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Abstract: Consumption of coffee has benefits in postoperative ileus. We tested the hypothesis that
the benefits may be related to the effects of coffee on gut microbiota and motility and studied the
mechanisms of action in rats. The in vitro and in vivo effects of regular and decaffeinated (decaf)
coffee on gut microbiota of the ileum and colon were determined by bacterial culture and quantitative
RT-PCR. Ileal and colonic smooth muscle contractility was determined in a muscle bath. In the in vivo
studies, coffee solution (1 g/kg) was administered by oral gavage daily for 3 days. Compared to
regular LB agar, the growth of microbiota in the colon and ileal contents was significantly suppressed
in LB agar containing coffee or decaf (1.5% or 3%). Treatment with coffee or decaf in vivo for
3 days suppressed gut microbiota but did not significantly affect gut motility or smooth muscle
contractility. However, coffee or decaf dose-dependently caused ileal and colonic muscle contractions
in vitro. A mechanistic study found that compound(s) other than caffeine contracted gut smooth
muscle in a muscarinic receptor-dependent manner. In conclusion, coffee stimulates gut smooth
muscle contractions via a muscarinic receptor-dependent mechanism and inhibits microbiota in a
caffeine-independent manner.

Keywords: coffee; small intestine; colon; microbiota; motility; smooth muscle

1. Introduction

Coffee is one of the most popular beverages in the world. Current evidence suggests
that it has health benefits in conditions such as cardiovascular diseases (i.e., stroke) [1],
Parkinson’s disease [2], metabolic disorders (i.e., Type 2 diabetes) [3], and liver diseases
(i.e., non-alcoholic fatty liver disease) [4]. However, the effects of coffee on the gastroin-
testinal tract (GI) have not been well investigated. Nevertheless, population-based studies
found that consumption of coffee is inversely associated with the prevalence of consti-
pation [5,6]. While postoperative ileus is a common condition after abdominal surgeries,
recent clinical trials found that postoperative coffee consumption, regardless of caffeine con-
tent, reduces the time to first defecation, and reduces the incidence of post-operative ileus
and the length of stay in hospital [7–10]. Some studies suggest that coffee may also exert a
protective effect concerning colon cancer [11]. These clinical observations and population-
based studies have demonstrated potential benefits of coffee on digestive health. However,
what accounts for the benefits of coffee in the GI tract is poorly understood.

The GI tract represents one of the largest interfaces (250–400 m2) between the host
and environment and is the home of 1014 microorganisms, collectively microbiota [12].
Gut microbiota are proposed to play a critical role in host health. On one hand, many
commensal bacteria such as Firmicutes and Lactobacillus are considered as probiotics as
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their presence in the gut are beneficial to the host [13,14]. On the other hand, some of
the microbiota such as Gamma proteobacteria and Enterobacteriaceae may impose a threat
on gut integrity or even play a pathogenic role in gut inflammation and infections [15,16].
When the host consumes coffee, the gut microbiota is among the first to be exposed to it.
Unfortunately, the effect of coffee on the gut microbiota has not been well characterized.
Jaquet et al. reported [17] that coffee promoted the growth of certain select bacteria species.
However, Nakayama et al. [18] found that coffee may exert antibiotic effects, especially
towards E. coli. There are also reports that fecal bacteria were not affected by coffee con-
sumption [19]. Overall, there is a lack of data concerning the effect of coffee on microbiota
as a whole and different groups of potential pathogenic and beneficial bacteria in the gut.
As gut microbiota in different parts of the GI tract may have very different functions, the
in vivo effect of coffee on the small intestine and colon has not been studied comparatively.
It is therefore important to study the effect of coffee on the gut microbiota and determine
the in vitro as well as in vivo effects of coffee on total microbiota and different groups of
microbes in the small intestine and colon.

Gut motility is crucial to digestive health and homeostasis in the GI tract. Although
the autonomic nervous system (mainly the parasympathetic nervous system) is involved
in the extrinsic control of gut motility, it is the intrinsic enteric nervous system (ENS) that
directly controls gut smooth muscle cells to fulfill the motility function in the gut [20,21].
Earlier manometry studies found that colonic motility was significantly increased in the
first 30 min after consuming coffee [22,23]. These in vivo studies focused on the effect
of coffee on colon motility. However, the mechanism of action of coffee on gut motility,
and whether coffee also has pro-motility properties in the small intestine are not known.
These questions are important, as recent clinical observations found that drinking coffee is
beneficial for post-operative ileus [7,10], which is a condition largely affecting the small
intestine. A better understanding of the mechanism of action of coffee on gut motility may
help develop coffee or its components as therapeutics [24,25] for motility disorders such as
ileus and constipation.

We hypothesized that the benefits of coffee in conditions such as constipation, postop-
erative ileus, and even colorectal cancer may be related to its effects on the gut microbiota
and gut motility, two important contributors to maintaining gut homeostasis. We thus
undertook a laboratory investigation into the in vitro and in vivo effects of coffee on the
gut microbiota and smooth muscle contractility in rats. We also aimed to understand the
mechanisms of the effects. Part of the results were presented earlier in an abstract form [26].

2. Materials and Methods
2.1. Preparation of Coffee Solution

The coffee solution was prepared by dissolving 100% Arabica coffee powder (Starbucks
Corporation, Seattle, WA, USA) in hot water, as described previously [18]. Briefly, boiling
water was added to regular or decaffeinated coffee powder (14 mL water for 1 g of coffee
powder). The coffee extract solution was mixed well and incubated at room temperature
for 15 min. After incubation, the coffee extract solution was centrifuged at 3000 g for 10 min.
The supernatant was taken and filtered through a 0.45-µm filter. The filtered coffee solution
was used freshly or kept at 4 ◦C for no more than 3 days. Decaffeinated coffee solution
was also prepared in the same way but using 100% Arabica decaffeinated coffee powder
(Starbucks Corporation, Seattle, WA, USA).

2.2. Preparations of Intraluminal Fecal Contents and In Vitro Bacteria Growth Assay

Intraluminal fecal pellets were obtained aseptically from naïve Sprague-Dawley rats
(male and female) of 230~280 g. In brief, rats were euthanized with CO2, and a laparotomy
was operated. The distal ileum (5 cm from the ileal-colon junction) and distal colon (3 cm
from the anus) were isolated and opened. Fecal contents were obtained under aseptic
operation and transferred to pre-weighed sterile tubes [27]. The sample tubes were kept on
ice throughout the procedure. The fecal contents were weighed and mixed well with sterile
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1 mL PBS solution (Sigma-Aldrich, St. Louis, MO) and homogenized using a microtube
homogenizer (Bel-Art, Wayne, NJ, USA). After homogenization, samples were incubated
on ice for 30 min and spun down at 1200 rpm for 3 min. The supernatant collected was
used for in vitro bacterial growth inhibition assays.

In the bacterial growth inhibition assay [18], serial dilutions of the supernatant from
intraluminal fecal contents isolated from the ileum and colon were plated on regular LB
agar and LB agar containing 1.5% or 3.0% (mg/100 mL) coffee. The agar was kept at 37 ◦C
for 24 h. After the incubation, the bacterial colonies on the regular LB agar and coffee-
contained LB agar were counted by two independent investigators, and colony forming
units (CFUs)/gram sample were calculated.

2.3. Oral Gavage Treatment of Rats with Coffee Solution and Fecal and Tissue Preparations

Sprague-Dawley rats (male and female) of 230~280 g (Harlan Sprague Dawley, Indi-
anapolis, IN, USA) were used for the study. The rats were housed in a single cage per rat in
a controlled environment (22 ◦C, 12-h light-dark cycle) and always allowed food and water
ad libitum unless stated otherwise. The Institutional Animal Care and Use Committee at
the University of Texas Medical Branch approved all procedures performed on the animals.
All of the experimental methods were performed in accordance with the Guide for the Care
and Use of Laboratory Animals of the National Institutes of Health, USA.

Rats were randomly assigned into 3 groups, i.e., the vehicle control (Ctr), regular
coffee (Coff), and decaffeinated coffee (Decaf) groups. Rats were administered (by oral
gavage) [26,28] with distilled water (2 mL), regular coffee (1 g/kg in 2 mL of water), and
decaffeinated coffee solution (1 g/kg in 2 mL of water), respectively, daily for 3 consecutive
days. At the end of the experimental period, the rats were euthanized. The ileum and colon
were opened. The fecal contents of the ileum and colon were collected for microbiology
and qPCR studies [27,29,30]. The ileal and colon tissues were taken for measurements of
gut smooth muscle contractility [21].

2.4. Total (Anaerobic and Aerobic) Bacterial Culture from the Colon and Ileum Contents

The total bacterial abundance was quantified by culturing both anaerobic and aerobic
bacteria as described previously [26,27,31]. Gifu anaerobic media (GAM) (HIMEDIA, West
Chester, PA, USA) and tryptic soy agar (TSA) plates (Difco, BD, Franklin Lakes, NJ, USA)
were prepared as described by the manufacturer and stored at 4 ◦C until use. Fecal samples
were collected from the ilium and colon aseptically and were weighed and homogenized
immediately in GAM broth by vortexing and using a micro tube homoginizer (Bel-Art,
Wayne, NJ, USA). After homogenization, the contents were incubated on ice for 30 min and
centrifuged at 1200 rpm for 3 min. Serial dilutions of the supernatant collected were plated
on GAM agar plates for enumeration of anaerobic bacteria. Serial dilutions were also plated
on TSA plates to quantify aerobic and facultative bacteria. GAM plates were incubated in
anaerobic jars containing anaerogen bags (Sigma, St. Louis, MO, USA), whereas TSA plates
were incubated in 5% CO2 at 37 ◦C for 24 h. The next day, CFU/gram samples taken were
calculated by counting visible bacterial colonies.

2.5. Genomic DNA Extraction and Quantitative RT-PCR Study of Gut Microbiota Abundance

Total genomic DNA was isolated from pre-weighed colon and ilium contents using a
QIAGEN stool mini kit according to the manufacturer’s instruction for bacterial DNA isola-
tion. Total bacterial abundance in colon and ilium contents was calculated by absolute quan-
tification of 16S rRNA copies using RT-PCR as described previously [26,27,29,30]. Briefly,
16S rRNA regions were amplified by taking 0.4 µL feces DNA as template, 25 pmol/µL
specific primers [UniF: GTGCTGCATGGTCGTCGTCA; UniR: ACGTCGTCCACACCTTC-
CTC [32] and 1X power SYBR green master mix (Applied Biosystems, Foster City, CA,
USA) in 20 µL final reaction volume. All of the PCRs were done in duplicates in a StepOne
plus Real-time PCR system (Applied Biosystems, Foster City, CA, USA) [27,29,30]. The
PCR conditions were as below: 95 ◦C for 10 min, followed by 40 cycles at 95 ◦C for 30 s,
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60 ◦C for 30 s and 72 ◦C for 45 s. A melting curve analysis was carried out at the end.
The standard curve for 16S rRNA quantification was generated by the serial dilution of
pJet plasmid (Invitrogen, Waltham, MA, USA) containing 16S rRNA target sequence from
E. coli (DH10B) [27]. The total bacterial 16S rRNA gene copy numbers/mg of sample was
calculated using the following equation: total copy numbers/mg = [mean copy numbers
from standard curve X volume of DNA taken (µL)]/[total volume of extracted DNA (µL) X
mg of sample used for DNA isolation).

For relative quantification of different classes of bacteria in the ilium and colon contents,
below class specific primers were used. Enterobacteriaceae: Eco1457F–CATTGACGTTACCCG
CAGAAGAAGC, Eco1652R–CTCTACGAGACTCAAGCTTGC (Tm = 61 ◦C) [33]; Gamma
proteobacteria: Gamma395f–CCATGCCGCGTGTGTGAA, Gamma871r-ACTCCCCAGGCG
GTCTACTTA (Tm = 56 ◦C) [34]; Lactobacillus: F_alllact_IS–TGGATGCCTTGGCACTAGGA,
R_alllact_IS–AAATCTCCGGATCAAAGCTTACTTAT (Tm = 58 ◦C) [35]; Firmicutes: S-
P-Firm-0352–CAGCAGTAGGGAATCTTC, S-P-Firm-0525–ACCTACGTATTACCGCGG
(Tm = 57 ◦C) [36]. 16S rRNA copies were quantified using UniF and UniR primers as above
and used as a reference gene for relative quantification. The reaction consisted of 0.4 µL
feces DNA as template, 25 pmol/µL specific primers and 1X power SYBR green master mix
(Applied Biosystems, Foster City, CA, USA) in 20 µL reaction. The PCR conditions were
95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 30 s, annealing for 30 s at respective
Tm and 72 ◦C for 45 s. A melting curve analysis was carried out at the end. All of the
PCR reactions were done in duplicates in a StepOne plus Real-time PCR system (Applied
Biosystems, Foster City, CA, USA) using a temperature gradient block that enabled the
use of different annealing temperatures for every primer set. Results are expressed as
fold-change in the abundance of different classes of bacteria compared to the total bacterial
abundance (16S rRNA copies) and were calculated using the ∆∆CT method.

2.6. In Vivo Gut Motility Study

Colonic propulsive motility was measured as described previously [37,38]. Rats treated
with saline, regular coffee and decaffeinated coffee for three days were lightly anaesthetized
by isoflurane. A 6 mm-diameter glass bead was inserted into the distal colon about 3 cm
from the anus of each rat. After bead insertion, the rats were replaced individually without
food and water in their home cages. The time required for expulsion of the glass bead, the
mean expulsion time, was determined for each rat.

2.7. Intestinal and Colonic Muscle Contractility Study

Tissue samples of 2 cm-long distal ileum (5 cm from the ileal-colon junction) and
colon (2 cm from the anus) were collected and placed immediately in carbogenated Krebs
buffer (in mmol/L: 118 NaCl, 4.7 KCl, 2.5 CaCl2, 1 NaH2PO4, 1.2 MgCl2, 11 D-glucose, and
25 NaHCO3) [39–41]. The ileal and colonic specimens were opened along the mesenteric
border and pinned flat in a Petri dish with Sylgard base in a carbogenated Krebs buffer. Full
thickness ileal or colonic tissue strips (3 × 10 mm) were mounted along the longitudinal
muscle orientation in individual muscle baths (Radnoti Glass, Monrovia, CA, USA) filled
with 10 mL of carbogenated Krebs solution at 37 ◦C. The contractile activity was recorded
as previously described [40,41], with isometric force transducers and amplifiers (Grass
Instruments, West Warwick, RI, USA) connected to a Biopac data-acquisition system (Biopac
Systems, Goleta, CA, USA). The muscle strips were equilibrated in the muscle bath under
1 g tension for 60 min at 37 ◦C before they were tested for contractility. Muscle contractility
was tested in response to acetylcholine (ACh) (10−7 to 10−3 M), with each concentration
being recorded for at least 2 min. The contractile response was quantified as the increase
in area under contractions (AUC) during 2 min after the addition of each concentration of
ACh over the baseline AUC for 2 min before the addition of the first concentration of ACh
(10−7 M).

To determine the direct effects of coffee and decaf on gut motor activity, ileal and
colonic muscle strips (3 × 10 mm with the long axis along with the longitudinal muscle
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orientation) were isolated from naïve rats. The muscle contractile response to coffee or
decaf (0.1~10 mg/mL) was determined with each concentration being recorded for at least
2 min. The contractile response was quantified as the increase in area under contractions
(AUC) for 2 min after the addition of each concentration of coffee or decaf over the baseline
AUC for 2 min before the addition of the first concentration (0.1 mg/mL). To study the
mechanistic sites of action of coffee and decaf, the contractile response to coffee or decaf at
5 mg/mL was recorded in the absence and presence of the nicotinic receptor antagonist
hexamethonium (Hex, 10−4 M), muscarinic receptor antagonist atropine (Atr, 10−6 M), and
neurotoxin tetrodotoxin (TTX, 10−6 M) [42,43].

2.8. Statistical Analysis

Data points are expressed as means ± SEM, unless otherwise specified. A statis-
tical analysis was performed by analysis of variance with non-repeated measures (by
Student-Newman-Keuls test) for comparisons of multiple groups and Student’s t-test for
comparisons of two groups. A p value of ≤0.05 was considered statistically significant.

3. Results
3.1. In Vitro effects of Regular and Decaffeinated Coffee on Gut Microbiota

We first determined the in vitro effect of coffee on gut microbiota in a bacterial growth
inhibition assay [18,26]. Intraluminal fecal contents were collected from the distal ileum in
Figure 1A and colon in Figure 1B of naïve rats. The fecal contents were diluted and cultured
on regular and coffee-containing LB agar plates. Compared to regular LB agar, the growth
of bacteria from the intraluminal colon content was significantly (p = 0.009) suppressed in
LB agar with 1.5% coffee (9.31 × 109 CFU/gram vs. 9.65 × 109 CFU/gram). With 3% coffee,
the growth of the microbiome was further suppressed to 5.02 × 105 CFU/gram, p = 0.000).
A similar inhibitory effect was found for the ileal contents (Figure 1).
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Figure 1. Inhibitory effect of coffee on gut microbiota growth in vitro. Serial dilutions of intraluminal
fecal contents isolated from the ileum (5~10 cm from the ileum-colon junction, (A) and colon (5 cm
from the end of colon, (B) of naïve rats were plated on regular LB agar and LB agar containing 1.5%
coffee, 3.0% coffee, and 3.0% decaffeinated coffee (decaf). Bacterial colonies were counted 24 h later.
N = 4 or 5 independent experiments, # p < 0.05 vs. control (Ctr.); * p < 0.001 vs. Ctr.
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To determine if the bacterial growth inhibition effect is caffeine-dependent or not, we
cultured the colonic and ileal fecal contents in the agar containing 3% decaffeinated coffee.
Interestingly, decaffeinated coffee had a similar inhibitory effect on the gut microbiota as
regular coffee (Figure 1).

3.2. In Vivo Effects of Regular and Decaffeinated Coffee on Gut Microbiota

To determine if regular daily consumption of coffee has any effect on the gut micro-
biota, we determined the in vivo effect of coffee gavage on the total bacteria population
by culture and with qPCR techniques. We found that oral gavage treatment with coffee
significantly suppressed the gut microbiome. After 3-days of treatment with coffee, the
viable bacteria (counted in anaerobic and aerobic culture conditions separately) were de-
creased from 1.50 × 1010 to 9.16 × 109 (CFU/gram of contents, p = 0.03) in the colon, and
from 6.21 × 109 to 3.47 × 109 (CFU/gram of contents, p = 0.01) in the ileum (Figure 2).
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Figure 2. In vivo effect of coffee on gut microbiota in the ileum and colon determined by bacterial
culture (anaerobic in GAM+ aerobic in TSA). Regular coffee solution (250 mg in 2 mL water) was
administered by oral gavage daily for 3 days. Sham rats were treated similarly, but with 2 mL of
saline. Rats were euthanized 3 days later (24 h after the 3rd coffee treatment). The intraluminal
contents from the ileum (A) and colon (B) were collected. The ileal and colonic contents were cultured
in anaerobic (GAM) and aerobic (TSA) conditions. The total bacteria abundance (CPU/gram of
luminal contents) was counted. N = 4 or 5 rats. * p < 0.05 vs. sham.

Consistent with the culture results, a qPCR study of gut microbiota in the ileum
(Figure 3) and colon (Figure 4) found that coffee treatment significantly decreased the total
bacteria abundance in the colon (p = 0.034. N = 7) and had the trend of suppressing bacteria
counts in the ileum (p = 0.07. N = 7). The consumption of decaffeinated coffee had a similar
inhibitory effect on the gut microbiota in vivo (Figures 3 and 4).
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Figure 3. Quantitative RT-PCR detection of the in vivo effect of coffee on the total microbiota and
different groups of microbes in the ileum. Coffee (Coff) or decaffeinated coffee (Dec) (250 mg in
2 mL water) was administered by oral gavage daily for 3 days. Sham rats were treated similarly,
but with 2 mL of saline. Rats were euthanized 3 days later. The intraluminal contents from the
ileum were collected. The total microbiota (A) and compositions of different groups (B) of microbes
(Enterobacteria, Gammaproteobacteria, Lactobacillus, and Firmicutes) relative to overall microbiota
(universal) were determined by real time PCR assays. N = 6 or 5 rats in each group. Sham (Sh). Coff,
regular coffee; Dec, decaffeinated coffee.
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We further determined the effect of regular and decaffeinated coffee on different
groups of gut microbes relative to the whole microbiota (Figures 3 and 4). It appears that
coffee mainly inhibits Enterobacteriaceae and Gammaproteobacteria, as it had a trend to further
decrease the relative abundance of these groups in the ileum, but not of Firmicutes and
Lactobacillus in both the small intestine and colon (p > 0.05. Figures 3 and 4). Treatment
with decaffeinated coffee had the similar effect as regular coffee on the different groups of
bacteria in the colon and ileum.

3.3. Effects of Consumption of Regular and Decaffeinated Coffee on Gut Motility and Smooth
Muscle Contractility of the Small Intestine and Colon

To determine if coffee consumption has any long-term effect on gastrointestinal motil-
ity, we first measured the mean transit time of the colon to expel a pellet after rats were
treated with coffee or decaf for 3 days (~24 h after the final gavage treatment). We found
that the transit time was not statistically significant among the saline, coffee, and decaf
groups (Figure 5A). We then compared the ileal and colonic smooth muscle contractility of
rats treated with saline, coffee, and decaf. The ileal and colonic muscle strips were prepared
along the longitudinal direction, and their contractile response was recorded in response
to muscarinic cholinergic activation with acetylcholine (ACh, 10−7~10−3 M). Compared
to vehicle controls, coffee treatment in vivo for 3 days did not affect muscle contractile
response to ACh in the colon and ileum (Figure 5B,C), except that the response to one
concentration (10−3 M) of ACh was statistically increased in the coffee treatment group
compared to the vehicle group (Figure 5B, left panel).

As with regular coffee, daily treatment with decaffeinated coffee did not show signifi-
cant effects on the colonic and ileal smooth muscle contractile responses (Figure 5B,C).

3.4. Direct Effect of Coffee on Gut Smooth Muscle Contractility

As coffee consumption did not show a significant genomic effect on gut smooth muscle
contractility, we then detected the direct effect of coffee on ileal and colonic smooth muscle
strips in a muscle bath study. Remarkably, coffee treatment in vitro induced a robust
contractile response of the ileal and colonic smooth muscle in a dose-dependent manner
(0.1 to 10 mg/mL) (Figures 6 and 7). As an example, coffee at 1 mg/mL significantly
increased the integral contractions of ileal and colon smooth muscle by 243 (±26)% and
478 (±45)% (p < 0.01 vs. control), respectively. Furthermore, decaffeinated coffee increased
smooth muscle contractility to a similar extent as regular coffee. This demonstrates that
the robust effect of coffee on intestinal and colonic smooth muscle contractions is in a
caffein-independent manner. The contractile response to 1~5 mg/mL coffee or decaf is
similar as to 10−6 M acetylcholine (Figures 6A and 7A, bottom tracings), the prototype
excitatory neurotransmitter in the neuromuscular transmission in the gut.

3.5. Neuromuscular Mechanisms of Coffee Effect on Gut Smooth Muscle Contractions

We then investigated the neuromuscular mechanisms of action of coffee on smooth
muscle contractions. Neural control of gut smooth muscle contractions is mainly through
the excitatory motor neurons of intrinsic myenteric plexus of the enteric nervous system by
releasing the neurotransmitter acetylcholine acting on cholinergic muscarinic receptors in
smooth muscle cells [20,42]. The extrinsic nervous system (i.e., parasympathetic nervous
system) indirectly controls smooth muscle contractions by innervating the myenteric gan-
glia through acetylcholine acting on nicotinic receptors in the enteric motor neurons. In our
study, when cholinergic nicotinic receptor was blocked with hexamethonium (10−4 M), the
contractile effect of coffee remained intact in the ileal and colon strips (Figures 8A and 9A).
However, when the cholinergic muscarinic receptor antagonist atropine (10−6 M) was
present in the bath solution, the stimulating effect of coffee on muscle contractions was al-
most completely blocked (Figures 8B and 9B). Hexamethonium and atropine had the same
effect on decaffeinated coffee-induced contractions in the ileum and colon (Figures 8 and 9).
These results demonstrate that non-caffein component(s) in coffee solution acts on the in-
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trinsic myenteric plexus or directly on smooth muscle cells to stimulate gut smooth muscle
contractions in a muscarinic receptor-dependent mechanism. Interestingly, when neural
activity is blocked with tetrodotoxin (TTX, 10−6 M), the coffee- or decaf-evoked contractile
response in the ileal muscle remains intact (Figure 8C). However, TTX partially but signifi-
cantly attenuated coffee- or decaf-evoked contractile response in the colonic muscle strips
(Figure 9C). These data indicate that coffee or decaf contracts the ileal smooth muscle by
acting directly on the cholinergic muscarinic receptor in the muscle cells. However, coffee
or decaf acts on both myenteric neurons and the smooth muscle to contract the colonic
smooth muscle in a muscarinic receptor-dependent mechanism.

Nutrients 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 4. Quantitative RT-PCR detection of the in vivo effect of coffee on the total microbiota and 

different groups of microbes in the colon. Coffee (Coff) or decaffeinated coffee (Dec) (250 mg in 2 

mL water) was administered by oral gavage daily for 3 days. Sham rats were treated similarly, but 

with 2 mL of saline. Rats were euthanized 3 days later. The intraluminal contents from the colon 

were collected. The total microbiota (A) and compositions of different groups of microbes (Entero-

bacteria, Gammaproteobacteria, Lactobacillus, and Firmicutes) relative to overall microbiota (uni-

versal) (B) were determined by real time PCR assays. N = 6 or 5 rats in each group. Sham (Sh). Coff, 

regular coffee; Dec, decaffeinated coffee. * p < 0.05 vs. sham of the group. 

We further determined the effect of regular and decaffeinated coffee on different 

groups of gut microbes relative to the whole microbiota (Figures 3 and 4). It appears that 

coffee mainly inhibits Enterobacteriaceae and Gammaproteobacteria, as it had a trend to fur-

ther decrease the relative abundance of these groups in the ileum, but not of firmicutes and 

lactobacillus in both the small intestine and colon (p > 0.05. Figures 3 and 4). Treatment with 

decaffeinated coffee had the similar effect as regular coffee on the different groups of bac-

teria in the colon and ileum.  

3.3. Effects of Consumption of Regular and Decaffeinated Coffee on Gut Motility and Smooth 

Muscle Contractility of the Small Intestine and Colon 

To determine if coffee consumption has any long-term effect on gastrointestinal mo-

tility, we first measured the mean transit time of the colon to expel a pellet after rats were 

treated with coffee or decaf for 3 days (~24 h after the final gavage treatment). We found 

that the transit time was not statistically significant among the saline, coffee, and decaf 

Figure 4. Quantitative RT-PCR detection of the in vivo effect of coffee on the total microbiota and
different groups of microbes in the colon. Coffee (Coff) or decaffeinated coffee (Dec) (250 mg in
2 mL water) was administered by oral gavage daily for 3 days. Sham rats were treated similarly,
but with 2 mL of saline. Rats were euthanized 3 days later. The intraluminal contents from the
colon were collected. The total microbiota (A) and compositions of different groups of microbes
(Enterobacteria, Gammaproteobacteria, Lactobacillus, and Firmicutes) relative to overall microbiota
(universal) (B) were determined by real time PCR assays. N = 6 or 5 rats in each group. Sham (Sh).
Coff, regular coffee; Dec, decaffeinated coffee. * p < 0.05 vs. sham of the group.
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Figure 5. Effect of coffee on gut propulsive motility and smooth muscle contractility in the ileum and
colon. Regular coffee (Coff, blue) and decaffeinated coffee (Dec, pink) (250 mg in 2 mL water) was
administered by oral gavage daily for 3 days. Sham rats were treated similarly, but with 2 mL of
saline. Rats were euthanized 3 days later. Colon motility was measured by counting the time needed
to expel the inserted pellet from the anus (A). The ileal (B) and colonic (C) muscle strips were isolated
from the rats, and their longitudinal muscle contractility was recorded in muscle bath. The smooth
muscle contractile response to acetylcholine (ACh) was determined. N = 6 or 5 rats in each group.
* p < 0.05 vs. sham. Sham (Sh). Coff, regular coffee; Dec, decaffeinated coffee.
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Figure 6. In vitro effect of coffee on ileal muscle contractions. Ileal muscle strips were isolated
from naïve rats, and their longitudinal muscle contractility was recorded in muscle bath (A). The
in vitro effects of regular coffee (Coff) and decaffeinated coffee (Decaf) at different concentrations
(0.1~10 mg/mL) on muscle contractility in the first 2 min after each dose was measured (B). N = 4
independent experiments in 4 rats.
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Figure 7. In vitro effect of coffee on colonic muscle contractions. Colonic muscle strips were isolated
from naïve rats, and their longitudinal muscle contractility was recorded in muscle bath (A). The
in vitro effects of regular coffee (Coff) and decaffeinated coffee (Decaf) at different concentrations
(0.1~10 mg/mL) on muscle contractility in the first 2 min after each dose were measured (B). N = 4
independent experiments in 4 rats.
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Figure 8. Site of action of coffee on smooth muscle contractions in the ileum. Ileal muscle strips were
isolated from naïve rats, and their longitudinal muscle contractile activities were recorded in a muscle
bath. The contractile response to regular coffee (Coff) and decaffeinated coffee (Decaf) at 5 mg/mL
each was recorded in the absence and presence of nicotinic receptor antagonist hexamethonium (Hex,
10−4 M) (A), muscarinic receptor antagonist atropine (Atr, 10−6 M) (B), and neurotoxin tetrodotoxin
(TTX, 10−6 M) (C). Tracings are representative of 4~5 independent experiments. The response in the
first 2 min after the addition of coff or decaf over baseline activity is summarized in the bar graphs.
N = 4 or 5. * p < 0.05.
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Figure 9. Determination of site(s) of action of coffee on smooth muscle contractions in the colon.
Colonic muscle strips were isolated from naïve rats, and their longitudinal muscle contractile activities
were recorded in the muscle bath. The contractile response to regular coffee (Coff) and decaffeinated
coffee (Decaf) at 5 mg/mL was recorded in the absence and presence of the nicotinic receptor
antagonist hexamethonium (Hex) (A), the muscarinic receptor antagonist atropine (Atr) (B), and the
neurotoxin tetrodotoxin (TTX) (C). Tracings are representative of 4~5 independent experiments. The
response in the first 2 min after the addition of coff or decaf over baseline activity is summarized in
the bar graphs. N = 4 or 5. * p < 0.05.

4. Discussion

In previous attempts to understand the impact of coffee on the microbiota, Jaquet et al. [17]
found that coffee might promote the growth of probiotic bacteria, while others [19] reported
that coffee had no effect on fecal bacteria. Our study aimed to determine not only the
in vivo effects of coffee on the gut microbiota in the small intestine and colon, but also the
growth of microbiota in vitro. We first cultured the whole population of gut microbiota in
the intraluminal (fecal) contents of the ileum and colon on regular LB agar and agar with
coffee. Remarkably, we found that bacterial growth was suppressed by 100~1000-fold on
coffee-agar, compared to regular LB agar. This antibacterial effect is not caffein dependent,
as decaffeinated coffee had a similar inhibitory effect on the gut microbiota. To determine
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if coffee consumption has an anti-bacterial effect, we chose to deliver coffee brew to rats
by oral gavage at 1 g/kg of body weight. This dose of coffee for a rat of ~250 g is similar
to the amount of coffee consumed by a person with a body weight of 75 kg consuming
4 cups of coffee per day. Interestingly, we found that coffee treatment for three days sub-
stantially decreased total microbiota abundance in the ileum and colon, measured by either
bacterial culture or quantitative RT-PCR. Again, this in vivo anti-bacterial effect appears to
also be independent of caffein, as treatment with decaffeinated coffee achieved a similar
inhibitory effect as regular coffee. To determine whether coffee has a similar inhibitory
effect on harmful and beneficial gut bacteria, we chose to quantitate the abundance of four
different groups of gut microbes, i.e., Enterobacteriaceae, Gammaproteobacteria, Firmicutes
and Lactobacillus, in control and coffee treated rats. Interestingly, we found that regular
coffee and decaffeinated coffee had a trend to further suppress the relative abundance
of Enterobacteriaceae in the colon and ileum. However, neither regular coffee nor decaf-
feinated coffee had any inhibitory effect on Firmicutes or Lactobacillus in the small intestine
and colon. Enterobacteria include some widely recognized pathogenic bacteria in the gut,
i.e., E. coli, Salmonella and Shigella. A previous study by Nakayama and Oishi noted that
coffee significantly inhibited E. coli, which belongs to enterobacteria [18]. On the other
hand, Firmicutes and Lactobacillus are well known probiotics for their beneficial effects in
the gut [14,27,44]. Taken together, our in vitro and in vivo results suggest that coffee has
anti-bacterial properties in the gut. This anti-bacterial effect appears largely beneficial, as
coffee is more inhibitory to potentially harmful bacteria such as enterobacteria, rather than
to beneficial ones such as Firmicutes or Lactobacillus.

It remains to be determined which components in coffee exerted the anti-bacterial
action. However, our study found that decaffeinated coffee had a similar effect as regular
coffee in inhibiting gut microbiota in vitro and in vivo. Thus, caffeine may not be the
component exerting the anti-bacterial action. Among hundreds of bioactive components
in coffee, several may have contributed to the anti-bacterial property. Chlorogenic acid
(CGA), an important biologically active dietary polyphenol, is a major component of
regular and decaffeinated coffee [45]. CGA is reported to not only have antioxidant and
anti-inflammatory properties, but also antibacterial effects [46,47]. CGA has an inhibitory
effect on both Gram-positive and Gram-negative bacteria by disrupting the cell membrane
and interfering with the cell cycle and the metabolism of bacterial cells [46,48]. There
are reports that coffee silverskin byproducts generated during the coffee roasting process
may also have anti-microbial potential [49]. In addition, in vitro studies found that coffee
melanoidins are also anti-bacterial, especially against E. coli, via a membrane damage
mechanism [50].

Studies in healthy human subjects found that drinking coffee increased colon motility [22,23].
Surveys also showed that coffee drinking is associated with a decreased risk of constipa-
tion [5]. Furthermore, recent clinical trials found that drinking coffee during the post-
operation period reduces the time to have first bowel movement and the incidence of
post-operative ileus [7,9,10]. These studies suggest that coffee may have pro-motility prop-
erties. In the second part of the study, we aimed to determine if the pro-motility effect of
coffee is via its genomic effect or immediate pharmacological action on the neuromuscular
control of gut smooth muscle contraction. The administration of coffee for three days at
a dose similar to that consumed daily by a human being did not significantly change gut
smooth muscle contractility in the colon or ileum. This suggests that coffee may not have a
significant genomic effect on the neuro-musculature of the GI tract (i.e., the up-regulation
of genes encoding key biomolecules in neuromuscular transmission or contractile proteins
involved in smooth muscle contractions).

We then decided to investigate the pharmacological effects of coffee on gut smooth
muscle contractility and its mechanism of action by testing the immediate action of coffee
on the ileal and colon tissue strips. Our data showed that regular or decaffeinated cof-
fee increased ileal and colonic smooth muscle contractility in a dose-dependent manner
(0.1~10 mg/mL). The contractile response induced by 1 mg/mL coffee is similar to that in-
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duced by 1 µM of acetylcholine, a key neurotransmitter released from the myenteric motor
neurons in the enteric nervous system to excite the gut smooth muscle for contractions. Our
study thus indicates that the pro-motility effect of coffee is mainly through its immediate
pharmacological effect on the neuro-musculature of the gut.

We further determined the site of action of coffee on gut smooth muscle contractions.
The neuro-muscular control of gut smooth muscle contractions involves pre-ganglia neural
innervation via nicotinic receptors acting on the motor neurons in the myenteric ganglia.
The excitatory motor neurons are primarily cholinergic, acting on cholinergic muscarinic
receptors in gut smooth muscle cells leading to contractions [20,42]. In our study, pretreat-
ment with the nicotinic receptor antagonist hexamethonium did not have any inhibitory
effect on coffee-evoked contractile response, suggesting that coffee does not act on the
site of pre-ganglia neural transmission. However, the cholinergic muscarinic receptor
antagonist atropine almost completely blocked coffee-evoked contractions in the ileal and
colonic muscle strips. This suggests that coffee exerts its contractile effect by acting on the
post-ganglia neural pathway or directly on muscarinic receptors in gut smooth muscle
cells. Moreover, when neural activity is blocked with TTX, the coffee-evoked contractile
response in the ileal muscle remained intact. However, TTX significantly attenuated coffee-
evoked the contractile response in the colonic muscle strips. These data indicate that coffee
contracts ileal smooth muscle by acting directly on cholinergic muscarinic receptors in the
muscle cells. However, it contracts colonic smooth muscle by acting on both myenteric
neurons and smooth muscle in a muscarinic receptor-dependent mechanism.

Interestingly, decaffeinated coffee acted exactly as coffee in its contractile action,
suggesting that caffeine is not a key molecule in the coffee solution in exerting a contractile
effect. In fact, caffeine was found to have an inhibitory effect on gut smooth muscle
contractions at low doses [51]. At higher doses, caffeine may cause a transient contraction
followed by the prolonged relaxation of the gut smooth muscle [52]. Our findings are
supported by clinical observations that, like regular coffee, decaffeinated coffee caused
increased colonic motor activity in normal subjects [22,23], and had a beneficial effect on
post-operational ileus [8,10].

Currently, we do not know exactly which component(s) in the coffee solution is
(are) responsible for the contractile response. Among the many bioactive components
in coffee solution, melanoidins of the maillard reaction products, polyphenols, i.e., CGA
and caffeic acid (CA), or choline may be among the key potential candidate molecules
involved in the actions on gut smooth muscle contractions. Melanoidins such as Arg-Glu
were found to lead to gastric muscle contractions [53]. CGA and CA were found to have
protective effects on the enteric nervous system [24,54]. However, CA seems to lead to
smooth muscle relaxation [55]. Choline, as a nutrient, is found in coffee, although in small
amounts. The action of choline to cause gut smooth muscle contractions is well known [56].
Whether any of these potential candidate molecules is involved in the coffee effect on ileal
and colonic smooth muscle contractions will be determined in our future study. Such
studies are expected to better understand the health benefit of coffee and even to identify
pharmacological targets for therapeutics for gut motility disorders.

There are some limitations in our study. The results in the present article are based on
our study with the specific regular and decaffeinated coffee at the doses and concentrations
described in Materials and Methods. Although we tried another brand of roasted regular
and decaffeinated coffee and found that their effects on microbiota and motility are similar
to the results reported here, we are not certain if other types of coffee at different doses
will achieve the same effects. In our in vivo study, we only studied the coffee effects for
three days. We hope for the opportunity to study the effects of coffee on the gut over longer
times in the future.

Taken together, our in vitro and in vivo studies show that coffee inhibits the gut
microbiota in a caffeine-independent manner. The anti-bacterial effect of coffee is more
effective for Enterobacteria than for beneficial bacteria such as Firmicutes and Lactobacillus.
We found that coffee has a profound pro-motility effect on the ileum and colon, also in a
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caffein-independent manner. However, coffee exerts a pro-motility effect not through a
genomic effect, as the administration of coffee for days did not change motility or muscle
contractility. Rather, coffee has a robust pharmacologic effect to directly induce gut smooth
muscle contractions in the ileum and colon. Mechanistic studies demonstrate that coffee
acts on smooth muscle cells (in the small intestine) and post-ganglia neural sites (in the
colon), rather than the pre-ganglia neural site, to evoke smooth muscle contractions in a
muscarinic receptor-dependent mechanism.

Author Contributions: S.H.–Acquisition, analysis and interpretation of data, statistical analysis, edit-
ing of manuscript; D.W.S.–Acquisition, analysis and interpretation of data, statistical analysis, editing
of manuscript; J.C.J.-Acquisition, analysis and interpretation of data; R.G.-Acquisition, analysis and
interpretation of data; K.Z.-Acquisition of data; Y.-M.L.–Acquisition of data; X.-Z.S.—Study concept
and design, analysis and interpretation of data, drafting of manuscript, and obtaining funding. All
approved final version of manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported in part by National Institute of Health (R01 DK102811 and R01
DK124611 to XZS) and U.S. Department of Defense (W81XWH2010681 to XZS).

Institutional Review Board Statement: The animal study protocol was approved by the Institutional
Animal Care and Use Committee (IACUC) of the University of Texas Medical Branch (protocol code:
0907051D; date of approval: 28 June 2021).

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusion of this article are made
available by the authors, without undue reservation.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Lopez-Garcia, E.; Rodriguez-Artalejo, F.; Rexrode, K.M.; Logroscino, G.; Hu, F.B.; van Dam, R.M. Coffee consumption and risk of

stroke in women. Circulation 2009, 119, 1116–1123. [CrossRef] [PubMed]
2. Ross, G.W.; Abbott, R.D.; Petrovitch, H.; Morens, D.M.; Grandinetti, A.; Tung, K.-H.; Tanner, C.M.; Masaki, K.H.; Blanchette,

P.L.; Curb, J.D.; et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 2000, 283, 2674–2679.
[CrossRef]

3. Kolb, H.; Martin, S.; Kempf, K. Coffee and Lower Risk of Type 2 Diabetes: Arguments for a Causal Relationship. Nutrients 2021,
13, 1144. [CrossRef]

4. Wadhawan, M.; Anand, A.C. Coffee and Liver Disease. J. Clin. Exp. Hepatol. 2016, 6, 40–46. [CrossRef] [PubMed]
5. Murakami, K.; Okubo, H.; Sasaki, S. Dietary intake in relation to self-reported constipation among Japanese women aged 18–20

years. Eur. J. Clin. Nutr. 2006, 60, 650–657. [CrossRef] [PubMed]
6. Müller-Lissner, S.A.; Kaatz, V.; Brandt, W.; Keller, J.; Layer, P. The perceived effect of various foods and beverages on stool

consistency. Eur. J. Gastroenterol. Hepatol. 2005, 17, 109–112. [CrossRef]
7. Müller, S.A.; Rahbari, N.N.; Schneider, F.; Warschkow, R.; Simon, T.; von Frankenberg, M.; Bork, U.; Weitz, J.; Schmied, B.M.;

Büchler, M.W. Randomized clinical trial on the effect of coffee on postoperative ileus following elective colectomy. Br. J. Surg.
2012, 99, 1530–1538. [CrossRef]

8. Müller, S.A.; Rahbari, N.N.; Schmied, B.M.; Büchler, M.W. Can postoperative coffee perk up recovery time after colon surgery?
Expert Rev. Gastroenterol. Hepatol. 2013, 7, 91–93. [CrossRef]
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