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Abstract: Within the human population, considerable variability exists between individuals in their
susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both
genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model
in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show
large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic
and environmental variation. In the present study, we set out to resolve what mechanisms could
underlie this variation. We used measurements of glucose and lipid metabolism from a six-month
longitudinal study on the development of the metabolic syndrome. Mice were classified as mice
with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at
the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body
glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called
Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts
how the parameters of the model must change through time in order to comply with the data and
model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis
suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid
excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure
could not be confirmed, the experimental validation demonstrated that the non-responders were
indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids
excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play
an important role in the solubilization of lipids in the intestine, these results suggest that variation in
bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice.

Keywords: computational modeling; cholesterol; bile acid; energy expenditure; metabolic syndrome;
triglycerides; APOE3; CETP

1. Introduction

Diets characteristic for Western society have spread across the globe, which together
with the development of a mostly sedentary lifestyle, have led to an increase in the preva-
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lence of cardiovascular risk factors, such as obesity, insulin resistance and hypertriglyc-
eridemia [1]. It is generally assumed that the vast differences in the genetic make-up
between individuals results in some individuals being less prone and some individuals
being more prone to developing these risk factors while being subjected to the same en-
vironment. However, genome-wide association studies have to date only been able to
explain 21% of the variation in body weight [2]. On the other hand, a significant proportion
of the variation in body weight is thought to be due to the variation in environmental
variables, such as diet and physical activity. Because of the extreme number of putative
variables and the complexity of metabolic control, it has been extremely difficult to sort out
the interaction between environmental and genetic factors. Nevertheless, when genes are
the dominant drivers of the metabolic syndrome, one would expect inbred animal models
housed under standardized conditions to show little variation in phenotype when fed a
Western diet. Our recent studies have falsified this hypothesis [3].

Using an apolipoprotein E*3-Leiden (APOE*3Leiden).cholesteryl ester transfer protein
(CETP) mouse model ([4]), we showed a human-like variation in phenotypic (obesogenic)
response when these mice were fed a Western-type diet. This mouse model is heterozygous
for the human APOE*3-Leiden variant, conferring a reduced hepatic uptake of triglyceride-
rich lipoprotein remnants from the circulation. Furthermore, the mouse model is het-
erozygous for human CETP under its endogenous promotor. The combination of these
genes results in a ‘humanized’ lipid metabolism with more cholesterol in apoB-containing
lipoproteins and a relatively low HDL cholesterol level [4].

A striking observation in our previous studies was the major variation in important
parameters of the metabolic syndrome, including body weight, plasma triglyceride and
cholesterol as well as insulin resistance, not only in time, but also amongst individual
mice [3]. Given the fact that the mice are inbred and maintained under identical conditions,
this model seems promising to elucidate the mechanism underlying the observed pheno-
typic variation. Instead of using the usual gene-focused mechanism, we reasoned that,
whatever the major source of variation in these animals, the effect must take place through
processes involved in energy metabolism. To help us direct our search, we made use of
a mixed approach in which computational modeling exploited experimentally obtained
longitudinal data to identify the processes most likely involved in explaining the pheno-
typic differences [5]. Recently, we have published an ordinary differential equation based a
computational model called Model INtegrating GLucose and Lipid Dynamics (MINGLeD),
which encompasses the main metabolic pathways involved in energy metabolism [6]. In
the current study, we concentrated on plasma triglyceride in combination with obesity
and used MINGLeD to analyse which processes are altered during the progression of the
metabolic syndrome in male APOE*3-Leiden.CETP mice on a high-fat diet.

2. Methods
2.1. Animals, Diet and Housing

Experimental conditions have been described previously ([3]). In brief, male APOE*3-
Leiden.CETP mice were housed individually and fed a synthetic high-fat and -cholesterol diet
(HFCD) containing 60% of energy from fat and 0.25% of weight from cholesterol (D12429,
Research Diets) in a light- (lights on 7:00 a.m.–7:00 p.m.) and temperature-controlled (21 ◦C)
facility. At the start of the experimental period, the mice were at the age of 4 months. Prior
to the start of the experimental period, mice were co-housed with siblings and fed chow
ad libitum. At least one week prior to the start of the experiment, animals were housed
individually to acclimatize. Experimental procedures were approved by the Ethics Committees
for Animal Experiments of the University of Groningen (Protocol Code 6903).

2.2. Experimental Setup

As previously described [3], four groups of mice were fed HFCDs ad libitum for
4 (n = 20), 9 (n = 19), 13 (n = 20) and 28 weeks (n = 30), respectively. At the end of the
dietary intervention, mice in the respective cohorts were distributed over two groups, to
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either measure VLDL-TG production or to measure hepatic de novo lipogenesis, measure
bile production and collect tissues. In addition, a cohort (n = 16) was used to measure
endogenous glucose production at weeks 3, 9, 15 and 27 and energy expenditure at weeks
1 and 19. In all groups, blood samples were obtained by tail bleeding at 4- to 6-week
intervals, to determine plasma TG, plasma total cholesterol (TC), HDL-C and glucose [3]. In
addition, 24 h feces were collected from all groups at 4- to 6-week intervals. Plasma bile acid
concentrations were determined by liquid chromatography–tandem mass spectrometry
(LC–MS/MS). For quantification, internal standard solution containing D4-cholate, D4-
chenodeoxycholate, D4-glycocholate, D4-taurocholate, D4-glycochenodeoxycholate and
D4-taurochenodeoxycholate was added to the plasma. Bile salt composition of prepared
fecal samples was determined by capillary gas chromatography on an Agilent gas chro-
matograph (HP 6890). All flux measurements and blood sample collections were started at
1 PM under fasting conditions, with food removed at 9 AM.

2.3. The ADAPT Method

ADAPT is a hybrid modelling method combining data assimilation and machine
learning to discover differential equations describing the long-term dynamics of a diet
intervention. ADAPT separates the multiscale behavior of metabolic physiology in time.
The fast metabolic dynamics (minutes to hours, for example, associated with food intake)
are decoupled from the slow dynamics (weeks to months) related to long-term, high-fat
and high-cholesterol diet feeding. ADAPT starts from measurements taken at the fast
time scale; the slow scale system can be assumed to be in steady state. ADAPT first takes
a longitudinal data set and fits a series of polynomial curves and data splines through
points sampled from the normal distribution of the data at the respective time points [7].
Subsequently, ADAPT minimizes the error between the model output and the data splines
from time point to time point using a least-squares algorithm. Since a penalty is put on
changes in the parameter values, the algorithm favors gradual changes in parameters
through time over abrupt changes. By studying predicted changes in parameters that were
not constrained, ADAPT may assist in identifying processes that are likely to be changed
as well, and thus may play an important role in explaining the phenomenon of interest.
For the current work, we used 200 time steps and applied a regularization parameter (λ) of
0.01. Further details on how we arrived at the settings used for ADAPT are described in
Supplemental S1 (Figures S1 and S2).

2.4. Experimental Data and Modeling Constraints

The experimental data have been described in detail previously [3]. Some parameters
for the assessment of VLDL-TG production, de novo lipogenesis, biliary sterol secretion
and liver lipids were obtained cross-sectionally. The number of non-responders in the
VLDL-TG production cohort (n = 2, n = 0, n = 0, n = 4) and in the cohort undergoing bile
cannulation (n = 3, n = 1, n = 1, n = 3) for the respective time points of 4, 9, 13 and 28 weeks
were too small for reliable differentiation with the responders (n = 8, n = 9, n = 9, n = 13
and n = 7, n = 9, n = 8, n = 14) in the respective cohorts. Therefore, while constraints for
food intake, body weight, plasma parameters and fecal samples were directly taken from
the data of responders and non-responders, constraints for liver lipids, biliary secretion,
hepatic de novo lipogenesis and VLDL-TG production were taken as group averages and
therefore were the same for responder and non-responder groups. Further details as to how
experimental data were translated to model constraints may be found in Supplemental S2.

2.5. Choices Concerning Model Design

We designed a model that includes all fluxes relevant for whole body fat and choles-
terol metabolism. Overall, the computational model may be described as a three-link
chain in which the metabolic network within a module is more connected than the number
of interactions between modules (Figure 1). The model was named Model INtegrating
GLucose and Lipid Dynamics (MINGLeD), emphasizing that we have both glucose and
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lipid metabolism integrated into one model [6]. In general, we considered reactions to
be first order. ADAPT uses a data-driven approach to discover a dynamic model. The
rate equations reflect the pathway/network structure (connectivity) and stoichiometry
and are not based on actual enzyme kinetics. The data-based constraints are used, since
ADAPT will change the parameter values to comply with the constraints regardless of
the rate equation. All model equations may be found in the Supplemental Information
(Supplemental S3). We highlight some of the relations here because they require explana-
tion. The rate equation for CETP (j34 in Figure 1) was chosen to be dependent on plasma
triglyceride concentration, since this is generally considered to be the driver behind CETP
action [8]. The trans-intestinal cholesterol excretion (TICE) rate equation (j37 in Figure 1)
was chosen to be dependent on the VLDL-C pool. TICE is the flux of cholesterol that enters
the intestine directly from the plasma. The plasma compartments contributing to TICE are
not completely clear, and may be both coming from apoB-containing lipoproteins as well as
from erythrocytes. Therefore, it was decided to make it dependent on VLDL-C only, since
erythrocytes were out of the scope of this study [9].
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Figure 1. Schematic of the MINGLeD model. The MINGLeD model consists of four compartments
(liver, plasma, periphery and intestinal lumen), 18 states and 41 fluxes. Food intake is modeled as
glucose entering the plasma (j1), triglyceride (TG, j11) and cholesterol (C, j24) entering the intestinal
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lumen, whereas amino acids from protein are distributed to liver and periphery at the level of
glucose-6-phosphate (G6P, gluconeogenic) or acetyl-CoA (AcoA, ketogenic) (j6, j7, j8, j9). Glucose
in the plasma is absorbed by liver (j2) and periphery (j3) to enter the Krebs cycle (j16, j17) or to be
used for biosynthetic processes, such as de novo lipogenesis (j19) or cholesterol (j26, j29) and bile
acid synthesis (j30). TG from the intestinal lumen can be absorbed by the liver (j12) or periphery (j13)
and be used for beta-oxidation (j14, j15) or redistribution as VLDL (j20) or free fatty acids (FFA, j22).
Absorbed dietary cholesterol first enters the liver (j41) where it can be used for bile acid synthesis
(j30) or redistributed to the periphery in the form of VLDL-C (j33, j13). Peripheral cholesterol pools
can return to the liver through HDL-C (j31, j32) or VLDL-C after action of cholesteryl ester transfer
protein (j34, j12). Cholesterol can be cleared from the body through biliary cholesterol secretion (j37)
or trans-intestinal cholesterol secretion (j35).

2.6. Validation Experiment

In two institutions (UMCG and LUMC), 13 male APOE*3-L.CETP mice were fed
the same HFCD with 60% of energy from fat and 0.25% of weight from cholesterol for
8 weeks and fractional cholesterol absorption was measured as described previously [10].
Animal experiments were approved by the responsible ethics committees. Fecal FFAs were
measured as described previously [11].

3. Results
3.1. Stratification to Responder and Non-Responder Phenotypes

We have shown previously that the APOE*3L.CETP mice show great variability in
response to treatments with an HFCD [3]. Data on basic parameters, such as body weight
and food intake, are presented in [3]. To be able to differentiate the response of the mice
to the HFCD, we stratified the individual mice into the responder and non-responder
groups by classifying the animals with a plasma TG < 1.0 mM at the baseline (chow diet)
as non-responders. Since non-responders have lower body weights, this also selected
mice with lower body weights. This stratification procedure yielded 36 responders and
11 non-responders. As shown in Figure 2, the plasma TG in the non-responding group
remained low during the full course of the experiment. In contrast, the plasma TG in the
responding mice started to increase at week 4, reached a maximum at week 20 and then
decreased sharply to reach a new steady state at week 24. The responding group showed a
similar response in the plasma total cholesterol (TC) levels. Interestingly, much less of a
difference was observed in the peripheral fat content as well as the plasma HDL-C levels.
In agreement with the observed differences in plasma TG and body weight, insulin levels
were lower in non-responders as well. (Figures S3 and S4).

3.2. Application of ADAPT

To address the question which processes are responsible for the observed kinetics
in Figure 2, we used the newly developed MINGLeD model of lipid and carbohydrate
metabolism [6]. The model contains 18 state variables, 39 parameters and 41 fluxes. In
order to find the underlying mechanisms by which the differences between the responders
and non-responders can be explained, ADAPT was applied to the MINGLeD model. As
depicted in Figure 2, Figures S5 and S6, the modeling is able to describe the complex
evolution in the measured parameters involved in lipid, glucose and energy metabolism.
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Figure 2. Plasma TG (A) and peripheral fat (Per. TG (B)), plasma total cholesterol (TC) (C), HDL
cholesterol (HDLC) (D), fecal neutral sterol secretion (E) (Fec. NS Secr) and fecal bile acid secretion
(F) (Fec. BA Secr) for responders (RESP) and non-responders (NONRESP), respectively, with their
respective fits in the ADAPT model simulation. Note that non-responders are marked by lower
plasma TG and less peripheral fat. Error bars represent data with standard deviation, bold lines
represent the median solution of all ADAPT simulations and the areas represent 30% around the
median solution.
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3.3. ADAPT Predicts Decreased Cholesterol Absorption for Non-Responders

Since non-responders presented with both lower plasma cholesterol values and a
higher level of fecal sterol excretion (Figure 2), we inspected which fluxes ADAPT predicted
pertaining to cholesterol homeostasis. We then found that ADAPT predicted slightly lower
cholesterol absorption for non-responders as compared to responders (Figure 3A), which
makes sense in light of the higher observed level of fecal cholesterol excretion and lower
plasma TC for the non-responders. While cholesterol synthesis is expected to be decreased
with increases in cholesterol absorption [12], no differences in prediction were found for de
novo hepatic or peripheral cholesterol syntheses (data not shown).
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Figure 3. Cholesterol absorption (Chol. Abs.) as predicted by ADAPT (A) for responders (RESP)
and non-responders (NONRESP); note that ADAPT predicts lower level of cholesterol absorption
for non-responders. Fractional cholesterol absorption (B) in two cohorts (black and blue) of mice
after 8 weeks of HFCD. Note there is no correlation between fractional cholesterol absorption and
plasma TG.

3.4. Validation Experiment of Decreased Cholesterol Absorption

Since ADAPT predicted a lower level of cholesterol absorption in the non-responders
compared to responders, we performed a validation experiment in which we measured the
cholesterol absorption after feeding the APOE*3-Leiden.CETP mice HFCDs for eight weeks.
We reasoned that if the prediction of ADAPT was correct, we would find a positive corre-
lation between the cholesterol absorption and plasma TG. To make sure any effect found
would not be site- or cohort-dependent, two independent experiments were performed
with different cohorts of mice at two different facilities. As depicted in Figure 3B, this
prediction was falsified; no correlation between the cholesterol absorption and plasma TG
levels was observed. Furthermore, there was no clear negative correlation between plasma
TG and fecal neutral sterol excretion (Figure S7). These findings indicate that cholesterol
absorption is not consistently decreased in the non-responder animals.

3.5. ADAPT Predicts Higher Glucose Oxidation Rates in Non-responders

Next, we looked for parameter and flux trajectories that may explain the lower body
weight observed in the non-responders compared to responders (Figures 2 and S3). Since
body weight is the result of the balance between energy absorption and expenditure, any dif-
ferences must be explained by either. Looking at energy expenditure, we found that ADAPT
predicted that non-responders would have higher glucose oxidation rates, while the fat
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oxidation rates were predicted to be equal between the two groups (Figure 4A,B). This
model prediction implies both a higher total energy expenditure for the non-responders,
and more glucose stored as fat and enhanced peripheral de novo lipogenesis in the re-
sponders. Indeed, if we look at the flux trajectories for these processes, we see that this is
also predicted (Figure S8). Since we had put mice in metabolic cages that were monitored
at least during the initial period of the experiment, we could compare how the energy
expenditure as measured by indirect calorimetry was connected to having a responder or
non-responder status. Interestingly, we observed no difference in the energy expenditure
between the groups (Figure 4C,D). Of note, even when adjusting for body weight [13],
the non-responder animals had a near-average energy expenditure compared to that of
the responders.
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Figure 4. Predictions for glucose oxidation (Gluc. Ox.) (A) and fat oxidation (Fat Ox.) rate (B) in
responders and non-responders, respectively. The line represents the median values, whereas the area
around the line denotes 30% of solutions around the median. Energy expenditure (C) and respiratory
exchange ratio (RER) (D) for animals after 1 and 19 weeks of HFCDs. Note how the non-responders
(blue) are not necessarily marked by increased energy expenditure.

3.6. ADAPT Predicts Lower Fat Absorption in Non-responders

Interestingly, we found that ADAPT predicted a higher level of fat excretion in the
non-responders (Figure 5C). This was further highlighted by predictions of a higher TG
content in the intestinal lumen and lower parameter values for fat absorption (Figure 5B,D).
This prediction was validated by measuring the amount of fatty acids (FFA) still contained
in the feces. The FFA content in the feces from the non-responders was indeed higher than
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that of the responders, suggesting impaired fat absorption in these mice (Figure 6A). While
the cumulative fecal fat excretion was significantly different between the groups, not all
the non-responders presented with an increased level of fecal FFA excretion, suggesting
that, in these animals, the plasma TG is low for another reason. Interestingly, the fecal FFA
excretion also negatively correlated with the body weight and plasma TG (Figure 6E,F).
However, the correlation between the body weight and fecal FFA excretion was much more
evident than that for the plasma TG, whose additional variation obviously must be from
another factor.
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Figure 5. Predictions for fat absorption (Fat Abs.) (A), fat absorption rate (Fat Abs. Rate) (B), fecal fat
excretion (Fat Exc.) (C) and intestinal lumen fat content (Lum. TG) (D) in responders (RESP) and
non-responders (NONRESP), respectively. The bold line represents the median values, whereas the
area around the line denotes 30% of solutions around the median. Note how the fat absorption rate is
predicted to be slower, while fat excretion and intestinal fat content are predicted to be increased in
non-responders.
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3.7. Decreased Fat Absorption Is Associated with a Lower Hydrophobicity Index of Fecal Bile Acids

Since cholesterol absorption and fat absorption are more promoted by hydrophobic
than hydrophilic bile acids [13–15], we compared the bile acid composition profiles in the
feces, plasma and bile between the responders and non-responders. We reasoned that the
higher observed level of fecal FFA excretion may be related to the hydrophobicity of bile
acids. Indeed, regardless of responder or non-responder statuses, the hydrophobicity index
of the fecal bile acids was correlated with the fecal FFA excretion (Figure 6C). Furthermore,
the fecal hydrophobicity index was positively associated with the fecal bile acid excretion
as well. In fact, we found fecal FFA excretion to be more strongly correlated with fecal bile
acid excretion than with the hydrophobicity index (Figure 6D). Interestingly, we found that
the fecal deoxycholic acid was especially highly correlated with the fecal FFA (Figure S9).
Surprisingly, comparing the biliary bile acid profiles of the responders from all time points
with those of the non-responders, neither a difference in the total biliary bile acid secretion
nor in the individual bile acids was found (Figures S10–S13). However, there was a
trend of a lower hydrophobicity index of the biliary bile acids for the non-responders
(p = 0.12). Interestingly, when only the biliary bile acid profiles of the first three months
were compared, when the level of fat excretion was the highest, the hydrophobicity index
of the biliary bile acids was indeed lower in the non-responders (p = 0.001). Moreover, the
mice with low plasma TG, in which the fractional cholesterol absorption was measured after
eight weeks of the HFCDs, also showed biliary bile acid profiles with lower hydrophobic
indexes than those with higher plasma TG (p = 0.01). Furthermore, both cholic acid- and
chenodeoxycholic acid-derived bile acids were higher in the plasma of the non-responders
(Figures S14–S16). Together, these data suggest that the difference in the fecal FFA excretion
in non-responders is driven by changes in the bile acid metabolism.

4. Discussion

The major result of this study is that by using the computational modeling method
ADAPT, it is possible to analyze in detail the pathways that induce the progression of
comorbidities in complex diseases. In this study, we applied the method to explain the
phenotypic variation induced by long-term HFCDs in APOE*3-Leiden.CETP mice. The
application of ADAPT for adjusting parameters in the MINGleD model allowed an accurate
modelling of the phenotypic changes in long-term experiments. The ADAPT analysis
suggested different pathways, such as decreased cholesterol absorption, increased energy
expenditure and an increased level of fecal fat excretion to explain the phenotypic variability
in body, hepatic and plasma TG. Subsequent validation experiments failed to confirm a
decreased cholesterol absorption and an increased energy expenditure to explain the lack
of response in a subset of the mice. In contrast, an increased level of fecal fat excretion in
the non-responders could be confirmed. Furthermore, we found that the increased level
of fecal fat excretion was associated with a decreased level of fecal bile acid excretion,
suggesting that a decrease in bile acid production may, at least in part, drive the lower body
weight and plasma TG in non-responders. A similar relation between deoxycholic acid and
body weight loss was reported by [16] However, they observed the interaction of intestinal
fat with GPR119, causing an increased satiety signal. In our study, we did not observe a
decreased level of food intake in the non-responder mice.

4.1. Hybrid Modeling Using ADAPT

ADAPT is a hybrid modelling method that employs the power of data-driven and
mechanistic modelling techniques to estimate the long-term dynamics of metabolic phys-
iology. ADAPT uses concepts somewhat similar to physics-informed neural networks
(PINNs) and other data assimilation methods emerging in cardiovascular modeling [17].
The network structure of the metabolic system imposes strong constraints on the solution
space of the mathematical model, which ADAPT combines into equations for kinetics and
fluxes with time-series data. The trade-off between the bias variance is controlled by the
hyperparameter λ. Lambda was tuned to provide enough flexibility to discover possible
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explanations underlying the phenotype heterogeneity in APOE*3-Leiden.CETP mice in-
duced by long-term HFCDs (Supplemental S1). For higher values of λ, the fluctuations
in the model dynamics could be dampened, but with too high values of λ, the goodness
of fit decreases and a bias emerges. The stochastic data model and spline interpolation to
take into account experimental and biological uncertainties also contribute to the variation
in model predictions. Other types of data, e.g., transcriptomics, can also be included
in ADAPT to further constrain the model predictions. Gene expression data have been
incorporated by expanding the regularization function in ADAPT [18].

4.2. Fat Absorption and Energy Expenditure

In line with the major impact of fat absorption in the model, we found that the non-
responders are marked by an increased level of fecal fat excretion. However, while the
cumulative fat excretion varied between 0.5 and 5 g, the body weight difference amounted
up to 36 g, and is thus roughly ten times as large. This indicates that any differences
in absorption must be accompanied by a difference in energy expenditure. In fact, we
predicted that the energy expenditure in the non-responders is increased compared to the
responders, which ADAPT mainly attributed to a difference in glucose oxidation. Indirect
calorimetry, however, showed no statistical significant differences in the respiratory ratio
(RER) or increases in energy expenditure. Our results are in agreement with findings of
Tarasco et al., who failed to find differences in energy expenditure between responder and
non-responder APOE*3-Leiden.CETP mice as well [19].

A possible explanation is that indirect calorimetry may not be sensitive enough to
detect the difference in energy expenditure between the responders and non-responders.
The mean difference in the weight increase between non-responders and responders in the
first 12 weeks was 5 g. This difference in weight would amount to an energy imbalance,
presuming the weight difference is on account of fat (0.6 kcal/day), which, assuming a daily
energy expenditure of 12 kcal/day, would be 5% of the energy expenditure. Coincidentally,
5% of the energy expenditure is about the threshold to detect differences in energy expen-
diture using indirect calorimetry [20,21]. Furthermore, while a two-fold higher glucose
oxidation rate was predicted for the non-responders compared to the responders, the RER
data from the non-responders are not in agreement with this prediction. However, it should
also be considered that, given the number of responders and non-responders and the
expected difference in RER if the glucose utilization was 10% for the responders and 20%
for the non-responders, the power to detect this difference would be less than 50%. All in
all, despite a lack of observed differences using indirect calorimetry, the non-responders
likely have an increased level of energy expenditure in addition to a decreased level of
fat absorption.

It is tempting to speculate that a decrease in fat absorption also leads to a higher
level of energy expenditure. While the mechanism behind this is unclear, it has been
proposed that this effect may be due to a shift towards absorption more distally in the small
intestine, leading to less chylomicron production and with a smaller size. These smaller
chylomicrons are then believed to tip the scale more towards utilization than storage,
explaining the higher energy expenditure [22]. In humans, bariatric surgery also leads
to increased nutrient availability in the distal small intestine. The weight loss associated
with bariatric surgery, however, is neither due to the increased energy expenditure nor
malabsorption per se, but attributable to the decrease in food intake in response to the
increased production of incretins, such as GLP-1 [23,24]. Since in this study no decrease in
food intake was observed (Figure S5), such a mechanism is likely not relevant here.

4.3. Bile Acid Metabolism

An important result of this study was that apart from the tight association in male
APOE*3-Leiden.CETP mice between body weight and fecal fat excretion, there is also a
tight connection between fecal fat excretion and bile acid metabolism. However, what
drives the observed differences in bile acid homeostasis remains unclear. Tarasco et al.
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reported that the livers of non-responder APOE*3-Leiden.CETP mice were found to have
more inflammation and less steatosis, and occasionally formed neoplasms [19]. In the
current study, though no significantly increased inflammation was found, we did observe
less steatosis in non-responder mice, and found (pre)neoplastic deformations in two out of
the nine non-responder mice whose histology was available. However, the difference in the
response to the HFCDs was present from the moment the TG levels rose in the responding
mice, probably in part caused by the difference in bile acid excretion which was much lower
in the non-responding mice (Figure 2) at the onset of the experiments. Together this makes
liver injury as an explanation for the difference in bile acid homeostasis not very likely. We
conclude that the altered fecal bile acid profile and concurrent changes in the fat uptake
dynamics may contribute substantially to the observed decrease in the plasma lipids and
the lower body weight found in the non-responders. While the correlation between the fecal
deoxycholic acid level and body weight was strong, it should be noted that deoxycholic
acid is mainly produced in the colon and is therefore not likely to significantly contribute
to fat uptake in the small intestine. Rather, fecal deoxycholic acid is likely a sensitive
marker for the availability of cholic acid in the small intestine, through the interaction
with the microbiome [25,26]. Cholic acid in the small intestine then drives the observed fat
uptake dynamics. The question arises whether our results in a mouse with a humanized
lipid profile can be translated to development of the metabolic syndrome in humans. The
efficiency of fat absorption in humans is comparable to that in mice, hence a small decrease
may also substantially affect the progression of obesity in humans. Although bile acid
homeostasis differs substantially between mice and humans, in both species the level of
the excretion of deoxycholic acid is high, hence similar mechanisms could play a role. The
pharmacological perturbation of bile acid metabolism may prove successful in combating
obesity and dyslipidemia in humans.

5. Conclusions

This study demonstrates how a systems analysis may be used to explore heterogeneity
in the propensity to develop the metabolic syndrome. Using ADAPT, we show that there
is increased level of fecal fat excretion and that there must be an increased level of energy
expenditure in APOE*3-Leiden.CETP-mice that do not respond to a HFCD. Finally, we
show that these differences appear to be coupled to a decreased production of bile acids
and a decrease in the fecal excretion of deoxycholic acid. Further studies should address
whether similar mechanisms may be responsible for the differences in susceptibility in
developing dyslipidemia and obesity in the human population.
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scale); Figure S2: The Data fit error and regularization error for different amount of time steps;
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