region V4 was amplified using
genomic DNA and the gene-specific primers with Illumina adaptors: Forward 5’TCGTCG-
GCAGCGTCAGATGTGTATAAGAGACAG GTGCCAGCMGCCGCGGTAA3’; Reverse 5’
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG GGACTACHVGGGTWTCTAAT 3’.
Polymerase chain reaction (PCR) products were purified using AMPure XP beads, and the
purified amplicon DNA was amplified using the primers with different molecular barcodes:
forward 5’ AATGATACGGCGACCACCGAGATCTACAC [i5] TCGTCGGCAGCGTC 3’;
reverse 5’ CAAGCAGAAGACGGCATACGAGAT [i7] GTCTCGTGGGCTCGG 3’. The
indexed amplicon libraries purified using AMPure XP beads and quantified using Quant-iT
PicoGreen (Invitrogen) were normalized and pooled. The pooled library was quantified us-
ing KAPA Library Quantification Kit (Kapa Biosystems), diluted, and denatured according
to Illumina’s sequencing library preparation guidelines. In addition, 10% PhiX was added
to the sequencing library as an internal control and increased 16S RNA amplicon library
diversity. The paired-end sequencing was performed on an Illumina MiSeq (Illumina, San
Diego, CA, USA) using the 2 × 250 bp V2 sequencing kit.

Raw fastq files were processed using QIIME2 with the DADA2 plugin [49]. Forward
and reverse reads were truncated to a uniform length of 240 bp, and 20 bp were trimmed
off of the front of each read to remove the primer. Amplicon sequence variants (ASVs)
identified by DADA2 were merged, and any that fell out of the expected 250–255 bp length
were discarded. Contingency-based filtering was performed to remove any ASVs that
appeared in only one sample, and the consensus method was used to remove chimeric ASVs.
A phylogenetic tree for diversity analysis was built by aligning remaining ASVs using
mafft [50] and fasttree [51]. Taxonomic classification was performed using Greengenes
v13.8 [52]. After primary data analysis, the remaining reads were analyzed using QIIME2
(Quantitative Insights Into Microbial Ecology) [53].

Read counts ranged from 14,628 to 90,465, with an average read count per sample of
56,041. Alpha rarefaction was performed at a level of 14,600 reads.

Prediction of Metabolic Profile: Potential microbial functions were identified from
the 16S sequencing data. The raw data were formatted and imported into QIIME2. The
dereplicated feature table and representative sequences were then used for closed-reference
clustering against the Greengenes 13_5 97% OTUs reference database. The closed-reference
OTU table was used as input into the PICRUSt [54] pipeline, and the resulting PICRUSt
metagenome data were further analyzed using STAMP (Statistical Analysis of Metagenomic
Profiles) [55] using pathways labeled at Level 2.

https://epi.grants.cancer.gov/asa24/
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2.5. Metabolomics

Samples from the 20 survey subjects were processed at the Biological and Small
Molecule Mass Spectrometry Core (BSMMSC), University of Tennessee, Knoxville, TN,
USA (RRID: SCR_021368). Samples were pre-weighed (~50 mg aliquots) and extracted
in biological triplicate. Briefly, water-soluble metabolites were extracted from fecal sam-
ples using an acidic acetonitrile extraction procedure [56]. An untargeted metabolomics
method was employed to analyze the fecal microbiome using ultra high-performance
liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). A
25 min method using a water:methanol solvent system with tributylamine as an ion-pairing
reagent was used for reverse-phase chromatographic separation. This was accomplished
by using a Synergi 2.6 µm Hydro RP column (100 mm × 2.1 mm, 100 Å; Phenomenex,
Torrance, CA, USA) and an UltiMate 3000 pump (Dionex). Eluted analytes were then
ionized via negative mode electrospray ionization, and mass spectral analysis was accom-
plished using a Thermo Scientific Exactive Plus Orbitrap (San Jose, CA, USA) operating in
full-scan mode [57,58]. Raw spectral files were converted to mzML files using the msCovert
package from ProteoWizard [59]. Metabolites were identified manually by exact mass
(±5 ppm) and retention time using an in-house library of metabolites and the open-source
software, metabolomics analysis and visualization engine (MAVEN) [60,61]. There were
170 identified metabolites from the untargeted metabolomics analysis.

2.6. Statistical Analysis

Microsoft Excel (Office 365) and SPSS (IBM Corp. Released 2020. IBM SPSS Statistics
for Windows, Version 27.0. Armonk, NY, USA: IBM Corp) were used for data analyses.
Variables were evaluated for normality of distribution using a combination of histograms
and the Shapiro-Wilks tests for normality. Neither the trait variables nor the gut microbiome
data were normally distributed. Trait fatigue (both mental and physical) was positively
skewed, while trait mental energy (both mental and physical) was negatively skewed.
This skewness is similar to what has been reported in previous studies using these con-
structs [15,23]. Exponential, power, arscine, and logarithmic transformation techniques
were attempted for all skewed variables; however, these transformations did not result
in normally distributed data (p > 0.05), and the histograms did not differ much from the
original. Thus, non-parametric analyses were used. Data were expressed as medians and
interquartile range, and the actual p-values were reported. Relationships with p < 0.05
were considered statistically significant. Spearman’s rho coefficients were calculated to
determine correlations between each trait (MF, ME, PF, and PE), bacteria species, diversity,
predicted functional pathways, dietary nutrients, and food groups. Additionally, Spear-
man’s rho was used to identify the correlation between the bacterial species and the traits,
as well as the correlation between the nutrients and food groups correlated with the traits.
Cronbach’s Alpha coefficients were computed to test reliability of the trait measures.

Metabolomics spectral data were normalized by weight for each sample. The peak intensi-
ties were normalized by the weight of the fecal matter used in each aliquot (~50–120 mg) [62,63].
The normalized data were used for principal component analysis (PCA), an unsupervised
dimensionality reduction tool. MetaboAnalyst 5.0 was used to generate PCA plots, where
the normalized data were filtered by interquartile range, log-transformed, and Pareto
scaled [64]. The PCA plot partitioned the subjects into two clusters. To determine if specific
traits (MF, ME, PF, PE) corresponded with each metabolic cluster, the subjects were assigned
a group based on their clustering location. Normality of distribution for each trait was
checked using a combination of histograms and Shapiro-Wilks tests. Data were abnormally
distributed and exponential, power, arscine, and logarithmic transformation techniques
were used to transform the data. None of the techniques produced normally distributed
data in either group. Therefore, to determine differences in trait scores between the two
clusters, Mann Whitney-U tests were used to compare the trait survey responses between
each cluster.
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This was an exploratory study to identify unique relationships and guide future
research efforts, so unadjusted findings are reported. If the Benjamini-Hochberg False
Discovery Rate (FDR) of 30% was used to correct for multiple tests post hoc, then none of
the values in this study would be statistically significant.

3. Results
3.1. Subject Description

The average age of the 20 subjects (14 males, 6 females) was 31.1 ± 5.0 years. Their
height, weight, and BMI were 67.7 ± 4.4 inches, 172.1 ± 33.5 lbs, and 26.4 ± 4.4 kg/m2,
respectively. Although the mean BMI was in the overweight category, the subjects were
physically active, and their primary exercise was resistance training (Total Walking MET-
minutes/week 1973.4 ± 2230.4; Total Moderate MET-minutes/week total 2587.5 ± 2224.0;
Total Vigorous MET-minutes/week 4196.1 ± 4069.1; Total Physical Activity MET-minutes/
week, 8757.0 ± 4683.2; Sitting Total Minutes/week 2074.5 ± 925.6; Average Sitting Total
Minutes/day 296.4 ± 132.2). Table A1 shows these characteristics and is presented in
Appendix A.

3.2. Trait Measures

Trait PE was 8 ± 1.8 with a range of 3–10, and trait PF was 3.6 ± 2.6 with a range
of 0–12. Trait ME was 7.25 ± 2.5 with a range of 0–10, and trait MF was 4.2 ± 2.6 with a
range of 0–12. The median and interquartile ranges are shown in Table A2 presented in
Appendix A.

3.3. Diversity Measures

Only one alpha diversity measure, Faith PD, was correlated with one trait, PF. Faith
PD is the sum of the branch lengths on the phylogenetic tree connecting all members of the
set. The higher the Faith PD sum, the lower the PF measure (−0.509, p = 0.022). These data
are presented in Table A2 in Appendix A.

3.4. Bacteria Taxa Correlated with Four Traits

The bacteria correlated with each trait are shown in Table 1. Traits ME and PF were
correlated with more than one phylum, respectively. Only trait mental energy was cor-
related with members of the Actinobacteria and Verrumomicrobia, while members of
Proteobacteria and Bacteroidetes were only associated with trait PF. Interestingly, at least
one member of the Firmicutes phyla was correlated with every trait, but only one Firmi-
cute member, c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Anaerostipes;s__, was
correlated with more than one trait (i.e., ME, MF, PF).

3.5. Nutrients and Food Groups Correlated with the Four Traits

The average fiber intake was 20.6 ± 2.5 g and ranged from 3.1 g to 46.0 g. Table 3 shows
the significant correlations between the four traits, two nutrients (folate and lycopene),
and four food groups (i.e., total dark green, red and orange, starchy, and other vegetables;
dark green vegetables; grains defined as whole grains and which contain the entire grain
kernel; and frankfurters, sausages, corned beef, and luncheon meat). Folate and lycopene
can be found in three of the four identified food groups (i.e., total dark green, red and
orange, starchy, and other vegetables; dark green vegetables; and grains defined as whole
grains and which contain the entire grain kernel). Interestingly, folate and food sources
rich in folate, dark green vegetables and total dark green, red and orange, starchy, and
other vegetables were positively correlated with ME. Lycopene was positively correlated
with both mental and physical fatigue. Processed meats like frankfurters, sausage, corned
beef, and luncheon meat correlated with all four traits; negatively with ME and PE and
positively with MF and PF.
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Table 1. Bacteria taxa significantly correlated with specific traits. Same colored bacteria names
correlate with more than one trait.

Correlation
Coefficient Significance

Trait Mental Energy

p__Actinobacteria 0.469 0.037
p__Firmicutes 0.520 0.019
p__Firmicutes;c__Bacilli;o__Turicibacterales 0.470 0.037
p__Firmicutes;c__Bacilli;o__Turicibacterales;f__Turicibacteraceae 0.470 0.037
p__Firmicutes;c__Bacilli;o__Turicibacterales;f__Turicibacteraceae;g__Turicibacter 0.470 0.037
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__;s__ 0.461 0.041
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__[Ruminococcus];s__gnavus 0.478 0.033
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Anaerostipes;s__ * 0.480 0.032
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Ruminococcaceae;g__;s__ 0.454 0.044
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Coprococcus;s__catus 0.479 0.032
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Roseburia;s__faecis 0.558 0.011
p__Verrucomicrobia;c__Verrucomicrobiae 0.475 0.034
p__Verrucomicrobia;c__Verrucomicrobiae;o__Verrucomicrobiales 0.475 0.034
p__Verrucomicrobia;c__Verrucomicrobiae;o__Verrucomicrobiales;f__Verrucomicrobiaceae 0.475 0.034
p__Verrucomicrobia;c__Verrucomicrobiae;o__Verrucomicrobiales;f__Verrucomicrobiaceae;
g__Akkermansia 0.475 0.034

Trait Mental Fatigue

p__Firmicutes;c__Erysipelotrichi 0.451 0.046
p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales 0.451 0.046
p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae 0.451 0.046
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Anaerostipes;s__ −0.532 0.016
Trait Physical Energy
p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Holdemania −0.533 0.015
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Dorea;s__ −0.463 0.040
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae;g__;s__ −0.461 0.041

Trait Physical Fatigue

p__Firmicutes;c__Clostridia;o__Clostridiales;f__Christensenellaceae;g__;s__ −0.630 0.003
p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Anaerostipes;s__ −0.448 0.048
p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales 0.445 0.049
p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae 0.445 0.049
p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus 0.512 0.021
p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides;s__ −0.451 0.046

* Bacteria highlighted in red was found in more than one trait.

3.6. Predicted Functional Pathways Correlated with Traits

The functional pathways correlated with each trait are shown in Table 2. Functional
metabolic pathways were predicted from the bacterial gene sequences and correlated with
each trait. MF and PF did not associate with any functional pathways. Only one metabolic
pathway was correlated with PE, while 19 were correlated with trait ME. Of the 19, 11
(57%) were metabolism-correlated pathways, and 6 of these 11 (55%) were involved with
xenobiotics biodegradation and metabolism.

3.7. Nutrients and Food Groups Correlated with Bacteria Correlated with the Four Traits

Since several bacteria and food groups were correlated with at least one of the four
traits, correlations were examined between the bacteria that mapped to one of the traits and
the food groups correlated with at least one trait (Table 4). Interestingly, only one bacterium
was correlated with each food group and most were from the Erysipelotrichi class. Only Fir-
micutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Holdemania was
correlated with processed meats, and, interestingly, this bacteria was negatively correlated
with trait PE.
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Table 2. Predicted functional pathways significantly correlated with specific traits.

Correlation
Coefficient Significance

Trait Mental Energy

Cellular Processes; Cell Motility; Bacterial motility proteins 0.494 0.027
Genetic Information Processing; Replication and Repair; Non-homologous end-joining 0.523 0.018
Human Diseases; Infectious Diseases; African trypanosomiasis 0.501 0.025
Metabolism; Biosynthesis of Other Secondary Metabolites; Butirosin and neomycin biosynthesis 0.445 0.049
Metabolism; Biosynthesis of Other Secondary Metabolites; Flavonoid biosynthesis 0.531 0.016
Metabolism; Lipid Metabolism; Biosynthesis of unsaturated fatty acids 0.470 0.037
Metabolism; Metabolism of Terpenoids and Polyketides
Biosynthesis of siderophore group nonribosomal peptides 0.450 0.046

Metabolism; Metabolism of Terpenoids and Polyketides; Carotenoid biosynthesis 0.621 0.003
Metabolism; Xenobiotics Biodegradation and Metabolism; Benzoate degradation 0.461 0.041
Metabolism; Xenobiotics Biodegradation and Metabolism; Chloroalkane and
chloroalkene degradation 0.470 0.037

Metabolism; Xenobiotics Biodegradation and Metabolism; Dioxin degradation 0.464 0.039
Metabolism; Xenobiotics Biodegradation and Metabolism; Metabolism of xenobiotics by
cytochrome P450 0.446 0.049

Metabolism; Xenobiotics Biodegradation and Metabolism; Naphthalene degradation 0.451 0.046
Metabolism; Xenobiotics Biodegradation and Metabolism; Xylene degradation 0.453 0.045
Organismal Systems; Digestive System; Carbohydrate digestion and absorption 0.511 0.021
Organismal Systems; Endocrine System; Insulin signaling pathway 0.447 0.048
Organismal Systems; Immune System; NOD-like receptor signaling pathway 0.446 0.049
Unclassified; Cellular Processes and Signaling; Electron transfer carriers 0.484 0.031
Unclassified; Metabolism; Lipid metabolism 0.448 0.048

Trait Physical Energy

Human Diseases; Infectious Diseases; Bacterial invasion of epithelial cells −0.604 0.005

Table 3. Correlation of traits with nutrients and food groups from 24 h recall.

Trait Mental
Energy

Trait Mental
Fatigue

Trait Physical
Energy

Trait Physical
Fatigue

Folate, food (mcg) Correlation 0.465 * 0.021 0.313 0.129
Sig. (2-tailed) 0.039 0.931 0.178 0.588

Lycopene (mcg) Correlation −0.399 0.505 −0.438 0.503
Sig. (2-tailed) 0.081 0.023 0.053 0.024

Total dark green, red and orange, starchy, and other
vegetables; excludes legumes (cup eq.)

Correlation 0.500 −0.018 0.221 0.036
Sig. (2-tailed) 0.025 0.940 0.350 0.880

Dark green vegetables (cup eq.) P Correlation 0.456 0.052 0.322 0.187
Sig. (2-tailed) 0.043 0.829 0.166 0.429

Grains defined as whole grains and which contain the entire
grain kernel: bran, germ, and endosperm (oz. eq.)

Correlation −0.609 0.383 −0.442 0.466
Sig. (2-tailed) 0.004 0.095 0.051 0.038

Frankfurters, sausages, corned beef, and luncheon meat that
are made from beef, pork, or poultry (oz. eq.)

Correlation −0.790 0.538 * −0.478 0.513
Sig. (2-tailed) <0.0001 0.014 0.033 0.021

* numbers highlighted in red are significantly different.

Table 4. Correlations between significant bacteria and significant nutrient/food groups.

Bacteria (All Belong to Firmicutes Phylum)
Folate,
Food
(mcg)

Lycopene
(mcg)

Total Dark
Green, Red and
Orange, Starchy,

and Other
Vegetables;

Excludes
Legumes
(Cup Eq.)

Dark Green
Vegetables
(Cup Eq.)

Grains Defined as
Whole Grains and
Which Contain the

Entire Grain Kernel:
Bran, Germ, and

Endosperm
(Oz. Eq.)

Frankfurters,
Sausages, Corned

Beef, and Luncheon
Meat That Are

Made from Beef,
Pork, or Poultry

(Oz. Eq.)

c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Coprococcus;s__catus Correlation 0.429 −0.354 0.391 0.491 * 0.209 −0.075
Sig. (2-tailed) 0.059 0.126 0.088 0.028 0.376 0.753

c__Erysipelotrichi Correlation −0.281 0.470 −0.277 −0.212 0.344 0.262
Sig. (2-tailed) 0.230 0.037 0.238 0.370 0.137 0.264

c__Erysipelotrichi;o__Erysipelotrichales Correlation −0.281 0.470 −0.277 −0.212 0.344 0.262
Sig. (2-tailed) 0.230 0.037 0.238 0.370 0.137 0.264

c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae Correlation −0.281 0.470 −0.277 −0.212 0.344 0.262
Sig. (2-tailed) 0.230 0.037 0.238 0.370 0.137 0.264

c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Holdemania Correlation −0.268 0.088 −0.339 −0.330 0.455 0.488
Sig. (2-tailed) 0.254 0.713 0.143 0.155 0.044 0.029

* Numbers highlighted in red are significantly different.
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3.8. Metabolomics

PCA analysis revealed that the subjects naturally separated into two distinct clusters
(left or right, Figure 1A). Of the identified metabolites, 100 metabolites had a significantly
higher relative abundance in the left group (presented in blue), including but not limited to
biotin, serine, and shikimate. The right group (presented in red) had only six metabolites
with a higher relative abundance, including propionyl-CoA, acetyl-CoA, and NAD+. There
were no statistically significant differences in PF, PE, MF, or ME when comparing the
subjects on the left to those on the right (Figure 1B). Therefore, the separation of the clusters
observed on the PCA plot cannot be attributed to traits, so distinct metabolic profiles based
on MF, ME, PF, and PE were not observed in the study.
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4. Discussion

This exploratory study provides interesting evidence that gut microbiota, diet, and the
corresponding metabolome may be correlated with four distinct mental and physical energy
and fatigue traits. Findings provide evidence that may assist researchers when further
exploring the associations between gut microbiota and trait-level mental and physical
energy and fatigue. Although unique metabolic profiles were apparent in the PCA analysis,
there was no evidence to attribute these differences to traits energy and fatigue. However,
these findings indicate distinct bacteria may be correlated with each trait except for one,
supporting previous findings that feelings of mental and physical energy and fatigue may
be unique with some overlap [13,15,16]. In addition, only one bacterium was correlated
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with more than one trait, Anaerostipes, in the expected direction (i.e., positively correlated
with mental energy and negatively correlated with mental and physical fatigue traits).

When examining bacterial functional pathways, none of the pathways were correlated
with traits mental and physical fatigue; however, most of the pathways (22 out of 23) were
correlated with trait mental energy. Most of the pathways fell under Metabolism (level 1)
and Xenobiotic Biodegradation (level 2). Unfortunately, it is not apparent why more of
these pathways were expressed in trait mental energy, which warrants further investigation.
The metabolic pathway for bacterial invasion of epithelial cells was negatively correlated
with trait physical energy, and again, it is not clear what this means and needs further
investigation.

Only the Faith PD, a measure of alpha diversity, was negatively correlated with
trait physical fatigue, suggesting that individuals who report normally feeling physically
fatigued also had the lowest diversity of bacteria. The American Gut Project found that the
gut microbiome is more diverse in people who eat more than 30 types of plants a week [65].
Plants are rich in fiber compared with animal-derived foods, and the Western diet, typically
eaten in the USA, is high in animal protein and low in plant sources. Subjects in this study
self-identified being physically active and often participating in resistance training. Their
average protein intake was 136.2 ± 15.3 g/day (32.2 minimum and 272 maximum). Subjects’
fiber intake ranged from a low of 3 g/day to 46 g/day, and the average intake was less
than the daily recommended intake (DRI) for males (38 g/day) and females (25 g/day) [66].
Only six subjects met or exceeded the DRI. For this sample, it is possible that the inadequate
intake of fiber reduced the alpha diversity of their gut microbiome.

Findings from this study indicate that bacteria involved in gut homeostasis and health
(Actiobacteria [67] and Firmicutes Bacilli [68]), carbohydrate metabolism (Firmicutes and
Firmicutes Clostridia [69]), and glucose homeostasis (Verrucomicrobia [70]) are positively
correlated with long-standing pre-disposition to ME. These findings support other biolog-
ical associations with ME. For example, Dupree and colleagues [14] in a case-controlled
crossover trial, reported that changes in ME were associated with decreased Annexin A1,
a mediator of the glucocorticoid, cortisol. This finding aligns with the current study’s
findings because increased carbohydrate metabolism and improved glucose homeostasis
were correlated with lower cortisol levels [60], which may influence Annexin A1 levels.
Additionally, Boolani and colleagues (2019) [13] reported an association between ATP
production and feelings of energy without differentiating between the physical and mental
aspects of energy. Curiously, in the current study, trait PE was negatively correlated with
Dorea and Holdemania, both of which have been correlated with high fiber diets [71], and
lower levels of these have been correlated with higher blood pressure [72].

Trait MF was primarily correlated with Firmicutes Erysipelotrichi, bacteria primarily
associated with TNF-α [73], a proinflammatory cytokine. These findings support the
work by Loy and colleagues (2018) [12], who reported that proinflammatory cytokines are
associated with feelings of fatigue only, without differentiating between the mental and
physical aspects of fatigue. Findings from the current study further support the idea of
inflammation being correlated with feelings of fatigue in that trait PF was correlated with
Proteobacteria Gammaproteobacteria, which are reported to be higher in individuals who
have inflammatory bowel disease [74–76]. Taken together, this study’s findings support the
work by Loy and colleagues (2018) [12] in that fatigue was associated with inflammation.

Interestingly, Anaerostipes was correlated with trait ME, MF, and PF in the anticipated
direction. Higher levels of Anaerostipes are associated with activation of fatty acid oxidation,
synthesis, and lipolysis inhibition, which in turn decreases circulating lipid plasma levels
and body weight [76]. It also suppresses colon inflammation and can downregulate insulin
signal transduction in adipose tissue. Although this study did not differentiate which func-
tion the bacteria serve in each trait, based on previous findings [12] and the other bacteria
associated with the traits, the authors hypothesize that Anaerostipes’ anti-inflammatory
function may be associated with MF and PF. In contrast, the metabolic function of the
Anaerostipes bacteria may be correlated with trait ME.
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When examining functional pathways, a majority were positively correlated with trait
ME, while the functional pathway correlated with bacterial invasion of epithelial cells was
negatively correlated with trait PE. Many of the functional pathways correlated with trait
ME were metabolism-related pathways, suggesting that those who normally feel mentally
energetic may produce gut substrates that impact metabolism in the gut and possibly
the host. These findings may be important for nutrition science researchers because those
reporting high trait ME may be hyper- or hypo-responders to some nutritional interventions
(i.e., cocoa). Trait moods have been noted to influence acute responses to caffeine [23];
however, none of the pathways that were significant in the current study were correlated
with methylxanthine metabolism.

The processed meats (frankfurters, sausages, corned beef, and luncheon meat that are
made from beef, pork, or poultry) food group was the only one correlated with all four
traits. These foods are also considered ultra-processed foods. Hall and colleagues [77]
demonstrated in a randomized controlled trial that diets rich in ultra-processed foods
promote excess calorie intake and weight gain. Limiting these foods may be an effective
strategy to prevent obesity. Obese people often experience fatigue and decreased physical
endurance [78]. The other identified foods groups in the current study were plant-based.
As previously discussed, plants contain many substances that can be metabolized by the
gut microbiota and impact host physiology. It is possible that the observed changes in the
metabolome can be attributed to diet rather than trait because diet is known to alter the
gut microbiome, which then leads to changes in the available small molecules, or nutrients,
produced by the gut microbiota. Future studies should consider and account for the types
of foods subjects eat.

Limitations

As with all studies, this study is not without limitations. The primary limitation was
the small sample size and the lack of significant findings when adjusting for multiple
comparisons. However, since this was an exploratory study, and because this study was
intended to be illustrative rather than definitive, the authors were unable to complete power
and sample size calculations a priori. Nevertheless, these preliminary data show interesting
findings, which can serve as foundational evidence for future investigations looking to
determine the role of the gut microbiota in feelings of mental and physical energy and
fatigue. Additionally, these study findings were limited to a single sample of healthy young
adults and cannot be extrapolated to individuals who may have a diagnosis of diseases
such as Inflammatory Bowel Syndrome (IBS), which has been known to influence gut
microbiota composition. Future studies are recommended to add comparator subgroups
with differing diagnoses so the relationships in this study can be compared by health status.
Another potential limitation to this study is that stool samples and trait measures were
collected two years apart. Future studies should consider collecting all microbiome and self-
reported data from participants in closer temporal proximity. However, there is significant
evidence that suggests that trait mental and physical energy and fatigue maintain temporal
stability for as long as one year [15,16,47,79]. Additionally, there is scientific evidence
that gut microbiota maintains temporal stability throughout adulthood [80,81]. However,
exceptions are associated with inflammatory bowel syndrome [82,83], obesity [84,85],
irritable bowel syndrome [86,87] (Jeffery et al., 2012; DuPont 2014), and type 2 diabetes [88]
(Larsen et al., 2010). Therefore, participants who had any of these diseases/syndromes were
excluded from the current study. Antibiotic therapy can also disrupt the gut microbiome,
so individuals who had taken antibiotics less than three months prior to the study were
also excluded. Fu et al. [89] examined the reliability and biological stability of fecal samples
collected every six months for two years. They found that a single sample is sufficient to
capture the majority of the variation in fecal microbiome from 16S rRNA gene sequencing.
Multiple samples are needed for rare or less-abundant taxa, which are not reported in
the current study. Finally, while 170 metabolites were identified in the fecal samples in
this study; details were only provided for those that significantly differed in bivariate
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analyses and were included in subsequent analyses. While short-chain fatty acids were not
measured for this study, future studies should examine these metabolites as related to trait
mental and physical energy and fatigue.

5. Conclusions

The objective of this exploratory study was to identify potential correlations between
gut microbiota and trait (long-standing pre-disposition to) mental and physical energy and
fatigue, which can be used to guide future research. These findings provide evidence that
the four traits (i.e., mental energy (ME), mental fatigue (MF), physical energy (PE), and
physical fatigue (PF)) may have unique yet overlapping gut bacteria profiles. For example,
the bacteria most often correlated with feelings of energy perform metabolic functions,
while bacteria most often correlated with feelings of fatigue are associated with inflamma-
tion. This study suggests the need to explore the role of gut microbiota in understanding
long-standing feelings of energy and fatigue among healthy young individuals.
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Appendix A

Table A1. Subject information.

Variable Median Interquartile Range

Age (years) 31 7
Sex (Males, Females) 14, 6

Weight (lbs) 180 54
Height (inches) 68 7
BMI (kg/m2) 25.3 5.1

Total Walking MET-min/week 1402.5 2883.4
Total Moderate MET-min/week total 1560.0 3532.5

Total Vigorous MET-min/week 2880.0 2520.0
Total Physical Activity MET-min/week 7939.5 5711.6

Sitting Total Minutes/week 2220.0 1245.0
Average Sitting Total Minutes/day 317.1 177.9

Trait Physical Energy 8.0 3.0
Trait Physical Fatigue 3.0 2.0
Trait Mental Energy 8.5 1
Trait Mental Fatigue 3.0 1.8
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Table A2. Correlation of trait measures with four alpha diversity measures.

Alpha
Diversity
Measure

Trait Mental
Energy

Trait Mental
Fatigue

Trait
Physical
Energy

Trait
Physical
Fatigue

Evenness Correlation
Coefficient 0.099 −0.401 0.092 −0.387

Significance 0.679 0.079 0.700 0.092

Shannon Correlation
Coefficient 0.293 −0.330 0.199 −0.432

Significance 0.211 0.156 0.401 0.057

Observed Otus Correlation
Coefficient 0.432 −0.185 0.331 −0.390

Significance 0.057 0.435 0.154 0.089

Faith PD Correlation
Coefficient 0.293 −0.367 0.247 −0.509

Significance 0.209 0.111 0.294 0.022
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