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Abstract: Inadequate iron intake and iron deficiency are recognised as a public health problem
in the population at large, and particularly in specific subpopulations. Dietary iron intake was
analysed using data of the national Slovenian food consumption study, SI.Menu (n = 1248 subjects;
10–74 years), while iron status was evaluated with laboratory analyses of blood haemoglobin, serum
ferritin, and iron concentration in samples, collected in the Nutrihealth study (n = 280, adults). The
estimated daily usual population-weighted mean iron intakes ranged from 16.0 mg in adults and
the elderly to 16.7 in adolescents, and were lower in females for all three age groups. The main
dietary iron sources in all the age groups were bread and bakery products, meat (products), fruit,
and vegetables. The highest prevalence of haemoglobin anaemia was observed in females aged
51–64 years (6.7%). Critically depleted iron stores (ferritin concentration < 15 µg/L) were particularly
found in premenopausal females (10.1%). Factors influencing low haemoglobin, ferritin, and iron
intake were also investigated. We observed significant correlations between iron status with meat and
fish intake, and with iron intake from meat and fish, but not with total iron intake. We can conclude
that particularly premenopausal females are the most fragile population in terms of inadequate iron
intake and iron deficiency, which should be considered in future research and public health strategies.

Keywords: iron; intake; ferritin; haemoglobin; deficiency; Slovenia; EU Menu; Nutrihealth

1. Introduction

Iron deficiency (ID) is a common nutritional deficiency that affects around 2 billion
people around the world, with iron deficiency anaemia (IDA) being among the most com-
mon consequences [1–3]. Iron deficiency, however, usually precedes IDA and is associated
with poor exercise tolerance, headache, weakness, fatigue, dizziness, and shortness of
breath, particularly in patients with chronic disease, but also in healthy people [4–8].

However, in the literature, ID is not always distinctive from IDA, and the two terms
are often used interchangeably [9]. Besides ID, anaemia can also result from certain diseases
and infections, as well as folate and vitamin B12 deficiency. Anaemia especially affects
young children and pregnant women [1,3]. In the general population, premenopausal
females are particularly at risk for ID due to menstrual losses; therefore, a somewhat higher
daily iron intake is advised for this population group [10]. In athletes and those regularly
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involved in vigorous physical activity, ID is more common as well [11]. One of the causes
for anaemia are also diseases that impair intestinal absorption, such as celiac disease. In the
elderly, the common causes of ID are digestive diseases and digestive bleeding, which are
often overlooked [12–14]. On the other hand, in Western countries, ID was not highlighted
as a particular concern in adult males, where dietary iron intake is usually sufficient [15].
Excessive iron intake and body stores can be associated with a variety of chronic diseases,
including cardiovascular disease [16], cancer [17], and diabetes [18,19].

The risk of insufficient dietary iron intake is often higher in developing countries, and
in populations with mainly plant-based diets, due to the low iron bioavailability from such
diets [20]. This effect can be further enhanced by drinking tannin-containing teas with
meals [21]. In Europe, the major contributors of dietary iron are grains and meat/meat
products [22]. The bioavailability of iron from various food sources can vary notably.
While haem iron absorption can be up to 35%, non-haem iron is generally absorbed less
effectively [23]. However, as there are no physiologically regulated means of iron excretion,
iron absorption from foods is highly regulated, depending on the individuals’ iron status.
This is supposed to have an even greater effect on the iron absorption than diet composition
itself; therefore, individuals with lower iron stores tend to absorb more iron from foods,
even from non-haem iron sources [24,25]. Besides the iron status, other health characteristics
of the individuals, particularly obesity, play a key role in the amount of the iron absorbed
from the diet [26]. Alcohol consumption was also shown to affect iron stores in the body [27].
The total bioavailability of iron from a meal depends on many factors, and the enhancing
and inhibiting activities of single compounds are not the only factors influencing iron
absorption [26]. Daily iron turnover is 1–3 mg, and iron body stores account for 2–3 g;
therefore, the dietary compensation for iron loss can take time [28].

Slovenia adapted the D-A-CH (Germany, Austria, and Switzerland) dietary recom-
mendations [29], where the recommended iron intake is set as follows: adolescent males:
12 µg/day; adolescent and premenopausal females: 15 µg/day; adult and elderly males,
and postmenopausal females: 10 µg/day [30]. The European Food Safety Authority (EFSA)
established population reference intakes (PRI) at 11 µg/day for males, postmenopausal
and adolescent females (10–11 years); 13 µg/day for adolescent females (12–17 years), and
16 µg/day for premenopausal females (18–50 years). The average requirements (AR) are set
in a way such that half of the population meets the set threshold, which are, according to
EFSA, 8 µg/day for adolescent males (10–17 years) and females (10–11 years), 7 µg/day for
adolescent and premenopausal females, and 6 µg/day for adult males and postmenopausal
females [22].

Until now, iron intake and status in Slovenia were only studied in specific population
subgroups [5,31–36], and no nationally representative data are available. Literature data
from studies in European countries show that dietary iron intakes were generally higher in
males than females for all age groups [22]. Around 80% of European males were reported
to meet recommendations for dietary iron intakes, even up to 22.7 mg/day, which is linked
to a high meat consumption [15]. On the other hand, much lower dietary iron intakes are
reported in females. In many European countries, women of reproductive age had dietary
iron intakes of below 15 mg/day, contributing to the low iron status in this population
group, which is particularly at risk for ID [37].

However, to assess the body iron status, low dietary iron intake cannot be used as the
criteria for an assessment of deficiency, because it is affected by other different factors [38].
Common markers in the assessment of iron status are serum iron, transferrin, transferrin
saturation, and ferritin [39]. Ferritin is considered to be the most sensitive and specific
marker for ID assessment [1], as in healthy individuals, it indicates iron stores in the body,
which can be used for the production of erythrocytes. Ferritin levels of below 15 µg/L are
considered as critical by the World Health Organisation (WHO), and indicate depleted bone
marrow iron stores [3]. In clinical practice, ID is often ascertained at ferritin levels below
30 µg/L [14,40]. As serum ferritin is known as an acute-phase protein due to its significant
increase in the presence of inflammation and certain chronic disease, such as cancer [41], a
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cut-off ferritin level for ID is sometimes increased up to 100 µg/L [42]. In the presence of
chronic inflammation conditions, with ferritin levels of 100–300 µg/L, transferrin saturation
(TSAT) can be also considered, with levels below 20% being diagnostic of ID [43]. Serum
iron levels ≥13 µmol/L are generally not concerning in terms of ID, but this parameter
can vary significantly, depending on the past days’ diet and circadian rhythms [44]. In
clinical practice, haemoglobin is typically used as a diagnostic parameter for anaemia.
Haemoglobin in red blood cells presents a major iron pool in the body, where it serves
as an oxygen transporter [45–47]. According to the WHO, haemoglobin concentrations
<120 g/L in adolescents and adult females and <130 g/L in adult males indicate the
presence of anaemia [48].

In Europe, especially children, premenopausal and pregnant women are reported to
be at risk for ID, while males are generally not considered as a vulnerable population [49].
The prevalence of ID in premenopausal females accounts for 10–30% of the population,
with IDA rates ranging over 1.5–14%, depending on the cut-off criteria used [49,50]. Mean
serum ferritin levels typically range over 26–38 µg/L and vary among countries [50].

In Europe, iron fortification of foods is currently not a general practice, as seen in
some other countries, and is mainly voluntary, with regulated forms of iron sources [51].
In Slovenia, the food category with the highest proportion of iron enriched products is
breakfast cereals (39%) [52].

The objective of the present study was to estimate the daily dietary iron intake in
Slovenian adolescents, adults, and the elderly population with foods, and to analyse
selected biomarkers of iron status in the adult and elderly populations. Data were obtained
from a nationally representative food consumption study (SI.Menu), supplemented with
analyses of biological biomarkers on a sub-sample of adults and elderly (Nutrihealth study).
We also investigated the main dietary sources of iron, and explored the determinants linked
to low iron intake and status.

2. Materials and Methods
2.1. Subjects and Study Design

A cross-sectional SI.Menu study was performed on a nationally representative sam-
ple of the Slovenian population (a total population of approximately 2 million) between
March 2017 and April 2018. Study design, data collection, and sampling were performed
in accordance with the European Food Safety Authority (EFSA) Guidance on EU Menu
Methodology [53]. Details of the SI.Menu study have been previously published else-
where [54]. The selection of participants was random and was obtained from the Central
Register of Population of Slovenia, considering their age, sex, and residential area. Institu-
tionalised people were not included in the study. The study protocol was approved by the
National Medical Ethics Committee (KME 53/07/16; approval No. 0120-337/2016 issued
on 19 July 2016). Prior to inclusion in the study, all subjects were informed about the study
and signed an informed consent. For adolescents, informed consent was obtained from
their parent or legal guardian. The SI.Menu study sample included 2280 participants, which
were further divided according to their age: adolescents (10–17 years), adults (18–64 years),
and elderly (65–74 years). The response rate was 62% [54]. After exclusion of subjects with
missing information and under/over-reporters (see Section 2.5), the final study sample
included N = 1248 participants.

Additionally, 280 participants (n = 125 adults and n = 155 elderly) from the SI.Menu
study further participated in the Nutrihealth study, where blood and urine samples were
collected (Figure 1). Details on the Nutrihealth study methodology were also published
previously [55]. The protocol of this supplementary study was approved by the Slovenian
National Medical Ethics Committee, Ljubljana, Slovenia (KME 72/07/16; approval No.
0120-337/2016-4 issued on 7 July 2017). For the purpose of the present study, haemoglobin,
serum iron, and serum ferritin concentrations were determined in the blood samples.
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2.2. Data Collection

Data for the SI.Menu study were collected through two interviews. A general ques-
tionnaire, anthropometric data, food propensity questionnaire (FPQ) data, and first 24 h
dietary recall were collected in the scope of the first interview, while in the second interview
(which took place 7–21 days after the first one) a second 24 h dietary recall was performed.
Data for biomarkers were collected with laboratory analyses of the blood samples and
collected with the Nutrihealth study.

2.2.1. General Questionnaire

The general questionnaire is explained in detail elsewhere [54]; the questionnaire in-
cluded sociodemographic and socioeconomic data, including place of residency, education
level, employment, self-reported financial status, smoking, physical activity level, presence
of chronic disease, and specific dietary patterns. Participants’ body height and body weight
were measured for body mass index (BMI) calculation.

2.2.2. Dietary Records and Iron Intake

Two 24 h dietary recalls were performed 7–21 days apart, with a 71% inclusion of
workdays and 29% of weekends. Dietary recalls were performed by a trained researcher.
Respondents reported on the foods that they had consumed in the previous day, estimating
the portions using a nationally validated picture book of commonly consumed foods, along
with their portion sizes [56]. The usual consumption frequency of specific food categories
in the past 12 months was estimated through FPQ [54].

Data collected in the dietary recalls were analysed using the Open Platform for Clini-
cal Nutrition (OPEN) [57]—a web application based on the Slovenian food composition
database, enabling the calculation of dietary intakes of macro- and micronutrients. For
foods of which data on iron content were not available in the OPEN, this was searched for
in other databases, particularly in the Finnish National Food Composition Database [58]
and the United States Department of Agriculture Food Composition Database (USDA) [59].
As in our previous study [60], the estimation of the usual daily intakes was conducted with
the consideration of FPQ using the Multiple Source Method (MSM) [61]. We calculated
total usual daily iron intake (not including medicines and supplements), and daily iron
intake from meat and fish products.

2.2.3. Iron Status

Fasting blood samples were provided by the participants of the Nutrihealth study, and
haemoglobin, serum iron, and serum ferritin concentrations were determined at University
Medical Centre, Ljubljana, Slovenia.
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Haemoglobin was analysed using the ADVIA 2120/2120i haematology system, which
uses a cyanide-free haemoglobin method. This is a two-step procedure. In the first step,
red blood cells are lysed to release haemoglobin, In the second, the haem iron in the
haemoglobin is oxidised from the ferrous to the ferric state, coordinating one hydroxide ion
and one water molecule as an axial ligand to form monoaquomonohydroxyferri-porphyrin
as the reaction product. The optical readings were obtained calorimetrically at 565 nm.
Performance characteristics: linearity 0–225 g/L, precision <1% (CV = 0.93%).

Serum ferritin concentration was measured with the chemiluminescence immunoassay
determined on an Immulite 2000 XPi analyser (Siemens Healthineers, Gwynedd, UK). Perfor-
mance characteristics for the assay are as follows. The ferritin limit of detection is 0.4 µg/L,
and the linearity of the assay is in the range from 0.4 to 1500 µg/L, with a recovery range of
90 to 106%, standardised in terms of the WHO 2nd IS 80/578. The intra-assay and inter-assay
coefficients of variation ranged from 3.0% to 5.3% and from 4.0% to 7.2%, respectively.

Serum iron was determined on the ADVIA 2400, which uses a method based on
a ferrozine method. The iron is released from transferrin under acidic conditions and is
reduced to its ferrous state to combine with a chromogen for colorimetric measurement. The
coloured chromophore absorbs at 571/658 nm. Performance characteristics: the analytical
range for serum is 0.3–179 µmol/L, and the precision is 1.5–2.2% within-run and 1.1–3.0%
between-run.

2.3. Covariates

Depending on the type of analysis and the outcome variable, a variety of predic-
tors of iron intake and iron status were used: sex (male, female), residential area (self-
declared: rural, intermediate, urban), education level (adults, elderly: university degree,
no university degree), financial status (adults and elderly: below/above monthly average
income of 1300€), and BMI (normal, overweight); physical activity using the IPAQ (Inter-
national Physical Activity Questionnaire) score (low intensity, moderate, high intensity);
smoking status (non-smoker, current/occasional/ex-smoker), employment status (adults:
employed, unemployed, retired, student); chronic disease (present, not present), recent
disease diagnosis (present, not present), supplement use (user, non-user), tea consumption
(<3× week/never, other), alcoholic beverage consumption (user, non-user), diet (no special
diet, medical/weight loss diet), behavioural diet (no diet, vegetarian/vegan), serum ferritin
status (above/below 30 µg/L), and serum iron status (above/below 13 µmol/L).

In adult females, participants were further categorised based on their age, to gain an
insight into the pre- and post-menopausal subgroups. Participants with BMI > 25 kg/m2

were considered overweight, and all of the participants below this cut-off point were
appointed to a group with normal body weight (because only a few participants were
underweight). For adolescents, overweight status was determined using sex-/age-adjusted
cut-off points (>1 standard deviation (SD)) [62,63]. The IPAQ score was calculated based
on data of self-reported physical activity [64]. A recent disease was considered as a disease
diagnosed within the past 12 months. The included diseases were high blood pressure
(>140/90 mm Hg), high cholesterol (>5 mmol/L), high blood sugar (>6.1 mmol/L), diabetes
type 1, diabetes type 2, myocardial infarction, chest pain, heart failure, brain infarction,
peptic or duodenal ulcer, liver cirrhosis, kidney disease, cancer of large intestine, thyroid
disease, and osteoporosis.

2.4. Definition of Cut-Offs for Iron Intake and Status

Analyses of the iron intake were determined using the following cut-off values: D-A-
CH recommendations [29], implemented into the Slovenian national reference intakes (DRI):
adolescent males: 12 µg/day, adolescent and premenopausal females: 15 µg/day; adult and
elderly males, postmenopausal females: 10 µg/day [30]. The EFSA’s population reference
intakes (PRI): 11 µg/day for males, postmenopausal and adolescent females (10–11 years);
13 µg/day for adolescent females (12–17 years), and 16 µg/day for premenopausal females
(18–50 years). The EFSA’s average requirements (AR): 8 µg/day for adolescent males
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(10–17 years) and females (10–11 years), 7 µg/day for adolescent and premenopausal
females, and 6 µg/day for adult males and postmenopausal females [22].

For expressing the prevalence of a low concentration of each of the biomarkers, the
following cut-off values were used: haemoglobin: <120 g/L and <130 g/L [48]; serum
ferritin: <15 µg/L [65], <30 µg/L, <100 µg/L [42], >300 µg/L, and >500 µg/L [66]; serum
iron: <13 µmol/L [44].

2.5. Data Analysis

For each of the two dietary recalls, data cleaning was performed separately. The assess-
ments of under- and over-reporting were previously described [67]; we excluded subjects
with reported energy intakes <500 kcal/day, and analysed under- and over-reporting with
the Goldberg method [68], based on the ratio of reported daily energy intake and basic
metabolic rate (BMR). The usual dietary iron intakes were calculated from two 24 h dietary
recalls and FPQ. The data were modelled using the Multiple Source Method (MSM), with
age, sex, and BMI being considered as covariates. This enabled the provision of data on
the usual dietary intake by correcting the data variation of iron intake in individuals via
FPQ [69].

To assure nationally representative results, census data from the year 2017 were used
for population weighting for each of the three cohorts (by age and sex), using the iterative
proportional fitting method [70]. For each age cohort, a population-weighted mean iron
intake was calculated, and the prevalence of inadequate daily iron intake based on different
recommendations was determined. For all population groups, we also calculated the mean
population-weighted concentrations of haemoglobin, serum ferritin, and serum iron, and
the prevalence according to different cut-offs.

Foods, reported in the 24 h recalls, were categorised according to the modified cate-
gorisation system published by the Global Food Monitoring Initiative [71], and the relative
contributions of specific food categories in total daily iron intake were presented for each
food category.

Participants were also divided into subgroups based on interquartile group analysis on
the consumption of particular food categories (meat and fish products, bread and bakery
products, vegetable and vegetable products, and cereal and cereal products). QR: 0–25%:
lower consumption of the selected food category; and QR: 75–100%: higher consumption of
the selected food category. Additionally, the mean total dietary iron intake and serum ferritin
concentration for subgroups of participants of the Nutrihealth study was determined.

For the assessment of iron intake and haemoglobin concentration, multiple linear
regression analysis was used. Predictor variables in the iron intake models were sex,
residential area, education, financial status, BMI, IPAQ, employment status, smoking
status, and diet type, while in the haemoglobin concentration model we also considered
recent/past disease, the use of food supplements, dietary iron intake, the consumption
of alcoholic beverages, serum ferritin, and iron status. The prevalence of inadequate
dietary iron intake (according to D-A-CH cut-off values) and the prevalence of low ferritin
concentration (<30 µg/L for adults and the elderly, and <100 µg/L for the elderly) were
analysed via logistic regression analyses using the above-mentioned predictor variables.
Unadjusted means and crude odds estimates were also determined.

Correlation analyses were conducted to provide further insights on dietary iron intake
and iron status. Analyses were done using the Nutrihealth study sample, with the exclusion
of subjects that reported using iron food supplements. Analyses were done on merged
sample of adults and elderly, and on a more homogenous sample of women 18–50 years.
Correlation plots are presented for associations of (a) total iron intake, (b) meat and fish
intake, and (c) iron intake from meat and fish, with (1) haemoglobin concentration and
(2) ferritin concentration.

STATA (version 17.0; StataCorp LLC, College Station, TX, USA) was used for statistical
analyses. Statistical difference was reported at p < 0.05. Marginally significant differences
are mentioned at p < 0.1.
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3. Results

The characteristics of the SI.Menu study sample (N = 1248) of adolescents, adults,
and the elderly are presented in Supplementary Table S1.1. About a quarter of the partic-
ipants reported the use of multivitamin supplements; however, specific data on the iron
supplementation were not available. Altogether, 34% adults and 37% of the elderly from
the SI.Menu study were further included in the Nutrihealth study (N = 280), where blood
samples were also collected. The demographic characteristics of the Nutrihealth study
sample are presented in Supplementary Table S1.2.

The distribution of the usual total daily iron intake is presented in Supplementary
Figure S1, and population-weighted descriptive statistics for iron intake are presented in
Table 1. In adolescent females, and in females below the age of 50, the mean iron intake
was just under the recommended 15 mg/day (14.7 mg/day vs. 14.1 mg/day, respectively),
while in males of all age groups, the mean daily iron intake was above the reference daily
iron intake (12 mg/day for male adolescents and 10 mg/day for male adults and elderly):
for adult and elderly males, the population-weighted mean iron intake was 17.7 mg/day
in adult and 17.1 mg/day in elderly males, while in adolescent males, it was 18.4 mg/day.
The prevalence of inadequate daily iron intake was found in more than 70% of adolescent
females and females below 50 years of age, while in elderly females it was 20.7%. However,
for adult and elderly males, inadequate daily iron intake was observed in less than 10% of
the population. Interestingly, mean iron intakes calculated per 1000 kcal/day were very
similar in all age groups and sexes (approximately 6 mg) (Table 1).

Using logistic regression analyses, we investigated predictors associated with inad-
equate daily dietary iron intake (Table 2). The cut-offs used were based on the national
reference values for specific age group/sex [30]. In all age groups, sex was found as a
significant predictor of inadequate daily dietary iron intake (p < 0.001). The highest odds
for inadequate daily dietary iron intake were seen in adult females below 50 years (OR
51.2; CI: 20.6–127.6). In adolescents, smoking status was also found to be a significant
predictor of iron intake, with smokers having higher odds for inadequate iron intake than
non-smokers (OR 3.66; CI: 1.51–8.88; p < 0.01). In adults, we observed a lower risk for inad-
equate iron intake in those having a BMI above the normal range (OR 0.48; CI: 0.24–0.97;
p < 0.05). A significantly higher risk for inadequate iron intake was found in the elderly,
with a moderate activity score (IPAQ) (OR 1.99; 0.98–4.03; p = 0.05). For vegetarians and
vegans, a trend of higher risk for inadequate iron intake was noticed in all age groups, al-
though it could not be statistically confirmed through a modelling approach due to the low
sample size.

Figure 2 and Supplementary Table S3 show the relative contributions of different food
categories to daily iron intake. The food category with the most important contribution of
iron in the daily diet was bread and bakery products, with contributions of above 30% in all
age groups, followed by meat and meat products (especially unprocessed meat), and fruits
and vegetables. In adults and the elderly, the category of fruits and vegetables had a more
notable contribution to iron intake (20.6% and 21.3%, respectively) than in adolescents, for
whom cereal and cereal products were more important iron contributors (18.8%) than fruits
and vegetables (15.5%).
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Table 1. Population-weighted usual daily dietary iron intake and the prevalence of inadequate daily dietary iron intake (95% CI) according to D-A-CH (DRI) and
EFSA (PRI, AR) recommendations.

Adolescents N (%) Adults N (%) Elderly N (%)
All Male Female All Male Female All Male Female

10–17 years 10–17 years 10–17 years 18–64 years 18–64 years 18–50 years 51–64 years 65–75 years 65–75 years 65–75 years

SI.Menu N (%) 468 (100) 238 (50.9) 230 (49.1) 364 (100) 173 (47.5) 121 (33.2) 70 (19.3) 416 (100) 213 (51.2) 203 (48.8)

Usual daily iron intake

Mean [mg/day]
(95%CI)

16.7
(16.1–17.2)

18.4
(17.7–19.2)

14.7
(14.1–15.4)

16.0
(15.4–16.5)

17.7
(16.9–18.6)

14.1
(13.3–15.0)

14.2
(13.1–15.3)

16.0
(15.1–16.8)

17.1
(16.3–17.9)

14.9
(13.6–16.2)

Q25 [mg/day] 13.1 14.9 11.6 12.5 13.9 11.3 12.1 12.3 13.9 11.6
Median [mg/day] 16.3 18.0 13.9 15.5 17.7 13.8 13.6 15.5 17.3 14.0

Q75 [mg/day] 19.4 21.0 17.1 19.2 20.6 16.6 15.6 18.7 18.9 17.5
Mean (95%CI)

[mg/1000 kcal/day] 6.3 (6.1–6.5) 6.2 (6.0–6.5) 6.4 (6.2–6.6) 6.3 (6.2–6.5) 6.4 (6.2–6.6) 6.1 (5.9–6.4) 6.5 (6.2–6.8) 6.7 (6.5–6.8) 6.9 (6.7–7.1) 6.5 (6.3–6.7)

Prevalence of inadequate daily iron intake (%)

D-A-CH (DRI) *
(95% CI)

43.7
(36.7–51.1)

17.1
(12.1–23.6)

72.6
(64.9–79.1)

33.4
(28.3–39.0)

8.8
(5.2–14.3)

76.3
(67.0–83.6)

22.8
(13.4–36.2)

13.7
(10.1–18.4)

6.1
(3.2–11.3)

20.7
(14.8–28.1)

EFSA (AR) **
(95% CI)

1.3
(0.6–2.7)

0.7
(0.2–2.4)

1.8
(0.6–4.8)

0.3
(0.1–1.4) 0 0.4

(0.01–3.4)
1.2

(0.2–8.0)
0.1

(0.01–0.8)
0.2

(0.03–1.8) 0

EFSA (PRI) ***
(95% CI)

18.6
(14.6–23.4)

7.0
(4.1–11.6)

31.1
(23.8–39.5

29.8
(24.9–35.2)

7.3
(4.2–12.4)

69.2
(59.5–77.41)

19.5
(10.7–32.8)

13.8
(10.1–18.5)

7.5
(4.1–13.4)

19.6
(13.9–26.8)

Note: Population weighted for age/sex with consideration of census data. CI: confidence interval; * D-A-CH (DRI) adapted with national recommendations for iron intake (adolescent
males: 12 µg/day, adolescent and premenopausal females: 15 µg/day; adult and elderly males, postmenopausal females: 10 µg/day); ** EFSA (AR) average iron requirements (8
µg/day for adolescent males (10–17 years) and females (10–11 years), 7 µg/day for adolescent and premenopausal females, and 6 µg/day for adult males and postmenopausal females).
*** EFSA (PRI) population reference iron intake values (11 µg/day for males, postmenopausal and adolescent females (10–11 years); 13 µg/day for adolescent females (12–17 years), and
16 µg/day for premenopausal females (18–50 years)).

Table 2. Association between the prevalence of inadequate daily dietary iron intake and different sociodemographic and behavioural variables.

Variable
Adolescents (10–17 Years) Adults (18–64 Years) Elderly (65–74 Years)

Prevalence (%) Crude OR (CI) Adjusted OR (CI) Prevalence (%) Crude OR (CI) Adjusted OR (CI) Prevalence (%) Crude OR Adjusted OR

Unweighted N (%) 208 (44.4) 124 (34.1) 62 (14.9)

Sex
male 47 (19.8) 1 1 16 (9.3) 1 1 14 (6.6) 1 1

female * 161 (70.0) 9.48 (6.10–14.87) 10.71 (6.79–16.90) 94 (77.7) 34.16 (16.73–70.96) 51.18 (20.58–127.57) 48 (23.7) 4.40 (2.28–8.94) 3.69 (1.77–7.70)
female ** 14 (20.0) 2.45 (1.03–5.73) 2.67 (1.02–7.02)

Residential area
rural 112 (41.5) 1 1 61 (30.2) 1 1 28 (12.2) 1 1

intermediate 35 (46.1) 1.20 (0.70–2.07) 1.15 (0.63–2.11) 21 (37.5) 1.39 (0.71–2.68) 1.50 (0.58–3.88) 12 (16.9) 1.46 (0.63–3.18) 1.04 (0.47–2.32)
urban 61 (50.0) 1.41 (0.90–2.22) 1.68 (1.00–2.82) 42 (39.6) 1.52 (0.90–2.55) 1.55 (0.73–3.32) 22 (19.0) 1.68 (0.87–3.22) 1.42 (0.70–2.88)

Education
no university degree n.a. n.a. 80 (32.1) 1 1 53 (15.5) 1 1

university degree 44 (38.3) 1.31 (0.80–2.13) 0.65 (0.29–1.46) 9 (12.2) 0.76 (0.31–1.65) 0.52 (0.19–1.38)
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Table 2. Cont.

Variable
Adolescents (10–17 Years) Adults (18–64 Years) Elderly (65–74 Years)

Prevalence (%) Crude OR (CI) Adjusted OR (CI) Prevalence (%) Crude OR (CI) Adjusted OR (CI) Prevalence (%) Crude OR Adjusted OR

Financial status
below average n.a. n.a. 35 (29.7) 1 1 44 (16.4) 1 1
above average 69 (36.5) 1.36 (0.81–2.31) 0.85 (0.39–1.88) 12 (11.2) 0.65 (0.30–1.31) 0.68 (0.32–1.43)

BMI
normal 166 (55.2) 1 1 67 (45.3) 1 1 19 (17.6) 1 1

overweight 73 (43.7) 0.95 (0.64–1.42) 1.16 (0.74–1.83) 57 (26.4) 0.47 (0.27–0.69) 0.48 (0.24–0.97) 43 (14.0) 0.76 (0.41–1.46) 0.92 (0.46–1.85)

IPAQ
low intensity 38 (35.2) 1 1 39 (30.7) 1 1 15 (11.0) 1 1

moderate intensity 70 (49.7) 1.82 (1.05–3.14) 1.40 (0.76–2.56) 46 (42.6) 1.67 (0.95–2.97) 1.70 (0.75–3.86) 31 (23.3) 2.47 (1.21–5.20) 1.99 (0.98–4.03)
high intensity 96 (44.9) 1.50 (0.91–2.49) 1.67 (0.95–2.92) 37 (29.6) 0.95 (0.53–1.68) 0.78 (0.34–1.79) 16 (11.4) 1.05 (0.46–2.39) 0.91 (0.40–2.03)

Employment

employed n.a. n.a. n.a. 80 (35.4) 1 1 n.a. n.a. n.a.
unemployed 18 (42.9) 1.37 (0.65–2.81) 1.96 (0.61–6.34)

student 14 (43.8) 1.42 (0.62–3.20) 0.55 (0.14–2.12)
retired 12 (18.8) 0.42 (0.19–0.86) 1.45 (1.49–4.31)

Smoking status
non-smoker 190 (43.4) 1 1 75 (37.7) 1 1 37 (16.0) 1 1

current, occasional,
ex-smoker 18 (60.0) 1.96 (0.87–4.57) 3.66 (1.51–8.88) 49 (29.7) 0.70 (0.44–1.11) 0.74 (0.34–1.52) 25 (13.5) 0.82 (0.45–1.47) 1.18 (0.59–2.35)

Medical diet
no special diet 204 (44.8) 1 1 116 (34.9) 1 1 54 (14.8) 1 1

medical/weight loss 4 (30.8) 0.55 (0.12–2.00) 0.64 (0.15–2.65) 8 (25.0) 0.62 (0.23–1.49) 0.52 (0.36–1.52) 8 (15.7) 1.07 (0.41–2.47) 1.03 (0.43–2.47)

Behavioural diet
no diet 197 (43.2) 1 n.a. 118 (33.2) 1 n.a. 61 (14.8) 1. n.a.

vegetarian/vegan 11 (91.7) 14.46 (2.06–624.7) n.a. 6 (75.0) 6.05 (1.06–61.87) n.a. 1 (33.3) 2.88 (0.05–56.02) n.a.

Notes: n.a.—not applicable; CI: confidence interval; OR: odds ratio; In adolescents and elderly, “female *” included all female participants, while in adults, females were divided into two
subgroups: “female *” below 50 years (premenopausal), and “female **” 51–64 years (postmenopausal). Body mass index (BMI) was considered as normal below 25 kg/m2, except for
adolescents, where gender/age adjusted cut-off points were used. Cut-off odds ratios calculated according to the thresholds of D-A-CH (national) recommendations for iron intake:
adolescent males: 12 µg/day, adolescent, and premenopausal females: 15 µg/day; adult and elderly males, postmenopausal females: 10 µg/day. Association was significant for the
following variables: p < 0.001 sex (adolescents), p < 0.01 smoking status (adolescents); p < 0.001 sex (adults), p < 0.05 BMI (adults), p < 0.001 sex (elderly), and p = 0.05 IPAQ (elderly).
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Figure 2. Relative contribution of selected food categories (bars with solid pattern) and subcategories
(bars with lined pattern) to usual daily dietary iron intake among adolescents, adults, and elderly (%
of total iron intake).

A sub-sample of adult and elderly participants from the SI.Menu study further par-
ticipated in the Nutrihealth study, where biological samples were taken to investigate
diet related biomarkers. In previous papers, we focused on biomarkers related to vita-
mins (vitamin D [55], folate [60], and vitamin B12 [72]), while in the present study, we
investigated markers of iron status, using serum ferritin, haemoglobin, and serum iron
concentrations. The study results are presented in Table 3. The population-weighted mean
haemoglobin concentration was above the WHO threshold for low haemoglobin (120 g/L
for females and 130 g/L for males) in both studied populations—154.0 g/L vs. 152.0 g/L
in adult and elderly males, respectively, and 139.0 g/L vs. 138.9 g/L in adults and elderly
females, respectively. Based on the above-mentioned thresholds, a notable prevalence of
low haemoglobin was observed only in females aged 51–64 years (6.9%) and elderly males
(4.1%). The mean population-weighted serum ferritin concentration was 222.6 µg/L in
elderly males, while in females (18–50 years) it was 68.2 µg/L. It should be highlighted
that 27.2% of females from this age group had serum ferritin concentrations <30 µg/L, and
10.1% also had concentrations below 15 µg/L. A regression analysis of factors associated
with serum ferritin status below 30 µg/L (Supplementary Table S4) showed inadequate
iron intake (OR 0.2; CI: 0.3–1.0; p < 0.05) as a significant predictor in adults, and education
(OR 3.8; CI: 0.8–17.1; p < 0.1) as being marginally significant in the elderly. For the elderly,
regression analysis was also performed using threshold ferritin concentration <100 µg/L
(Supplementary Table S5), where only sex was found as a significant predictor—indicating
higher odds in females. We also investigated a population-weighted prevalence of serum
ferritin concentration above 300/500 µg/L (Table 3). Altogether, 17.7% of adult males and
22.4% of elderly males, but very few females, had serum ferritin concentrations >300 µg/L.

To investigate the associations of sociodemographic factors with haemoglobin con-
centrations in adults and the elderly, we used multiple linear regression modelling on
a sample of participants of the Nutrihealth study (Supplementary Table S6). Significant
factors associated with haemoglobin concentration in adults were sex (p < 0.001), education
(p < 0.05), the consumption of alcoholic beverages (p = 0.05), serum ferritin status (p < 0.001),
and serum iron status (p < 0.05). In elderly, sex (p < 0.001), medical diet (p < 0.001), serum
ferritin status (p < 0.001), and serum iron status (p < 0.05) were found to be significant, while
residential area and the consumption of alcoholic beverages were found to be marginally
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significant at p < 0.1. The analysis of the mean haemoglobin concentration within each of
the predictor levels showed significantly higher haemoglobin levels in adult and elderly
males. Adults and the elderly who had serum ferritin concentration above 30 µg/L had
significantly higher mean haemoglobin concentrations. This was also observed in adults
and the elderly with serum iron concentrations >13 µmol/L.

Table 3. Population-weighted mean haemoglobin, serum ferritin, and serum iron concentration, and
the prevalence of low haemoglobin, low serum iron, and low/high ferritin for adults and the elderly
in the Nutrihealth study (N = 280).

Adults N (%) Elderly N (%)

All Male Female All Male Female

18–64 years 18–64 years 18–50 years 51–64 years 65–75 years 65–75 years 65–75 years

Nutrihealth N (%) 124 (100) 57 (46.0) 38 (30.6) 29 (23.3) 156 (100) 76 (48.7) 80 (51.3)

Haemoglobin [g/L]

Mean [g/L]
(95%CI)

146.7
(144.3–149.2)

154.0
(151.2–156.9)

139.0
(135.6–142.4)

139.0
(134.4–143.5)

145.1
(143.1–147.1)

152.0
(149.3–154.7)

138.9
(136.7–141.1)

Q25 [g/L] 139.0 149.0 131.0 133.0 136.0 145.0 132.5
Median [g/L] 147.0 153.0 138.0 142.0 145.0 154.0 139.0

Q75 [g/L] 153.0 159.0 144.0 145.0 154.0 159.0 145.5

Prevalence of haemoglobin (%) (95% CI) below 120 and 130 g/L

<120 g/L 1.1 (0.2–4.3) 0.0 0.0 6.9 (1.7–24.4) 1.3 (0.3–5.2) 1.4 (0.1–9.2) 1.3 (0.1–8.9)
<130 g/L 7.5 (3.9–13.8) 1.3 (0.1–8.7) 14.2 (6.0–30.5) 13.8 (5.1–32.1) 10.3 (6.2–16.4) 4.1 (1.3–12.1) 15.7 (9.1–25.9)

Serum iron [µmol/L]

Mean
(95%CI)

17.9
(16.5–19.2)

18.8
(16.8–20.7)

17.0
(14.7–19.2)

16.1
(14.1–18.1)

19.3
(18.4–20.2)

21.2
(19.8–22.6)

17.6
(16.5–18.8)

Median 17.6 18.4 16.5 14.4 18.8 20.8 16.8

Prevalence of serum iron (%) (95% CI) below 13 µmol/L

<13 µmol/L 19.9
(13.5–28.4)

10.4
(4.5–22.4)

32.0
(18.8–48.8)

27.6
(14.1–46.8)

8.0
(4.6–13.7)

4.0
(1.3–11.8)

11.7
(6.1–21.1)

Serum Ferritin [µg/L]

Mean
(95%CI)

121.7
(98.7–144.8)

158.1
(121.2–194.9)

68.2
(40.9–95.4)

90.7
(74.3–107.1)

170.5
(144.7–196.2)

222.6
(176.0–269.2)

124.0
(103.2–144.6)

Median 80 121 51 91 126 162 90

Prevalence of serum ferritin (%) (95% CI) below 15, 30, and 100 µg/L, and above 300 and 500 µg/L

<15 µg/L 3.7 (1.5–8.9) 0 10.1 (3.7–24.6) 3.4 (0.4–21.7) 0.6 (0.1–4.7) 0 1.3 (0.1–8.8)

<30 µg/L 11.6 (7.0–18.5) 3.5 (1.1–10.8) 27.2 (15.3–43.7) 6.9 (1.6–24.4) 7.9 (4.5–13.4) 6.6 (2.7–15.0) 9.1 (4.4–18.0)

<100 µg/L 57.7 (47.8–67.0) 42.3 (28.9–57.0) 86.2 (70.3–94.3) 58.6 (39.9–75.2) 40.2 (32.7–48.1) 26.3 (17.6–37.4) 52.5
(41.5–63.3)

>300 µg/L 10.1 (5.5–17.9) 17.7 (9.3–31.0) 2.4 (0.3–15.9) 0 13.4 (8.9–19.8) 22.4 (14.3–33.2) 5.1 (1.9–13.1)

>500 µg/L 3.4 (1.2–9.7) 5.1 (1.5–16.4) 2.4 (0.3–15.9) 0 3.7 (1.7–8.3) 7.9 (3.6–16.6) 0

Notes: Population weighted for age/sex with consideration of census data. CI: confidence interval.

With the consideration of challenges in the iron status in adult premenopausal females
aged 18–50 years, we further focused on this group and investigated the associations of iron
status biomarkers with usual total iron intake. Analyses were done on a Nutrihealth study
sample after excluding subjects which reported the use of iron containing food supplements
(Supplementary Table S7). Figure 3A shows a plot with the association of usual iron intake
with haemoglobin and serum ferritin. A positive correlation between iron intake and
haemoglobin was found (r = 0.33, p = 0.05), while no correlation was found with ferritin
(p = 0.91). To provide further insights, we also checked associations for iron intake with
meat and fish products. The association with ferritin was positive while slightly missing
the marginal significance level(r = 0.28, p = 0.13), with consideration of the relatively small
sample size. Another correlation analysis was therefore performed with meat and fish
intake (instead of iron intake), where statistically significant correlation with ferritin was
observed (r = 0.38, p = 0.05) (Figure 3A). The same correlation analysis was conducted for
the merged Nutrihealth sample of adults and elderly (for males and females, with exclusion
of users of iron containing food supplements) (Figure 3B). Despite a very heterogenous
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sample, we observed strongly significant positive correlations between ferritin and both
meat and fish intake, and iron intake from meat and fish (p = 0.001 and 0.0001, respectively),
but not with total iron intake (p = 0.39). Similar but somewhat less significant associations
were found with haemoglobin, but again only for meat and fish intake, and iron intake
from meat and fish.
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Figure 3. (A) Association between haemoglobin and ferritin concentration with (left) total iron
dietary intake, (centre) meat and fish dietary intake, and (right) iron intake from meat and fish in
Nutrihealth sample, with exclusion of subjects using iron food supplement. (B) Association between
haemoglobin and ferritin concentration with (left) total iron dietary intake, (centre) meat and fish
dietary intake, and (right) iron intake from meat and fish in Nutrihealth sample, with the exclusion
of subjects using iron food supplement.

These observations lead us to further analyses of the dietary patterns in relation to major
iron sources. While study subjects with ferritin levels below and above 100 µg/L had similar
usual dietary iron intakes, the group with higher ferritin levels had a higher proportion
of dietary iron intake from meat and fish products (Supplementary Table S8), which is in
line with results reported in Figure 3B. For selected iron-containing food categories (meat
and fish products, bread and bakery products, cereal and cereal products, and vegetables
and vegetable products) we performed quartile segmentations of high/low consumers of
such foods, with the considerations of daily iron intake and serum ferritin levels (Figure 4).
Study participants with the lowest intakes (lowest quartile: 0–25%), as well as those with
the top intakes (fourth quartile: 75–100%) of meat and fish products, had similar total iron
intakes, but notably higher ferritin concentrations were observed in the high consumers of
this food category. This was not observed in the other investigated food categories.
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Figure 4. Mean total dietary iron intake and serum ferritin concentration for participants of the
Nutrihealth study not supplementing iron, based on their usual daily consumption of foods from the
selected food categories. Interquartile groups are indicated as follows: lowest intake (QR: 0–25%)—
lower consumption of foods in the selected food category; highest intake (QR: 75–100%)—higher
consumption of foods in the selected food category.

4. Discussion

Iron deficiency remains a common global nutritional problem, mainly due to poor
iron intake or absorption, and increased body demands in specific population groups,
such as women of reproductive age [1], but in Slovenia, this issue has not been previously
investigated with a nationally representative study. The results of our study revealed that
in all investigated age groups, the mean population-weighted iron intakes were well above
the reference values. This was also the case in elderly females, while in adolescent females
and adult females up to 50 years, the mean iron intake was slightly below the reference
threshold (Table 1). In general, the mean daily iron intakes as reported in the literature
are usually higher in males than in females [22], which was also confirmed in our study.
However, dietary iron intakes in women of reproductive age in Europe vary considerably
among countries, with the lowest mean intakes reported in Bosnia (7.6 mg/day) [73] and
the highest in Slovakia (18.9 mg/day) [74]. Studies from European countries show that a
considerable proportion (61–97%) of women of reproductive age have a dietary iron intake
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that is lower than 15 mg/day [37]. In the present study, the proportion of inadequate daily
iron intake was 76.3% for adult women of reproductive age and 72.6% in adolescent females.
This is notably different compared to males, even when we consider other cut-off values, for
example, EFSA’s population reference iron intake values (PRI) or the average requirements
(AR) [22] (Table 1). In all age groups and sexes, the proportions of the population not
meeting the AR thresholds were very low, meaning that almost the entire population had
daily iron intakes of at least the AR values. A histogram of the distribution of daily iron
intake (Supplementary Figure S1) in all three investigated population groups showed
high variability, which impacted on the mean iron intakes in the population. This could
further explain the high proportion of adolescent and adult females with inadequate daily
iron intakes, despite the population-weighted mean iron intakes being very close to the
recommended daily intake. The males in our study, as was also reported for males in
other European countries, had mean dietary iron intakes that were distinctly above the
nationally adapted D-A-CH recommendations. For comparison, in Slovakia, the mean iron
intakes in males were among the highest in Europe, at 22.7 mg/day [74]. The mean iron
intakes of adult males from our study (17.7 mg/day) were comparable to Polish males
(17.2 mg/day) [75]. According to the literature data, more than 75% of European males
were reported to have iron intakes of above 9 mg/day. In our study, inadequate iron intake
was observed in less than 10% of adult and elderly males and in 17.1% of male adolescents
(Table 1). It should be noted that regression analysis (Table 2) also highlighted that sex
was a significant predictor of dietary iron intake for all age groups. Females had much
higher odds for inadequate daily dietary iron intake than males, showing that this problem
is much more concerning in the female population, especially in those below 50 years. In
the elderly, residential area and financial status were also significantly associated with iron
intake; those living outside urban areas and those with higher incomes also had higher iron
intakes (Supplementary Table S2). This could be linked to a higher meat consumption.

Dietary iron intakes are closely related to the type of food consumed and reflect dietary
habits, as observed in the Slovenian national food consumption study SI.Menu [76,77].
According to the dietary recalls of the above-mentioned study, it has been established that
in Slovenia, males tend to consume approximately twice as much meat as compared to
females (including processed meat products and offal). As such foods are naturally rich
in bioavailable iron, such dietary choices can be reflected in the total daily dietary iron
intake, and further in the body iron status. On the other hand, females were recognised
as consuming more fruits and vegetables, and were seen as less profuse meat consumers,
which could also add to the lower mean daily dietary iron intake in comparison to males.
Figure 2 shows that bread and bakery products were the greatest contributors of dietary iron
in all population groups. The iron contribution from white bread was quite similar in all
age groups, while for brown bread, the elderly had notably greater iron contributions than
for other populations. This is because in Slovenia, brown bread is more popular among the
elderly [78]. In adults and the elderly, the second largest dietary iron contributor was meat
and meat products, but in adolescents, this was cereals and cereal products—particularly
breakfast cereals. In Slovenian adolescents, this food category was also found to be an
important source of folate [60] and vitamin B12 [72]. This is mainly due to the fact that
such foods are often fortified with various vitamins and minerals (e.g., fortified breakfast
cereals), including iron [52]. However, cereals are also a natural source of iron, and can
have a notable contribution to the daily iron intake, even in non-fortified foods, such as
bread and bakery products. Although meat is one of the best sources of bioavailable iron, in
Slovenia, bread and related products are typically consumed very frequently, even several
times per day, making them a major contributor to dietary iron intake. On the other hand,
iron contribution from fruits and vegetables was also notable—particularly from vegetables.
Similar findings were also reported in Spain, where the main iron contributors were cereals
or grains, meat and derivatives, and vegetables [79]. In an EFSA report on dietary iron
contribution from different food categories, a similar pattern can also be observed in other
European countries [22].
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Iron intake could be also further increased by the consumption of meat and meat
products; however, considering the very high meat consumption in Slovenia (particularly in
the male population) [76,77], this is not a feasible option. It should be noted that although
foods of animal origin are one of the best sources of bioavailable iron, the abundant
consumption of non-haem iron-rich foods can result in adequate iron intake and status—
also in vegan diets [80]. However, a lower iron bioavailability in such foods can also explain
the lower average ferritin status in such populations [81,82].

As vegetarians/vegans are not extensively present in the Slovenian population, our
study sample size did not allow for the inclusion of this parameter in regression analyses;
however, notably higher crude odd ratios for inadequate iron status were observed in
vegetarians/vegans in all age groups. Particularly, a high OR for insufficient iron intake
was observed in vegetarian/vegan adolescents (OR 14.5; 95%CI 2.1, 624), putting this
population at potential risk for iron deficiency (Table 2 and Table S2). The overall evidence
shows the importance of a well-balanced diet. Diets with higher intakes of unprocessed
cereals, legumes, and other plant foods can have higher iron contributions compared to
diets that are high in refined and processed foods, due to their higher iron contents. This is
particularly important in individuals with low body iron stores, as in such a case, non-haem
dietary iron was reported to be similarly absorbed as haem iron [25,83]. Therefore, meat
should not be considered exclusively as the most important contributor of dietary iron,
but rather a well-balanced diet, with the inclusion of plenty of unrefined and unprocessed
foods being encouraged.

Data on specific biomarkers of body iron status were available only for adults and
the elderly, for which blood samples were collected within the Nutrihealth study. Fun-
damentally, iron balance is regulated by the rate of erythropoiesis and the size of the
body iron stores [84]. However, standard biomarkers of iron metabolism include several
biomarkers, of which ferritin and serum iron concentration were collected in the present
study. Furthermore, haemoglobin levels were measured, indicating the prevalence of
anaemia. The population-weighted mean haemoglobin concentration was above the lowest
WHO threshold for low haemoglobin (120 g/L) in all population groups (Table 3). Lower
population-weighted mean haemoglobin concentrations were seen in females (approxi-
mately 140 g/L) in all age groups, and interestingly, they did not differ notably among pre-
and post-menopausal females. In males, the mean haemoglobin concentration was approxi-
mately 150 g/L. This is comparable to the findings from a study on Slovenian breastfeeding
primiparas and males from 2011 [35], where the mean haemoglobin concentrations were
131 g/L and 153 g/L, respectively. With the consideration of menstrual iron losses, the
highest prevalence of low haemoglobin concentration could be expected in premenopausal
females, but in our study, the highest prevalence was found in females aged 51–65 years,
where 6.9% had haemoglobin levels below 120 g/L.

Various studies report that in premenopausal females, iron deficiency anaemia (IDA)
with haemoglobin <120 g/L was present somewhere between 10 and 30% in Europe [50],
and the WHO reports that more than 40% of this population has IDA in certain parts of the
world, especially in Africa, India, and parts of Asia [85]. In central Europe, for example,
a Serbian National Health survey revealed the presence of anaemia according to low
haemoglobin concentrations in 27.7% premenopausal females [86]. When considering both
low haemoglobin and low ferritin concentrations at once, in females from Italy, Belgium,
Germany, and Spain, the anaemia prevalence was found to be 2.9%, 2.2%, 4.1%, and 4.5%,
respectively, while in males from the same countries it was mostly below 1% [87].

While our results indicate a better situation in Slovenia, we should highlight the
high prevalence of very low ferritin levels in adult premenopausal females (18–50 years);
27.2% had serum ferritin concentrations of below 30 µg/L, and 10.1% were even below
15 µg/L (Table 3), showing depleted body iron stores. According to the WHO criteria [65],
such a situation can be already interpreted as a public health concern. In addition, the
highest prevalence of serum iron concentration below 13 µmol/L, which is considered as
another biomarker for iron deficiency [44], was found in premenopausal females (32%).
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The population-weighted mean ferritin concentrations in premenopausal females in our
study was 68.2 µg/L, which was somewhat higher than that reported in some other studies.
The WHO reported ferritin concentration in this population from United Kingdom to range
between 30 µg/L and 60 µg/L, and a review of studies from EU countries estimated mean
ferritin concentrations at 26–38 µg/L [50]. However, the results of our study show that
ferritin concentrations in premenopausal females were often even below 30 µg/L (27.2%),
and the median ferritin level was 51.0 µg/L. We should also note that about half of elderly
females had ferritin concentrations <100 µg/L, which could, in certain circumstances, mean
a greater risk for anaemia in this population, especially as ferritin levels can be increased due
to chronic and inflammatory conditions, which are more common among the elderly [88].
Additionally, in males, the risk for anaemia increased with age, starting at approximately
65 years [89]. Ferritin is an established indicator of iron stores, but as it is an acute-phase
reactant, its interpretation can be difficult in individuals with accompanying diseases
and/or inflammation, where its concentration can be elevated. Nevertheless, in subjects
with normal C-reactive protein concentrations, low ferritin is associated with decreased
haemoglobin, as has been presented in a Nordic study, which showed that haemoglobin
significantly decreased in females and males with ferritin concentrations <20 µg/L and
<30 µg/L, respectively [90]. Our study also indicated significantly lower mean haemoglobin
concentrations in subjects with ferritin levels of below 30 µg/L (Supplementary Table S6).

Nevertheless, strong relationships between dietary iron load, its bioavailability, iron
requirements, and iron stores [91] need to be mentioned. Dietary factors associated with
iron deficiency were also suggested for implementation into blood donor selection pro-
cesses [92]. On our Nutrihealth study sample we also found significant positive correlation
of iron status biomarkers (haemoglobin and ferritin) with meat and fish, and with iron
intake from meat and fish, but not with total iron intake (Figure 3B). These results are
in line with observations of de Groot [93], who also associated dietary intake of haem
iron with both haemoglobin and ferritin levels. We also conducted a regression analyses
(Supplementary Table S4), which showed that subjects with adequate iron intakes had
significantly lower odds for ferritin levels below 30 µg/L. Similar trends were observed in
adult premenopausal females, but the sample of this sub-group was much smaller, which
likely affected lower level of significance (p > 0.05 and 0.13, respectively). Young et al.
also investigated this topic and reported that while both haem and non-haem iron were
positively associated with haemoglobin and ferritin levels, haem iron was found to be a
much stronger predictor [94].

Our results indicate the importance of adequate iron intake; higher iron intake
can, at least to some extent, compensate for higher iron requirements and maintain the
haemoglobin concentration at a normal level. Due to menstrual losses, premenopausal
females are particularly at risk for insufficient iron status [95,96]. Premenopausal females
could, in some cases, benefit from iron supplementation to raise haemoglobin and iron
stores and reduce the risk for anaemia and symptomatic fatigue caused by low iron sta-
tus [6,88,97,98]. As iron stores reach a steady state, with iron absorption being adjusted to
cover iron losses, even postmenopausal females could possibly benefit from supplementa-
tion, depending on the time elapsed from the menopause that is needed to reach consistent
iron status [99]. In countries with high rates of iron deficiency, the fortification of certain
staple foods is in place, but this also comes with challenges regarding iron bioavailabil-
ity, and the sensory characteristics of fortified foods [100,101]. Considering our results,
such intervention is not needed in Slovenia, where a lower iron status is not common in
the overall population but is characteristic particularly in premenopausal females. The
regular monitoring of iron status would be beneficial in this population, enabling the
implementation of timely individual interventions when necessary.

On the contrary, higher ferritin concentrations were quite common in adult and
elderly males, where a very high variability in ferritin concentrations was also observed
(Supplementary Figure S2). Mean population-weighted ferritin concentrations >300 µg/L
were observed in 17.4% and 22.4% of adult and elderly males, respectively, while less
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than 5% of females had such ferritin levels. The literature suggests that in males with no
inflammation or chronic disease, serum ferritin of greater than 300 µg/L can be indicative of
iron overload [66]. The mean population-weighted ferritin concentration was particularly
high in elderly males (222.6 µg/L); however, this needs to be interpreted with caution, as
inflammation and chronic disease that contribute to a higher ferritin concentration are more
common, particularly in the elderly. In addition, a high iron intake, which was observed
in Slovenian males, together with higher alcohol consumption, a higher body mass index,
and several other factors, can contribute to a high iron status. In case of a long-term iron
overload, this could also present a health risk [102,103]. Nevertheless, ferritin level alone
could not be used as indicator of iron overload [104].

We should also mention concerns that a high intake of haem iron (meat) could increase
the risk for cardiovascular disease [105] and cancer [106]. Furthermore, IARC/WHO
also highlighted that red meat, and particularly processed meat products, are potentially
carcinogenic to humans [107,108], indicating that the consumption of such foods should be
limited. Similarly, as in other countries [15,109,110], in Slovenia, we also observed a higher
intake of bioavailable haem iron foods in adult males. The dietary iron requirements for
males are also lower than for females; therefore, their iron status is expected to be better
than in females. We also showed that a higher meat consumption had a greater impact
on a higher ferritin status, in comparison to the consumption of other food categories
(Figure 4). These observations were also confirmed in correlation analyses between iron
status biomarkers and the intake of iron from meats (Figure 3B).

A strength of the present study is that the data on dietary intakes (which included
two 24 h dietary recalls and FPQ) were collected for a nationally representative sample
of Slovenian adolescents, adults and the elderly, using a standardised EU.Menu method-
ology [53]. In the scope of the SI.Menu study, we also collected general data on the use
of food supplements, but the study was not designed in a way that enabled the estima-
tion of daily iron intake from these sources. Therefore, the study limitation is that iron
intake was estimated only from food sources. We should also mention a strength—that
we had blood samples available for the subsamples of adults and the elderly (Nutrihealth
study), providing insights about markers of body iron status. Unfortunately, blood samples
were not available for adolescents. Another limitation of the study design is related to
the sampling approach. According to the EU Menu methodology, the SI.Menu study re-
cruited a similar number of adolescents (10–17 years), adults (18–65 years), and the elderly
(65–74 years), although the adults subgroup had a much higher age span (47 years) than
the other two groups (8 years in adolescents and 11 years in the elderly). Particularly
in adults, the creation of additional subgroups (i.e., pre-menopausal women) resulted in
relatively small sample sizes. For certain subgroups (e.g., vegetarians/vegans), statistical
modelling was also not feasible because of the very low number of these subjects in the
population. The study observations for these subgroups should therefore be interpreted
with some caution. It should be mentioned that an additional in-depth study is already
planned to provide further insights about the population of pre-menopausal women, where
vegetarian/vegan subjects will be also targeted as specific population groups. A limitation
of the study is also related to the use of biomarkers for body iron status. A key biomarker
of iron status used in the present study was ferritin, which is an acute-phase reactant. The
limitation is that data on inflammation status (which could be useful in the interpretation
of ferritin concentration) were not available.

5. Conclusions

In all three investigated population groups, the mean dietary intake of iron in Slovenia
was notably higher in males than in females. Among males, the highest usual mean daily
iron intake was observed in adults, following by the elderly and adolescents. Among
females, all age groups had iron intakes of about 14–15 mg, and insufficient iron intakes
were much more prevalent—up to 76% in 18–50-year-old adults females. Sex was also
a significant predictor for haemoglobin concentration, both in adults and in the elderly.
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Low haemoglobin was observed in only a few subjects. On the other hand, depleted iron
stores—assessed through the measurement of serum ferritin levels—were particularly
prevalent in adult pre-menopausal women, with 27.2% having ferritin concentrations of
below 30 µg/L. In comparison to females, males also had higher haemoglobin and serum
ferritin concentrations. The main contributors to dietary iron intake were bread and bakery
products, meat and meat products, fruits, and vegetables. Particularly, a more extensive
consumption of meat and meat products was linked to higher ferritin concentrations. A
correlation analyses did not show statistically significant associations between iron status
and total dietary iron intakes in any of the investigated population groups, while significant
correlations were observed with meat and fish intake, and with iron from meat and fish
sources. We can conclude that particularly premenopausal females were identified as
the most fragile population in terms of inadequate iron intake and status. Additional
research should be considered, particularly in this population group. Such studies should
be conducted with larger sample sizes, which should also include sufficient samples of
subjects practicing vegan and vegetarian diets.
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Institute, Ljubljana, Slovenia) for support in food-matching to estimate the nutritional compositions
of foods.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results. I.P. has led and participated in various other research projects in
the area of nutrition, public health, and food technology, which were (co)funded by the Slovenian
Research Agency, Ministry of Health of the Republic of Slovenia, the Ministry of Agriculture, Forestry
and Food of the Republic of Slovenia, and in cases of specific applied research projects, also by food
businesses. I.P., M.G. and U.B. are members of a workgroup for food reformulation at the Ministry of
Health of the Republic of Slovenia.

References
1. Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [CrossRef]
2. Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [CrossRef] [PubMed]

http://doi.org/10.1182/blood-2018-05-815944
http://doi.org/10.1016/S0140-6736(07)61235-5
http://www.ncbi.nlm.nih.gov/pubmed/17693180


Nutrients 2022, 14, 5144 20 of 24

3. World Health Organization. Assessing the Iron Status of populations: Including Literature Reviews: Report of a Joint World
Health Organization. In Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the
Population Level, Geneva, Switzerland; WHO: Geneva, Switzerland, 2004; pp. 6–8.

4. Ebner, N.; Jankowska, E.A.; Ponikowski, P.; Lainscak, M.; Elsner, S.; Sliziuk, V.; Steinbeck, L.; Kube, J.; Bekfani, T.;
Scherbakov, N.; et al. The impact of iron deficiency and anaemia on exercise capacity and outcomes in patients with chronic
heart failure. Results from the Studies Investigating Co-morbidities Aggravating Heart Failure. Int. J. Cardiol. 2015, 205, 6–12.
[CrossRef] [PubMed]

5. Auersperger, I.; Škof, B.; Leskošek, B.; Knap, B.; Jerin, A.; Lainscak, M. Exercise-Induced Changes in Iron Status and Hepcidin
Response in Female Runners. PLoS ONE 2013, 8, e58090. [CrossRef] [PubMed]

6. Bekfani, T.; Pellicori, P.; Morris, D.; Ebner, N.; Valentova, M.; Sandek, A.; Doehner, W.; Cleland, J.G.; Lainscak, M.; Schulze, P.C.;
et al. Iron deficiency in patients with heart failure with preserved ejection fraction and its association with reduced exercise
capacity, muscle strength and quality of life. Clin. Res. Cardiol. 2019, 108, 203–211. [CrossRef]

7. Cooper, T.J.; Anker, S.D.; Comin-Colet, J.; Filippatos, G.; Lainscak, M.; Lüscher, T.F.; Mori, C.; Johnson, P.; Ponikowski, P.;
Dickstein, K. Relation of Longitudinal Changes in Quality of Life Assessments to Changes in Functional Capacity in Patients with
Heart Failure with and without Anemia. Am. J. Cardiol. 2016, 117, 1482–1487. [CrossRef]

8. Al-Naseem, A.; Sallam, A.; Choudhury, S.; Thachil, J. Iron deficiency without anaemia: A diagnosis that matters. Clin. Med. 2021,
21, 107–113. [CrossRef]

9. WHO. Iron Deficiency Anaemia Assesment: Prevention, and Control: A Guide for Programme Managers; World Health Organization:
Geneva, Switzerland, 2001.

10. McClung, J.P.; Murray-Kolb, L.E. Iron Nutrition and Premenopausal Women: Effects of Poor Iron Status on Physical and
Neuropsychological Performance. Annu. Rev. Nutr. 2013, 33, 271–288. [CrossRef]

11. Sim, M.; Garvican-Lewis, L.A.; Cox, G.R.; Govus, A.; McKay, A.K.A.; Stellingwerff, T.; Peeling, P. Iron considerations for the
athlete: A narrative review. Eur. J. Appl. Physiol. 2019, 119, 1463–1478. [CrossRef]

12. McIntyre, A.S.; Long, R.G. Prospective survey of investigations in outpatients referred with iron deficiency anaemia. Gut 1993, 34,
1102–1107. [CrossRef]

13. Kepczyk, T.; Kadakia, S.C. Prospective evaluation of gastrointestinal tract in patients with iron-deficiency anemia. Dig. Dis. Sci.
1995, 40, 1283–1289. [CrossRef] [PubMed]

14. Bermejo, F.; García-López, S. A guide to diagnosis of iron deficiency and iron deficiency anemia in digestive diseases. World J.
Gastroenterol. 2009, 15, 4638–4643. [CrossRef] [PubMed]

15. Milman, N.T. Dietary Iron Intakes in Men in Europe Are Distinctly Above the Recommendations: A Review of 39 National
Studies from 20 Countries in the Period 1995–2016. Gastroenterol. Res. 2020, 13, 233–245. [CrossRef] [PubMed]

16. Kaluza, J.; Wolk, A.; Larsson, S.C. Heme Iron Intake and Risk of Stroke. Stroke 2013, 44, 334–339. [CrossRef]
17. Stevens, R.G.; Jones, D.Y.; Micozzi, M.S.; Taylor, P.R. Body iron stores and the risk of cancer. N. Engl. J. Med. 1988, 319, 1047–1052.

[CrossRef]
18. Kaikkonen, J.; Kosonen, L.; Nyyssönen, K.; Porkkala-Sarataho, E.; Salonen, R.; Korpela, H.; Salonen, J.T. Effect of combined

coenzyme Q10 and d-α-tocopheryl acetate supplementation on exercise-induced lipid peroxidation and muscular damage: A
placebo-controlled double-blind study in marathon runners. Free Radic. Res. 1998, 29, 85–92. [CrossRef]

19. Bao, W.; Rong, Y.; Rong, S.; Liu, L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes: A systematic review and
meta-analysis. BMC Med. 2012, 10, 119. [CrossRef]

20. Pasricha, S.-R.; Drakesmith, H.; Black, J.; Hipgrave, D.; Biggs, B.-A. Control of iron deficiency anemia in low- and middle-income
countries. Blood 2013, 121, 2607–2617. [CrossRef]

21. Disler, P.B.; Lynch, S.R.; Charlton, R.W.; Torrance, J.D.; Bothwell, T.H.; Walker, R.B.; Mayet, F. The effect of tea on iron absorption.
Gut 1975, 16, 193–200. [CrossRef]

22. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Iron. EFSA J.
2015, 13, 4254. [CrossRef]

23. Carpenter, C.E.; Mahoney, A.W. Contributions of heme and nonheme iron to human nutrition. Crit. Rev. Food Sci. Nutr. 1992, 31,
333–367. [CrossRef] [PubMed]

24. Hallberg, L.; Hultén, L.; Gramatkovski, E. Iron absorption from the whole diet in men: How effective is the regulation of iron
absorption? Am. J. Clin. Nutr. 1997, 66, 347–356. [CrossRef] [PubMed]

25. Cook, J.D. Adaptation in iron metabolism. Am. J. Clin. Nutr. 1990, 51, 301–308. [CrossRef] [PubMed]
26. Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [CrossRef] [PubMed]
27. Whitfield, J.B.; Zhu, G.; Heath, A.C.; Powell, L.W.; Martin, N.G. Effects of alcohol consumption on indices of iron stores and of

iron stores on alcohol intake markers. Alcohol. Clin. Exp. Res. 2001, 25, 1037–1045. [CrossRef]
28. Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [CrossRef]
29. DACH. Reference Values DACH. Available online: https://www.sge-ssn.ch/grundlagen/lebensmittel-und-naehrstoffe/

naehrstoffempfehlungen/dachreferenzwerte/ (accessed on 14 July 2021).
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56. Gregorič, M.; Turk, V.F.; Gabrijelčič Blenkuš, M. Slikovno Gradivo s Prikazom Velikosti Porcij. Available online: https://www.nijz.
si/sites/www.nijz.si/files/publikacije-datoteke/slikovno_gradivo_s_prikazom_velikosti_porcij.pdf (accessed on 27 January 2021).
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et al. Dietary Intake and Status of Vitamin B12 in Slovenian Population. Nutrients 2022, 14, 334. [CrossRef] [PubMed]
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