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Abstract: Evidence suggests that the source of dietary protein may have an impact on insulin
resistance, but no studies have explored it in pregnant populations. In this study, we combined
a population study and an animal experiment to explore this effect. The population study was
conducted with data from NHANES. Multiple linear regression was used to observe the association
of protein intake with outcomes, including fasting glucose (GLU), insulin (INS), and HOMA-IR. In the
animal experiment, 36 pregnant SD rats in three groups were orally administered 100% animal protein,
50% animal protein and 50% plant protein, or 100% plant protein, respectively. The intervention
continued throughout the whole pregnancy. On day 19.5, maternal plasma was collected after
overnight fasting, and metabolomics was performed using UPLC-MS. We found plant protein intake
was negatively correlated with INS and HOMA-IR in the whole population. During the third
trimester, a similar correlation was also observed. The animal experiment also presented the same
result. In metabolomic analysis, changes in various metabolites and related pathways including
FoxO and mTOR signaling pathways were observed. In conclusion, we found a negative association
between dietary plant protein intake and maternal insulin resistance during pregnancy. Changes in
some active substances and related metabolic pathways may play an important role.

Keywords: dietary protein; plant protein; pregnancy; insulin resistance; metabolomics

1. Introduction

Insulin is one of the core hormones regulating energy and substance metabolism. The
decrease in insulin sensitivity or the increase in insulin resistance is considered to be related
to various metabolic diseases. Current research suggests that the occurrence of insulin
resistance is an important risk factor or early link for many diseases such as type 2 diabetes,
hyperlipidemia, hypertension, and coronary heart disease [1–3]. During pregnancy, the
mother will develop physiological insulin resistance, which will gradually increase with
the development of pregnancy [4–6].

Studies have found increased insulin resistance in a variety of pregnancy disorders,
including gestational diabetes mellitus and preeclampsia [7,8]. Insulin resistance during
pregnancy is also thought to be associated with poor placental function and intrauterine
growth restriction and is also thought to predict the occurrence of adverse pregnancy
outcomes [7,9,10]. Maintaining a normal state of insulin resistance during pregnancy may
help reduce the occurrence of these diseases and adverse outcomes, thereby benefiting the
health of the mother and the fetus. Multiple genetic and environmental factors are thought
to influence insulin sensitivity [11], and diet and exercise are considered to be important
controllable factors that influence insulin sensitivity [3,12–14].

Different food compositions in the diet have been found to be associated with diabetes
and insulin resistance in many studies. Red meat intake in a diet has been found to increase
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the risk of diabetes and insulin resistance in studies based on populations from various
regions [15]. The effects of milk or dairy products on insulin resistance or diabetes are
still contradictory [16]. In contrast, many dietary patterns rich in plant-derived foods have
been found to benefit the control of diabetes and insulin resistance [17,18]. Several studies
explored the relationship between dietary food compositions and gestational diabetes
mellitus [19,20] and indicated that the intake of animal-derived foods could increase the
risk of developing gestational diabetes mellitus. At the same time, specific nutrients in
the diet were also believed to have a potential effect on insulin resistance. As dietary fat
has long been found to affect insulin resistance [21], more recent research showed the
importance of protein in influencing insulin resistance [22–26].

Protein is an important nutrient for pregnancy, and maternal protein requirements
increase during pregnancy and are higher in late pregnancy [27,28]. However, studies in
non-pregnant people have found that total dietary protein intake was positively associated
with insulin resistance levels [22,23], which indicated that the regulation of insulin might be
impacted by dietary protein. With the increased protein requirements and the development
of physiological insulin resistance during pregnancy, it is even more important to study the
effect of protein sources on insulin resistance during pregnancy to avoid adverse health
outcomes for the mother and her offspring.

In recent years, many studies have gradually revealed the role of amino acids as
signaling molecules [29]. For example, branched-chain amino acids (BCAAs), a class of
amino acids thought to be more abundant in proteins of animal origin, are believed to
potentially affect a variety of diabetes-related metabolic pathways [30–32]. In addition,
certain amino acids rich in proteins of plant origin, such as arginine, were thought to have
a beneficial effect on the body’s insulin metabolism [33,34]. The amino acid composition
is considered to be very different between plant and animal proteins [35,36], which may
provide a mechanistic basis for their influence on insulin resistance. Meanwhile, though
such studies have revealed that the source of protein in the diet may also affect the regula-
tion of insulin in the non-pregnant population [24–26], these relationships in the pregnant
population are unclear due to the limited amount of data, while the mechanism is still not
well understood.

This study aims to explore the effects of protein intake from different sources on
maternal insulin secretion and insulin resistance by combining population and animal
studies. Further, it aims to explore the possible mechanisms of these effects by applying
high-throughput metabolomics methods.

2. Materials and Methods

The overall design of this study is shown in Figure 1.

2.1. Study Population

A population study was conducted with data collected from the National Health and
Nutrition Examination Surveys (NHANES, https://www.cdc.gov/nchs/nhanes, accessed
on 31 August 2021). Details on the implementation of the NHANES survey can be found in
the relevant manuals (https://www.cdc.gov/nchs/nhanes/about_nhanes.htm, accessed
on 31 August 2021).

We obtained demographic characteristics, dietary, examination, laboratory, and ques-
tionnaire data on all pregnant females from NHANES 1999–2018. Due to data availability,
only pregnant females aged 20–44 who completed at least one dietary survey in MEC were
included in the study.

Reproductive health and demographic characteristics were focused on in this study.
Reproductive health characteristics include gestation period and parity. The gestation
period was categorized as the first trimester (months 1 to 3), the second trimester (months
4 to 6), and the third trimester (months ≥ 7). Parity was defined as primiparous and
non-primiparous. Demographic characteristics include age, race, education, and family
income. A detailed classification of demographic characteristics can also be found in

https://www.cdc.gov/nchs/nhanes
https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
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the corresponding data description of NHANES (https://wwwn.cdc.gov/nchs/nhanes/
Default.aspx, accessed on 31 August 2021).
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2.2. Estimation of Dietary Intakes

The dietary intake assessment was based on the data collected in the dietary recall
component of NHANES known as What We Eat in America (WWEIA, details in https:
//www.cdc.gov/nchs/nhanes/wweia.htm, accessed on 31 August 2021). Due to concerns
about data quality, only the data from the first 24-hour dietary recall were used in this
study to estimate the dietary and protein intake.

Proteins were estimated based on cycle-specific versions of the US Department of
Agriculture Food and Nutrition Database for Dietary Studies. We defined animal protein as
protein from animal products, including dairy products, red meat, poultry, fish/shellfish,
and eggs. In contrast, plant protein was defined as protein from plant products, including
beans, nuts, grains, vegetables, and fruit. Some foods contain both animal and plant
ingredients, which are separately recorded as mixed food. Energy from mixed foods is
included in the calculation of total energy. However, the protein from mixed foods is only
included in the calculation of total protein and is not included in the calculation of animal
and plant protein.

Estimates of total protein intake, animal protein intake, and plant protein intake were
first generated as grams per day. Using the residual method to minimize measurement
error in dietary estimates, the absolute intakes of proteins in grams per day were adjusted
for total energy intake to the median level of the study population. After minimizing the
measurement error, we calculated the ratio of animal protein intake to plant protein intake,
which is recorded as the AP ratio. Then all kinds of protein intake and AP ratio were
divided into three levels by using tertiles.

https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
https://www.cdc.gov/nchs/nhanes/wweia.htm
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2.3. Assessment of Glucose Homeostasis Indicators

The outcomes were the indicators of glucose homeostasis, including fasting glucose
(GLU) and insulin (INS). Insulin resistance was calculated using the homeostasis model
assessment of insulin resistance (HOMA-IR). The following formula was used:

HOMA − IR = INS
(

mIU × L−1
)
× GLU

(
mmol × L−1

)
÷ 22.5

2.4. Adjustment of Covariates

Since body mass index (BMI) was considered to be an important indicator affecting
insulin resistance, pre-pregnancy BMI was included in the statistical analysis as a covariate.
Though the standing height, weight, and calculated BMI were provided in the Examination
part of NHANES, it only reflected the BMI during pregnancy. Therefore, we recalculated
the pre-pregnancy BMI based on the self-reported weight one year ago in the Questionnaire
Data and divided it into three levels according to 18.5 and 24.0 as the cutoff values.

Due to the different physiological changes in glucose metabolism in different gestation
periods, the gestation period was considered to be another important covariate. It was also
described with three levels, namely the first, second, and third trimesters.

Other demographic characteristics, including parity, age, race, education, and family
income, were considered potential covariates. Only when the distribution of outcome indi-
cators among subjects with different demographic characteristics was statistically different,
the corresponding demographic characteristics would be included in the regression model.

2.5. Animal Experiment

Thirty-six specific-pathogen-free twelve-week-old male Sprague Dawley (SD) rats
were provided by the Department of Laboratory Animal Science of Peking University
(Beijing, China, SCXK2016-0010). The SD rats were randomly assigned to three groups
of twelve rats each, including a 100% animal protein group, a 50% animal protein group,
and a 100% plant protein group. Animals were housed with an automatically controlled
temperature (24 ± 0.5 ◦C) and humidity (50 ± 10%) and a 12-hour light–dark cycle with
free access to food and water.

The total experimental duration was about three weeks. After three days of adaptive
feeding, the female rats were mated with males (females:males = 2:1) at 6:00 pm. The
day when spermatozoa were identified was considered day 0.5 of pregnancy, and the rats
identified as pregnant were transferred to individual cages. Then three groups were fed
different diets.

This study used different kinds of diets based on the AIN-93G diet. Three different
diets were prepared: (1) 100% animal protein diet (20% weight as pure animal protein from
milk protein concentrate), (2) 50% animal protein diet (10% weight as pure animal protein
from milk protein concentrate, and 10% weight as pure plant protein from soy protein
isolate), (3) 100% plant protein diet (20% weight as pure plant protein from soy protein
isolate). All these diets contained the same caloric density and macronutrient compositions.
The content of nutrients in the feed is shown in Table 1.

After overnight fasting on the evening of day 18.5 of pregnancy, these pregnant rats
were anesthetized with pentobarbital sodium (150 mg/kg) in the morning of day 19.5 of
pregnancy. Meanwhile, the blood was collected from the abdominal aorta, and plasma was
obtained and stored in a −80°C ultralow-temperature refrigerator.

The protocol of the animal experiment was reviewed and approved by the Animal
Ethical Committee at Peking University (Protocol #: LA2020440). All animals were handled
in accordance with the guidelines of the Peking University Animal Research Committee
(www.lab.pku.edu.cn, accessed on 31 August 2021) and the National Institutes of Health
(NIH Publication No. 85-23 revised 1985).

www.lab.pku.edu.cn
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Table 1. Composition of the experimental diets.

Component (g/kg) a 100% Animal Protein 50% Animal Protein 100% Plant Protein

Total energy (kcal/kg) a 3832.48 3832.48 3832.48
Protein 200.00 200.00 200.00

Fat 70.00 70.00 70.00
Carbohydrates 600.62 600.62 600.62
Dietary fiber 50.00 50.00 50.00

Milk protein concentrate 241.08 120.54 -
Soy protein isolate - 110.07 220.14

L-cystine 3.00 3.00 3.00
Corn starch 360.35 361.67 362.98

Maltodextrin 132.00 132.00 132.00
Sucrose 100.00 100.00 100.00

Cellulose 50.00 49.86 49.71
Oil 66.07 68.01 69.96

Mineral mix 35.00 35.00 35.00
Vitamin mix 10.00 10.00 10.00

Choline bitartrate 2.50 2.50 2.50
BHT b 0.01 0.01 0.01

Distilled water 0.00 7.35 14.70
a. All units are g/kg except for the total energy, which is kcal/kg. b. BHT: dibutylhydroxytoluene, a
food antioxidant.

2.6. Laboratory Testing of Animal Experiment

The levels of GLU and INS in the plasma of pregnant rats were detected by the enzyme
microplate method, and HOMA-IR was calculated by GLU × INS÷22.5.

In metabolomics testing, 100 µL of plasma was accurately drawn after thawing at
4 ◦C, and 300 µL of cold acetonitrile was added. Then the suspension was ultrasonically
extracted for 30 min in an ice bath and centrifuged at 12,000 rpm for 10 min at 4 ◦C, followed
by 100 µL being removed and concentrated to dryness by vacuum centrifugation at 37 ◦C.
The residue was dissolved with 100 µL acetonitrile and centrifuged at 12,000 rpm and
4 degrees Celsius for 10 min. Finally, 10 µL of the supernatant was injected and analyzed
by ultrahigh-performance liquid chromatography–mass spectrometry (UPLC-MS).

2.7. Statistical Methods

Data analysis was performed using R4.1.2. The Kruskal–Wallis rank-sum test was
used to evaluate whether the distribution of outcome indicators was different among
subjects with different demographic characteristics. After adjusting for total energy intake
using the residual method, multiple linear regression was used to observe the association
of total protein intake, animal protein intake, plant protein intake, and AP ratio with
the outcomes, adjusting the potential confounding factors, including pre-pregnancy BMI,
gestation period, and demographic characteristics. Considering the different physiological
changes in glucose metabolism in different gestation periods, a stratified analysis was
further carried out according to the gestation period.

In the animal study, ANOVA was used to compare whether the levels of GLU, INS,
and HOMA-IR were different between the three experimental groups, and trend variance
analysis was performed to test for trends. Sources of differences between groups were
analyzed by using the HSD post hoc test.

The original metabolomic data were converted into ABF format by Analysis Base
File Converter software and imported into MS-DIAL 4.60 for preprocessing to obtain the
original data matrix. The MassBank, Respect, and GNPS databases were searched, and the
extracted peak information was compared with the databases to identify the metabolite
species contained in the sample.

Principal component analysis (PCA) was used to observe the overall metabolic profile
of each sample and the natural distinction between samples. Then partial least-squares dis-
crimination analysis (PLS-DA) was used to distinguish the overall difference in metabolic
profile between groups, calculate the variable importance for the projection (VIP) of each
metabolite, and judge the overfitting of the PLS-DA model by permutation test. At the
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same time, the fold change (FC) of metabolites between different groups was calculated,
and the t-test was used to determine whether there was a statistical difference in metabolite
levels between groups. Based on the results of the VIP value, FC, and t-test, the differential
metabolites between the experimental groups were screened out. The screening criteria in
this study were as follows: VIP > 1, FC > 1.5 or <2/3, and p-value < 0.05 in the t-test. After
screening out the differential metabolites between groups, KEGG metabolic pathway anal-
ysis was used to determine the enrichment of differential metabolites in known metabolic
pathways, and the BH method was used for multiple correction tests in KEGG analysis.

3. Results
3.1. Characteristics of the Study Population

Table 2 shows the characteristics of the study population. There were statistically
significant differences in the distribution of all outcome indicators among the subjects at dif-
ferent gestational periods. In addition, there were statistical differences in the distribution
of GLU and INS among subjects of different ages and HOMA-IR among different races.

Table 2. Characteristics of study population a.

Characteristics n (%) GLU (mmol/L) INS (pmol/L) HOMA-IR

All subjects 1034 (100) 4.61 (4.31, 4.96) 57.0 (38.6, 94.4) 2.01 (1.31, 3.29)
pre-pregnancy BMI

<18.5 22 (2.1) 4.28 (3.98, 4.59) c 29.7 (19.6, 44.8) c 0.88 (0.60, 1.55) c

18.5–23.9 193 (18.7) 4.56 (4.29, 4.84) c 46.9 (34.1, 74.2) c 1.60 (1.14, 2.41) c

≥24.0 252 (24.4) 4.70 (4.37, 5.05) c 69.4 (47.2, 107.6) c 2.32 (1.65, 3.84) c

Gestation period
First 150 (14.5) 4.76 (4.55, 5.05) c 48.4 (37.0, 89.0) c 1.77 (1.29, 3.18) c

Second 305 (29.5) 4.49 (4.22, 4.84) c 53.5 (37.2, 84.4) c 1.84 (1.19, 2.65) c

Third 277 (26.8) 4.47 (4.22, 4.79) c 73.6 (53.6, 108.9) c 2.40 (1.81, 3.76) c

Parity
Primiparous 42 (4.1) 4.71 (4.54, 5.02) 49.2 (39.1, 72.1) 1.76 (1.26, 2.56)

Non-primiparous 675 (65.3) 4.61 (4.31, 4.95) 55.2 (38.8, 87.0) 1.91 (1.30, 2.91)
Age

20–24 320 (30.9) 4.51 (4.22, 4.88) c 62.1 (40.1, 100.7) c 2.15 (1.37, 3.43)
25–29 313 (30.3) 4.59 (4.34, 4.86) c 62.0 (39.8, 89.9) c 2.03 (1.30, 3.28)
30–34 257 (24.9) 4.65 (4.31, 5.11) c 61.0 (38.3, 98.2) c 2.18 (1.35, 3.68)
35–39 122 (11.8) 4.78 (4.53, 5.11) c 48.1 (33.2, 62.8) c 1.80 (1.14, 2.33)
40–44 22 (2.1) 4.83 (4.59, 5.11) c 37.4 (28.7, 50.5) c 1.28 (1.02, 1.83)
Race

Mexican 250 (24.4) 4.63 (4.27, 5.03) 66.6 (45.5, 102.5) c 2.22 (1.56, 3.63) c

Other Hispanic 73 (7.1) 4.69 (4.38, 5.00) 70.4 (48.8, 100.7) c 2.31 (1.81, 3.28) c

Non-Hispanic White 445 (43.5) 4.61 (4.33, 4.88) 50.3 (33.3, 79.1) c 1.77 (1.12, 2.69) c

Non-Hispanic Black 165 (16.1) 4.57 (4.23, 4.98) 62.0 (40.1, 97.3) c 2.10 (1.32, 3.47) c

Other race 101 (9.9) 4.66 (4.38, 5.11) 58.8 (39.2, 88.1) c 2.09 (1.25, 3.28) c

Education
Less than 9th grade 76 (7.4) 4.61 (4.23, 4.94) 53.5 (40.6, 90.8) 1.90 (1.32, 3.28)

9–11th grade 176 (17.0) 4.57 (4.28, 4.86) 66.7 (46.9, 104.1) 2.28 (1.69, 3.53)
High school graduate 214 (20.7) 4.62 (4.31, 5.00) 62.1 (40.1, 104.5) 2.19 (1.37, 3.76)

AA degree 294 (28.4) 4.63 (4.33, 4.91) 55.6 (37.9, 91.3) 1.96 (1.27, 3.13)
College graduate or above 273 (26.4) 4.61 (4.33, 5.00) 53.2 (33.4, 80.6) 1.83 (1.10, 2.76)

Family income b

<1.00 244 (23.6) 4.61 (4.31, 4.94) 55.6 (39.2, 90.6) 1.98 (1.32, 3.15)
1.00–2.99 213 (20.6) 4.61 (4.28, 5.00) 56.0 (39.1, 94.5) 1.90 (1.31, 3.32)
3.00–4.99 129 (12.5) 4.59 (4.35, 4.93) 62.2 (40.9, 91.5) 2.09 (1.31, 3.37)
≥5.00 177 (17.1) 4.64 (4.35, 5.05) 49.2 (33.3, 81.6) 1.75 (1.10, 2.90)

a. Described by median and upper and lower quartiles (P25, P75); b. Family income is represented by the ratio
of annual family income to the US poverty line, and if <1.00, the research subject is considered to be in a poor
group. c. There was a statistically significant difference in the distribution of the corresponding outcomes within
the group, p < 0.05.
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3.2. Results of the Population Study

The multiple linear regression results of total protein intake and GLU, INS, or HOMA-
IR are shown in Table 3. There was no statistical association between total protein intake
and GLU, INS, or HOMA-IR. The multiple linear regression results of animal protein,
plant protein intake, and AP ratio are shown in Table 4. There was a negative correlation
between plant protein intake and INS or HOMA-IR after adjusting for the pre-pregnancy
BMI, gestational period, and demographic characteristics, including age and race.

Table 3. The multiple linear regression results of total protein intake and GLU, INS, or HOMA-IR.

Variables GLU INS HOMA-IR

Total protein intake

Model 1 a β (95%CI) 0.01
(−0.06, 0.08)

8.74
(−4.58, 22.07)

0.46
(−0.19, 1.10)

p-value 0.724 0.198 0.168

Model 2 b β (95%CI) −0.01
(−0.08, 0.06)

5.47
(−11.85, 22.78)

0.28
(−0.56, 1.12)

p-value 0.704 0.535 0.513
a. Model 1: Unadjusted for covariates. b. Model 2: Adjusted for pre-pregnancy BMI, gestation period, and
demographic characteristics, including age and race.

Table 4. The multiple linear regression results of animal protein intake, plant protein intake, AP ratio,
and GLU, INS, or HOMA-IR.

Variables GLU
(mmol/L) INS (mIU/L) HOMA-IR

animal protein intake

Model 1 a β (95%CI) −0.09
(−0.16, −0.02)

7.31
(−6.02, 20.65)

0.31
(−0.34, 0.96)

p-value 0.015 0.282 0.351

Model 2 b β (95%CI) −0.06
(−0.13, 0.01)

3.49
(−14.12, 21.10)

0.20
(−0.67, 1.05)

p-value 0.103 0.696 0.667

plant protein intake

Model 1 a β (95%CI) −0.03
(−0.10, 0.04)

−18.73
(−31.97, −5.49)

−0.96
(−1.60, −0.32)

p-value 0.398 0.006 0.004

Model 2 b β (95%CI) 0.00
(−0.06, 0.07)

−20.60
(−37.91, −3.30)

−1.04
(−1.89, −0.20)

p-value 0.892 0.020 0.015

AP ratio
Model 1 a β (95%CI) −0.03

(−0.10, 0.04)
12.39

(−0.91, 25.69)
0.63

(−0.02, 1.27)
p-value 0.360 0.068 0.058

Model 2 b β (95%CI) −0.05
(−0.12, 0.02)

13.91
(−3.66, 31.48)

0.73
(−0.13, 1.59)

p-value 0.175 0.120 0.096
a. Model 1: Unadjusted for covariates. b. Model 2: Adjusted for pre-pregnancy BMI, gestation period, and
demographic characteristics, including age and race.

After stratification by gestational period, animal protein intake was not associated
with GLU, INS, or HOMA-IR. In the third trimester, plant protein intake was negatively
correlated with HOMA-IR, and there may still be some correlation between plant protein
and INS, but it is not significant enough (p < 0.10). Interestingly, the AP ratio showed a
positive correlation with HOMA-IR in the third trimester, while the correlation with INS
was not significant (p < 0.10). The results are shown in Table 5.
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Table 5. The multiple linear regression results of plant protein intake, AP ratio, and INS or HOMA-IR
after stratification by gestation period a.

Variables Gestation
Period INS (mIU/L) HOMA-IR

Plant protein intake

First trimester
β (95%CI) −26.23 (−60.73, 8.27) −1.25 (−2.88, 0.39)

p-value 0.133 0.133
Second

trimester
β (95%CI) −4.03 (−19.77, 11.71) −0.19 (−0.81, 0.43)

p-value 0.614 0.541

Third trimester
β (95%CI) −38.47 (−76.99, 0.04) −2.10 (−4.04,

−0.15)
p-value 0.050 0.035

AP ratio

First trimester
β (95%CI) 18.69 (−15.97, 53.34) 0.93 (−0.70, −2.57)

p-value 0.285 0.258
Second

trimester
β (95%CI) 3.96 (−11.53, −19.45) 0.12 (−0.50, 0.73)

p-value 0.614 0.707

Third trimester
β (95%CI) 36.76 (−2.06, 75.57) 1.96 (0.01, 3.91)

p-value 0.063 0.048
a. Adjusted for pre-pregnancy BMI and demographic characteristics, including age and race.

3.3. Results of the Animal Experiment

As shown in Table 6, there were significant differences in the levels of INS and HOMA-
IR among the three groups, and the trend test results showed that the levels of INS and
HOMA-IR decreased with the increase in plant protein in the diet. Figure 2 shows that the
differences were mainly from the 100% animal protein and 100% plant groups. Therefore, a
subsequent metabolomic analysis was carried out between these two groups.

Table 6. GLU, INS, and HOMA-IR levels in rats administered different proportions of protein.

Group
100% Animal

Protein
Mean ± sd

50% Animal
Protein

Mean ± sd

100% Plant
Protein

Mean ± sd
p for ANOVA p for Trend

GLU (mmol/L) 6.40 ± 2.15 6.25 ± 1.11 5.61 ± 1.74 0.557 0.314
INS (mIU/L) 20.83 ± 5.62 15.09 ± 4.60 10.88 ± 4.91 0.001 0.000

HOMA-IR 6.06 ± 2.85 4.22 ± 1.49 2.63 ± 1.42 0.007 0.002

We first examined the overall metabolic profiles of the plasma of the two groups of
pregnant rats using PCA, and the result is shown in Figure 3. In the space of the first
three principal components, the metabolic profiles of the two groups of pregnant rats were
clearly differentiated, indicating that the plasma of the two groups of pregnant rats could
be naturally distinguished.

We further analyzed the differential metabolites between the plasma of the two groups
of pregnant rats. Only the metabolites that satisfied all three conditions, namely VIP > 1,
FC > 1.5 or <2/3, and p-value < 0.05 in the t-test, at the same time were considered dif-
ferential metabolites. We also excluded exogenous drug and phytochemical components,
and the results of endogenous differential metabolites for the top 25 VIP values are shown
in Table 7. These endogenous differential metabolites mainly include a variety of amino
acids, vitamins, and their derivatives. In addition to the metabolites shown in the table,
endogenous differential metabolites also contain a variety of other substances, such as
taurine, betaine, acetylcarnitine, and glycocholic acid.

The results of the KEGG metabolic pathway analysis are presented in Table 8. After
the intervention of different protein sources, multiple differential metabolic pathways were
found between the two groups. These differential metabolic pathways include a variety of
amino acid metabolism pathways, vitamin metabolism pathways, some signaling pathways
that affect hormone secretion, such as the prolactin signaling pathway, and some pathways
considered key pathways that affect energy and substance metabolism, such as the FoxO
and mTOR signaling pathways.
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Table 7. Endogenous differential metabolites between the 100% plant protein group and 100% animal
protein group.

Metabolites log2FC a p-Value VIP

L-Tyrosine −9.19 <0.000 1.55
L-Histidine −5.37 <0.000 1.55

L-asparagine −4.73 <0.000 1.55
5-Aminolevulinic acid −7.41 <0.000 1.55

Phenylalanine −6.43 <0.000 1.55
Glutamine −3.41 <0.000 1.55
Threonine −2.71 <0.000 1.54

Succinic acid −2.04 <0.000 1.50
N-Acetylaspartate −6.99 <0.000 1.50

2-hydroxy-6-methylisonicotinic acid 3.97 <0.000 1.50
N, N-Dimethylarginine 6.42 <0.000 1.49

Arginine 6.14 <0.000 1.49
Gly 3.85 <0.000 1.46

1-Methylhistamine −3.80 <0.000 1.45
Pantothenate −7.00 <0.000 1.45

L-Leucine −5.49 <0.000 1.44
L-Glutamic acid −3.63 <0.000 1.43

L-Citrulline 3.87 <0.000 1.43
D-Glucosamine-6-phosphate 6.71 <0.000 1.42

N-Methyl-L-proline 5.80 <0.000 1.37
Glutamic acid 1.97 <0.000 1.35

Thiamine 3.98 <0.000 1.33
Lysine 6.59 <0.000 1.33

Riboflavin 5.29 <0.000 1.30
N8-Acetylspermidine 3.27 <0.000 1.30

a. The 100% plant protein group vs. the 100% animal protein group.

Table 8. Differential metabolic pathways between 100% plant protein group and animal protein
group.

Pathway Name KEGG Pathway ID Adjusted p-Value

Biosynthesis of amino acids rno01230 <0.000
Alanine, aspartate, and glutamate metabolism rno00250 <0.000

GABAergic synapse rno04727 <0.000
Arginine biosynthesis rno00220 0.000

FoxO signaling pathway rno04068 0.000
Glutamatergic synapse rno04724 0.002

Glyoxylate and dicarboxylate metabolism rno00630 0.003
Prolactin signaling pathway rno04917 0.004

Histidine metabolism rno00340 0.005
D-Glutamine and D-glutamate metabolism rno00471 0.006
Glycine, serine, and threonine metabolism rno00260 0.006

mTOR signaling pathway rno04150 0.007
Tyrosine metabolism rno00350 0.008

Phenylalanine metabolism rno00360 0.012
Pyrimidine metabolism rno00240 0.014

Purine metabolism rno00230 0.015
Bile secretion rno04976 0.016

Taurine and hypotaurine metabolism rno00430 0.016
cAMP signaling pathway rno04024 0.022
Cholesterol metabolism rno04979 0.028

Phospholipase D signaling pathway rno04072 0.032
Thiamine metabolism rno00730 0.033
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4. Discussion

In this study, by combining a population study and an animal experiment, we found
that the intake of different source proteins during pregnancy may affect maternal insulin
resistance. In the population study, plant protein intake was negatively correlated with INS
and HOMA-IR. The animal experiment obtained consistent results with the population
study and showed that the levels of INS and HOMA-IR decreased with the increase in
the proportion of plant protein intake in pregnant rats in late pregnancy, revealing that
the sources of dietary protein affect maternal insulin resistance. Because of the known
progressive increase in insulin resistance and the increased dietary protein requirements
throughout pregnancy, the relationship between dietary protein and insulin resistance dur-
ing pregnancy is important. Therefore, clarifying the relationships between dietary protein
intake and maternal insulin resistance will contribute to understanding the optimal protein
source and requirements for adequate maternal and fetal needs without compromising the
health of the pregnant female or her offspring.

We found that there was a relationship between plant protein intake and insulin re-
sistance in pregnant females, which may reveal the possibility of the association between
plant protein intake and glucose metabolism. Some studies used a model or an intervention
to substitute animal protein with plant protein and reported mitigation of the development
of insulin resistance [37,38], suggesting the beneficial effect of plant protein on pregnant
females. Different from other studies of an increased risk of gestational diabetes mellitus
in the pregnant population and increased insulin resistance in the non-pregnant popula-
tion [24,39,40], this current study did not find any relationship between total protein and
animal protein intake and insulin resistance.

To our knowledge, the only previous study considering the effects of the amount or
source of dietary protein intake on maternal insulin resistance was performed by Allman
and colleagues [41]. Their research was based on 173 pregnant females in late pregnancy
from Arkansas (United States) and found that there was a negative relationship between
total protein and plant protein intake and insulin resistance in females in late pregnancy,
yet no relationship existed between animal protein intake and insulin resistance, partially
validating our findings [41]. Compared with their study, our study is not limited to
pregnant females in late pregnancy and the study subjects selected are more representative;
it is not surprising that fully consistent results were not obtained considering the complex
background of the population.

In population studies, it is often difficult to completely exclude the confounding
effects of different ethnic backgrounds, lifestyles, and underlying disease states on insulin
resistance, and the estimation of dietary intake may also be biased. Although the influence
of total dietary energy intake and demographic factors has been excluded as much as
possible, the current observational study can only find etiological associations, and only
randomized controlled trials can give rigorous etiological inferences. Therefore, animal
experiments were designed to verify the results found in the population study.

In the animal experiment, we found results that were consistent with the population
study; maternal INS and HOMA-IR decreased with the increase in dietary plant protein
intake and proportion. To our knowledge, studies in animals previously were only inter-
ested in the amount of dietary protein [42,43], and no animal studies have investigated
the effect of different dietary protein sources on maternal insulin resistance. Our animal
experiment validated clues found in the population study and further revealed that the
source of dietary protein during pregnancy affected the maternal plasma metabolome,
contributing to clarifying the mechanism of different sources of dietary protein affecting
insulin resistance during pregnancy.

Under a certain amount of total protein intake in our study, the levels of various
metabolites in the plasma of pregnant rats between the 100% plant protein group and the
100% animal protein group were significantly changed, including amino acids and their
derivatives, vitamins and their derivatives, fatty acid derivatives, carboxylic acids, and
other active metabolites. The reduction in BCAAs in the peripheral circulation is thought
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to be associated with a reduction in insulin resistance [44,45]. In this study, we found
that compared with the 100% animal protein group, leucine, which was considered the
most representative amino acid among BCAAs, decreased significantly in the plasma of
the 100% plant protein group, which may be one of the mechanisms by which the intake
of plant protein reduces the maternal insulin resistance. Studies based on non-pregnant
people have found that histidine intake restriction may be associated with a decrease in
insulin resistance [46], and a significant reduction in histidine levels was also found in
the 100% plant protein group. In addition to the above two amino acids, a variety of
other active metabolites may also affect maternal insulin resistance by affecting metabolic
pathways. Among them, the mTOR signaling pathway is an important pathway for the
body’s regulation of anabolic and catabolic processes in response to environmental sig-
nals [47]. In this study, we found that in addition to leucine, the levels of various signaling
molecules such as adenosine diphosphate (AMP), arginine, glutamine, and asparagine
were significantly changed in the mTOR signaling pathway. AMP affected the mTOR
signaling pathway by affecting the activity of AMP-activated protein kinase (AMPK) [48].
Signaling from arginine was transduced to mTORC1 through Rag GTPase [49,50], and
glutamine or asparagine could affect the mTOR signaling pathway independently of Rag
GTPase [51,52]. Changes in the levels of the above active substances may have an impact on
the maternal mTOR signaling pathway, thereby affecting maternal insulin sensitivity. The
FoxO signaling pathway is another important pathway that may affect maternal insulin
resistance, which can affect insulin signal transduction and insulin sensitivity of the body,
and mediate the effects of insulin or insulin-like growth factors on key functions such as
cell metabolism, growth, differentiation, oxidative stress, aging, and autophagy [53]. In
this study, the differential metabolite changes related to the FoxO signaling pathway also
included glutamate and AMP as signaling molecules in the upstream pathway. In addition,
tyrosine and its metabolites can affect the prolactin signaling pathway. Prolactin is a protein
hormone secreted by the pituitary gland with complex biological roles [54]. Changes in the
prolactin signaling pathway may affect maternal hormone secretion and balance, thereby
affecting insulin resistance during pregnancy.

In epidemiological studies, it is always difficult to discuss the health benefits of plant-
based foods separately from plant proteins, and there is also much debate as to whether
the health benefits of plant-based foods stem from their protein content [55]. In this study,
by combining the population study and the animal experiment, we avoid the shortcomings
mentioned before well. In addition, the establishment of animal models also excluded
the confounding of the remaining nutrients in the diet and supplemented the evidence on
long-term dietary intake. Meanwhile, the effect of total energy was well balanced in our
study, making the evidence more credible.

There are several limitations in this study. First, this study only studied the US
population; as we all know, the dietary habits of distinct populations are very different, and
the evidence found in this study should be validated in studies from other regions. Second,
as the limitation of the data source, we were unable to obtain long-term dietary information
for the population; though animal experiments partially make up for this deficiency, long-
term observations of humans in the future would be better. Finally, randomized controlled
dietary interventions can be conducted in populations rather than animals to provide more
convincing evidence.

5. Conclusions

We found a negative association between dietary plant protein intake and maternal
insulin resistance during pregnancy. Different protein intake could induce changes in some
amino acids and other active substances in plasma, as well as related metabolic pathways
such as the mTOR signaling pathway and FoxO signaling pathway, which may affect
maternal insulin resistance.
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