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Abstract: Fatty acids exert a range of different biological activities that could be relevant in the devel-
opment of atopic dermatitis (AD). This study investigated the association of glycerophospholipid
fatty acids (GPL-FA) with AD, and their interactions with single nucleotide polymorphisms (SNP) of
the FADS1-3 gene cluster. Among 390 infants of the Indonesian ISADI study, GPL-FA were measured
in umbilical plasma (P-0y) and in buccal cells at birth (B-0y), and again in buccal cells at AD onset
or one year (B-1y). Prospective and cross-sectional associations with AD were assessed by logistic
regression. Interactions of GPL-FA with 14 SNP were tested assuming an additive model. AD was
diagnosed in 15.4% of participants. In B-1y, C18:2n-6 was inversely associated with AD; and positive
associations were observed for C18:1n-9, C20:4n-6, C22:6n-3 and C20:4n-6/C18:2n-6. There were no
prospective associations with AD, however, a significant interaction between the SNP rs174449 and
B-0y C14:0 (myristic acid) was observed. This study indicates that Indonesian infants with AD have
increased rates of endogenous long-chain polyunsaturated fatty acid production, as well as higher
C18:1n-9 levels. GPL-FA measured at birth do not predict later AD incidence; however, genotype
interactions reveal novel effects of myristic acid, which are modified by a FADS3 variant.

Keywords: atopic dermatitis; fatty acids; FADS gene variants; metabolism; infants

1. Introduction

Atopic dermatitis (AD) is one of the most common inflammatory diseases among
infants, with about 60% of cases manifesting in the first year of life [1]. The disease is
characterized by itchy and inflammatory skin lesions, and is associated with a number
of comorbidities, such as digestive problems, ocular complications, and autoimmune
diseases [2], having a substantial impact on patient physical and mental well-being [3,4].
Patients with AD can be more susceptible to bacterial and viral infections [5], an aspect
of immense relevance in the midst of the COVID-19 pandemic. Indeed, there have been
reports of increased odds of COVID-19 infection among AD patients, irrespective of other
comorbidities [6]. An exacerbation of AD symptoms has also been noted, presumably linked
to the strict hygiene measures and increased stress levels imposed by the pandemic [7].
Furthermore, in what has become widely known as the atopic march, AD often precedes the
onset of allergic rhinitis and asthma, which typically occur later in childhood [8]. Primary
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prevention of AD could hence extend far beyond the condition itself, reducing the risk
of developing other diseases and long-term health problems, improving quality of life
and reducing the burden on health-care resources. Nevertheless, despite much valuable
research contributing to this goal, the search for more effective strategies continues [9,10].

Fatty acids are involved in a range of different biological activities, including in-
tracellular signaling pathways, gene expression, and the production of bioactive lipid
mediators [11]. As constituents of phospholipids, they are required for cell membrane
structure [12], and are fundamental components of the skin [13]. Indeed, differences in skin
lipid composition have been observed in relation to AD [14]. While the relevance of satu-
rated, monounsaturated, and trans fatty acids has been widely discussed in other disease
contexts [11], the vast majority of AD research focuses on the roles of omega-3 and omega-6
long-chain polyunsaturated fatty acids (LC-PUFA), since these fatty acids are specifically
involved in regulating inflammation [15]. Potent pro-inflammatory lipid mediators are de-
rived from the omega-6 arachidonic acid (ARA; 20:4n-6), whereas mediators derived from
omega-3 eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3)
exert anti-inflammatory and inflammation-resolving functions [16,17]. Evidence regarding
the impact of early LC-PUFA exposure on infant AD is largely inconsistent [15]. This
could partly be related to intra-individual differences in the rates of conversion of dietary
PUFA to LC-PUFA, which can be influenced by gene variants in the coding genes of fatty
acid desaturase enzymes (FADS genes) [18]. Gene–diet interaction studies have indeed
demonstrated that FADS gene variants can modulate the association between dietary fatty
acids and allergic diseases [19,20].

An important finding among Indonesian participants of the ISADI (Indonesian Prospec-
tive Study of Atopic Dermatitis in Infants) birth cohort, was that in contrast to Europeans,
alleles predicting a fast conversion of dietary PUFA to LC-PUFA are only carried by a
minority of the population [21]. Thus, one cannot meaningfully extrapolate results ob-
tained from observational and intervention studies in European to Indonesian populations.
Additionally, with respect to research in AD, it is known that a variety of endotypes exist,
also presenting marked geographical differences that need to be considered separately [22].

To our knowledge, no study has yet assessed infant fatty acids and their interactions
with FADS gene variants in relation to AD incidence in a South East Asian population.
The ISADI study was specifically designed with this intention, comprising a large sample
of infants with several genotyped variants of the FADS1-3 gene cluster, and fatty acids
measured in buccal cheek cells collected at birth and again at the time of AD diagnosis or at
1 year of age. Since blood collection is not always readily accepted among infants or their
parents, the analysis of fatty acids in buccal cells offered a valuable alternative within the
present study setting [23].

2. Materials and Methods
2.1. Study Population

The study involved 390 infants enrolled in the ISADI study, conducted at the Kemay-
oran Primary Health Care, central Jakarta, from April 2014 to December 2015. The primary
endpoint of the ISADI study is to assess the role of FADS1-3 gene polymorphisms and
LC-PUFA composition on the incidence of atopic dermatitis. The study protocol has been
described in detail elsewhere [24]. Briefly, apparently healthy newborn infants (37–42 weeks
of gestation) with a birth weight ≥2500 g, whose mothers did not supplement with omega-3
or -6 PUFA, were included.

2.2. Data Collection

Physical examinations were performed every 3 months to assess AD, diagnosed by
Hanifin-Rajka criteria. Information on relevant covariates was collected by questionnaires.
From birth up to 12 months, monthly monitoring by telephone was carried out to record
breastfeeding and complementary feeding practices. The present study was conducted
according to the International Ethical Guidelines for Biomedical Research Involving Human
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Subjects. All procedures were approved by the Permanent Medical Research Ethics Com-
mittee in Medicine and Health/Faculty of Medicine Universitas Indonesia/Dr Cipto Man-
gunkusumo Hospital (47/H2.F1/ETIK/2014, extended by letter 148/UN2.F1/ETIK/2015).
Written informed consent was obtained from the parents of all study subjects. The study
was registered at clinicaltrials.gov as NCT02401178.

2.2.1. Sample Collection and Handling

Umbilical artery plasma (P-0y) and buccal cheek cells (B-0y) were sampled at birth.
A second buccal cheek specimen was obtained at AD diagnosis or at age 1 year (B-1y).
Umbilical artery plasma was collected into EDTA tubes directly after birth before cord
clamping. Specimens were immediately centrifuged. The plasma and buffy coat were
frozen at −80 ◦C. Buccal cheek cells were collected within 1 h of birth by brushing the
surfaces of the inner mouth mucosa 20–25 times with gentle pressure, using a Gynobrush
(Herenz 1032929, Heinz Herenz Medizinalbedarf, Hamburg, Germany). The brush was
then put into a Sarstedt tube (62.554.502, 15 mL) and held in place by the tube cap, so that
the cells stuck to the brush made sedimentation after centrifugation, as described in patent
EUPCT/EP2011/003829. Centrifugation was performed at 1400× g for 10 min at 4 ◦C and
the supernatant removed. The same procedure was followed for the second sample of
buccal cells. All specimens were immediately frozen at −80 ◦C and transported on dry ice
by air to LMU Munich, Germany, for the analysis of GPL-FA.

2.2.2. GPL-FA Measurements

Umbilical plasma and buccal cheek cell GPL-FA were quantified as described pre-
viously [21,23]. Briefly, selective preparation of methyl ester derivatives of GPL-FA was
achieved by coprecipitation of triacylglycerols and cholesterol esters with proteins and
base-catalyzed transesterification excluding methyl ester synthesis from nonesterified fatty
acids. Aliquots (100 µL) of EDTA plasma were combined with methanol containing dipen-
tadecanoyl phosphatidylcholine as an internal standard. Tubes were centrifuged (3030× g;
10 min; 4 ◦C) and the supernatant transferred to another vial. Sodium methoxide solution
was added for fatty acid methyl ester (FAME) synthesis from GPL-FA at room temper-
ature. After 4 min, the reaction was stopped with methanolic HCl, and the FAME was
extracted into 1 mL hexane for gas chromatographic analysis. The FAME was quanti-
fied by gas chromatography with flame ionization detection (Agilent 7890 GC; Agilent,
Waldbronn, Germany), using a 50-m, 0.22-mm inner diameter BPX70 column (SGE, Weiter-
stadt, Germany). Injection was performed with a programmable temperature vaporizer
(Gerstel, Mühlheim, Germany) to avoid preconcentration of hexane extracts before gas
chromatography. FAME peaks were identified and calibrated relative to pentadecanoic acid
methyl ester (internal standard) by comparison with a FAME standard mixture (GLC-569B;
Nu- Check Prep, Inc., Elysian, MN, USA). A total of 27 GPL-FA were measured and are
reported as a percentage of total GPL-FA (wt%) [23].

2.2.3. Genotyping

Genotyping was performed at the Research Unit of Molecular Epidemiology at
Helmholtz Zentrum Munich, Germany, as previously described [25]. DNA was extracted
from the buffy coat of umbilical artery blood by the Puregene DNA isolation kit (Gentra
Systems, Hilden, Germany). Genotyping was performed using the iPLEX Gold Chemistry
(Sequenom, Hamburg, Germany) and matrix-assisted laser desorption ionization-time of
flight mass spectrometry, with methods to detect allelic differences. In brief, locations con-
taining certain SNPs were amplified by polymerase chain reaction, using specific primers.
After deactivation by alkaline phosphatase, single-base elongation was performed in ac-
cordance to the print order. After salt ion removal by ion switch and elongation reaction,
the specimen was transferred to a silicone chip and covered with 3-hydroxypicolinic acid.
The differences from specific alleles were measured by the matrix-assisted laser desorption
ionization-time of flight mass spectrometry. Allele recognition from SNPs was performed by
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Mass ARRAY Typer version 4.0.5 (Sequenom, Hamburg, Germany). SNPs for FADS genes
were selected based on 3 criteria: (1) the SNP has been studied in previous publications;
(2) the SNP candidates being considered are SNPs that have already been demonstrated to
be associated with LC-PUFA status; and (3) minor allele frequency (MAF) >10%.

2.2.4. Statistical Analysis

All statistical analyses were performed using the statistical software R, version 3.6.2 [26].
Descriptive characteristics of the study population were summarized by counts (%) for cate-
gorical variables and by medians (interquartile range) for continuous variables, and presented
for the total population as well as stratified by the presence/absence of AD. Differences in
characteristics between subjects with and without AD were tested by Pearson’s chi-squared
test and Wilcoxon Rank Sum test, for categorical and continuous variables, respectively.

Outliers in the levels of GPL-FA measured in P-0y, B-0y and B-1y were visually identified
by means of boxplots, and these values were removed prior to further analyses. Levels of GPL-
FA in each sample, and the relevant ratios thereof, were described by medians (interquartile
range). Correlations between GPL-FA levels in paired samples were tested by Spearman’s ρ,
i.e., between (a) P-0y and B-0y, (b) P-0y and B-1y, and (c) B-0y and B-1y. Associations between
GPL-FA and AD were tested by logistic regression, adjusting for selected covariates (parental
education [either mother or father graduated junior high or lower; graduated high school;
diploma or above], sex [female; male], family history of atopy [yes; no], exclusive breastfeeding
for at least 4 months [yes; no], paternal smoking [yes; no], number of siblings [0; 1; 2 or more],
and frequency of illness in first 12 months of life [days]). Allele frequency, Hardy-Weinberg
equilibrium (HWE) and linkage disequilibrium were assessed among the 18 tested SNP,
using the R-package Genetics [27]. Genotypes were coded following an additive model
(count of minor allele: homozygous major = 0, heterozygous = 1, homozygous minor = 2).
To assess whether associations between GPL-FA and AD were modified by the selected
FADS variants, interactions between each GPL-FA and each SNP were tested. In the case
of a significant interaction, additional analyses were performed for the corresponding
GPL-FA, stratified by the relevant SNP genotype. Statistical significance was defined using
Bonferroni correction for multiple testing, dividing 0.05 by the number of GPL-FA analyzed
(0.05/27 = 0.00185 in umbilical plasma, 0.05/21 = 0.00238 in buccal cells). When assessing
the interaction effects, the alpha level was further divided by 11, which is the number
of effective loci among the analyzed SNP computed according to Nyholt [28], using the
meff function of the R-package poolr [29] (https://CRAN.R-project.org/package=poolr,
accessed on 13 October 2022). Results are presented as odds ratio (OR) and 95% confidence
interval (95%CI) for an interquartile range increase in the respective GPL-FA being tested.

3. Results

The study population included 390 subjects, in whom umbilical artery plasma (P-0y),
and data on SNP genotype, AD and all selected covariates were collected. Descriptive
characteristics for the total study population, subjects with AD, and subjects without AD,
are summarized in Table 1. About half of the participants were female (49%). The majority
came from families with a medium level of education (72%), were breastfed for at least
4 months (60%), had a father who smokes (76%), and no atopic family history (58%). About
two thirds of subjects had one (36%) or at least two siblings (33%). Subjects were sick with
cold, cough, or fever an average of 11 days in the first year of life.

Table 1. Descriptive characteristics in the total population and stratified by AD presence.

Total (N = 390) AD = Yes (N = 60) AD = No (N = 330) p-Value

Sex (females) 191 (49) 29 (48) 162 (49) 1.000
Sex (males) 199 (51) 31 (52) 168 (51)

https://CRAN.R-project.org/package=poolr
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Table 1. Cont.

Total (N = 390) AD = Yes (N = 60) AD = No (N = 330) p-Value

Parental
education

(low)
79 (20) 6 (10) 73 (22) 0.016

Parental
education
(medium)

280 (72) 45 (75) 235 (71)

Parental
education

(high)
31 (8) 9 (15) 22 (7)

Breastfed (yes) 234 (60) 33 (55) 201 (61) 0.474
Breastfed (no) 156 (40) 27 (45) 129 (39)

Paternal
smoking (yes) 297 (76) 44 (73) 253 (77) 0.695

Paternal
smoking (no) 93 (24) 16 (27) 77 (23)

Atopic history
(yes) 162 (42) 46 (77) 116 (35) <0.001

Atopic history
(no) 228 (58) 14 (23) 214 (65)

Siblings (0) 121 (31) 20 (33) 101 (31) 0.916
Siblings (1) 141 (36) 21 (35) 120 (36)

Siblings (2+) 128 (33) 19 (32) 109 (33)
Frequency of
illness (days) 11 (23) 23.5 (19) 9 (20) <0.001

Values are presented as counts (%) for categorical variables and medians (interquartile range) for continuous variables.
Differences between subjects with and without AD tested by Pearson’s chi-squared test and Wilcoxon Rank Sum test,
for categorical and continuous variables, respectively. Significant differences marked in bold (p < 0.05).

Subjects with AD comprised 15.4 % of the population. These had a higher parental
education compared to subjects without AD (15% vs. 7%), were more likely to have a family
history of atopy (77% vs. 35%), and were more frequently sick (median of 24 days vs. 9 days).

The levels of GPL-FA (wt%) measured in each sample are shown in Table 2. Among
the 390 participants with measured GPL-FA in P-0y, buccal cheek samples were collected
in 387 participants at birth (B-0y) and a second buccal sample (B-1y) in 299 participants.
Marked differences in GPL-FA levels were observed between samples, with greater C16:0,
C20:3n-6, C20:4n-6, and C22:6n-3 levels in umbilical artery plasma than in either of the
buccal cell samples. In contrast, C18:1n-9 was greater in buccal cells (B-0y and B-1y), and
C18:2n-6 was higher only in B-1y samples.

Table 2. GPL-FA content in different samples.

Umbilical Plasma (P-0y) Buccal Cells Birth (B-0y) Buccal Cells AD/1 Year (B-1y)

Fatty Acids n wt% n wt% n wt%

C14:0 390 0.53 (0.12) 387 1.66 (0.91) 297 2.86 (2.06)
C16:0 390 29.8 (1.19) 386 17.6 (2.56) 299 21.3 (5.41)
C17:0 390 0.18 (0.06) 387 0.71 (0.26) 299 0.94 (0.50)
C18:0 390 14.8 (1.19) 387 18.1 (1.92) 299 12.8 (3.12)
C20:0 390 0.06 (0.05) - -
C14:1 390 0.03 (0.01) 386 0.07 (0.08) 294 0.07 (0.12)
C15:1 390 0.05 (0.02) 387 0.34 (0.18) 299 0.26 (0.23)

C16:1n-7 390 1.74 (0.50) 387 7.70 (1.94) 299 3.95 (1.87)
C18:1n-7 390 2.84 (0.48) 387 5.08 (0.92) 298 3.50 (1.20)
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Table 2. Cont.

Umbilical Plasma (P-0y) Buccal Cells Birth (B-0y) Buccal Cells AD/1 Year (B-1y)

C18:1n-9 390 10.6 (1.36) 387 32.5 (3.29) 299 29.8 (3.93)
C20:1n-9 390 0.07 (0.02) 387 0.21 (0.16) 298 0.25 (0.18)
C20:3n-9 390 0.66 (0.44) - -

C16:1t 390 0.03 (0.03) 387 0.14 (0.10) 298 0.12 (0.10)
C18:1t 390 0.26 (0.16) 387 0.56 (0.66) 295 0.11 (0.11)
C18:2tt 390 0.08 (0.03) - -

C18:2n-6 388 8.61 (1.71) 387 5.96 (1.21) 299 17.2 (3.40)
C18:3n-6 390 0.15 (0.05) 387 0.22 (0.09) 298 0.11 (0.14)
C20:2n-6 390 0.48 (0.15) - -
C20:3n-6 390 5.64 (1.20) 387 1.69 (0.43) 297 0.69 (0.36)
C20:4n-6 390 15.5 (2.20) 387 3.91 (1.16) 299 1.72 (0.95)
C22:4n-6 390 0.63 (0.15) 387 0.40 (0.20) 298 0.25 (0.19)
C22:5n-6 390 1.25 (0.44) - -
C18:3n-3 388 0.05 (0.02) 387 0.32 (0.32) 299 0.60 (0.50)
C20:3n-3 390 0.13 (0.03) - -
C20:5n-3 389 0.10 (0.04) 386 0.12 (0.09) 299 0.13 (0.16)
C22:5n-3 390 0.21 (0.11) 387 0.27 (0.20) 299 0.30 (0.25)
C22:6n-3 390 5.03 (1.48) 387 1.25 (0.48) 299 0.82 (0.50)

Ratios n wt%/wt% n wt%/wt% n wt%/wt%

GLA/LA 388 0.02 (0.01) 387 0.04 (0.02) 298 0.01 (0.01)
ARA/DGLA 390 2.70 (0.91) 387 2.34 (0.65) 297 2.56 (1.43)

ARA/LA 388 1.79 (0.46) 387 0.66 (0.22) 299 0.10 (0.06)
DHA/DPA 390 23.2 (8.15) 383 4.76 (4.47) 299 2.71 (2.42)
DHA/ARA 390 0.32 (0.09) 387 0.32 (0.09) 299 0.48 (0.19)

Values presented as medians (interquartile range). wt%, percentage of total GPL-FA weight. GLA, γ -linolenic
acid (C18:3n-6); LA, linoleic acid (C18:2n-6); ARA, arachidonic acid (C20:4n-6); DGLA, dihomo-γ -linolenic acid
(C20:3n-6); DHA, docosahexaenoic acid (C22:6n-3); DPA, docosapentaenoic acid (C22:5n-3).

3.1. Correlations between GPL-FA

Correlations between GPL-FAs measured in different samples can be found in the Sup-
plementary Table S1. GPL-FAs measured in P-0y and B-0y presented stronger correlations
with each other than when compared to measurements at follow-up (P-0y vs. B-1y or B-0y
vs. B-1y). In particular, C18:2n-6, C22:6n-3, ARA/DGLA, ARA/LA and DHA/ARA in
P-0y presented strong positive correlations (≥0.5) with their respective levels in B-0y, as
illustrated in Figure 1.

Figure 1. Correlations between GPL-FA levels measured in umbilical plasma (P-0y) and buccal cells at
birth (B-0y). Tested by Spearman’s ρ. White-to-blue: increasing ρ (positive correlation); white-to-red:
decreasing ρ (negative correlation). 5 = no significant correlation.
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3.2. Association of GPL-FA with AD

Results of logistic regression analyses are presented in Table 3. There were no sig-
nificant prospective associations of GPL-FA measured at birth (P-0y or B-0y) with AD. In
cross-sectional analyses assessing GPL-FA in buccal cells at follow-up (B-1y), a significant
inverse association with AD was observed for C18:2n-6 (OR = 0.567 [95% CI = 0.397;0.800],
p = 0.0015); and a positive association was observed with C18:1n-9 (3.539 [2.193;5.988],
p < 0.001), C20:4n-6 (2.021 [1.358;3.072], p < 0.001), C22:6n-3 (2.032 [1.338;3.131], p < 0.001),
and ARA/LA (1.832 [1.351;2.595], p < 0.001).

Table 3. Associations of GPL-FAs with AD.

Umbilical Plasma (P-0y) Buccal Cells Birth (B-0y) Buccal cells AD/1 Year (B-1y)

OR 95% CI p-Value OR 95% CI p-Value OR 95% CI p-Value

SFA C14:0 1.220 0.872;
1.674 0.2283 0.971 0.704;

1.295 0.8480 0.929 0.598;
1.389 0.7292

C16:0 0.775 0.522;
1.132 0.1954 0.898 0.620;

1.261 0.5517 0.533 0.314;
0.863 0.0141

C17:0 1.217 0.779;
1.863 0.3743 1.062 0.786;

1.402 0.6784 0.652 0.399;
1.038 0.0784

C18:0 1.083 0.731;
1.619 0.6920 0.871 0.639;

1.205 0.3889 1.138 0.777;
1.676 0.5088

C20:0 1.051 0.870;
1.234 0.5729 - - - - - -

MUFA C14:1 1.228 0.874;
1.726 0.2356 0.839 0.590;

1.120 0.2800 0.667 0.438;
0.912 0.0295

C15:1 1.079 0.869;
1.309 0.4608 1.223 0.918;

1.594 0.1493 0.875 0.671;
1.095 0.2801

Omega-7 C16:1n-7 1.251 0.831;
1.875 0.2777 1.031 0.693;

1.548 0.8806 1.058 0.691;
1.607 0.7917

C18:1n-7 1.011 0.661;
1.534 0.9589 1.540 1.048;

2.295 0.0305 1.004 0.638;
1.589 0.9851

Omega-9 C18:1n-9 1.095 0.753;
1.582 0.6289 0.979 0.670;

1.452 0.9146 3.539 2.193;
5.988 <0.001

C20:1n-9 0.923 0.608;
1.287 0.6651 0.93 0.729;

1.116 0.4957 1.297 0.945;
1.762 0.0989

C20:3n-9 0.899 0.598;
1.303 0.5892 - - - - - -

Trans C16:1 t 0.984 0.594;
1.596 0.9486 0.966 0.763;

1.165 0.7393 0.761 0.507;
1.081 0.1563

C18:1 t 0.714 0.461;
1.079 0.1192 1.041 0.841;

1.247 0.6782 1.229 0.925;
1.593 0.1289

C18:2 tt 1.045 0.790;
1.355 0.7482 - - - - - -

Omega-6 C18:2n-6 1.118 0.712;
1.760 0.6280 0.798 0.538;

1.145 0.2420 0.567 0.397;
0.800 0.0015

C18:3n-6 1.282 0.849;
1.934 0.2345 0.941 0.742;

1.138 0.5680 0.884 0.648;
1.138 0.3849

C20:2n-6 1.062 0.729;
1.525 0.7465 - - - - - -

C20:3n-6 0.992 0.657;
1.503 0.9701 1.015 0.675;

1.522 0.9427 1.072 0.910;
1.251 0.3765

C20:4n-6 0.829 0.567;
1.217 0.3360 0.822 0.553;

1.213 0.3279 2.021 1.358;
3.072 <0.001

C22:4n-6 1.298 0.889;
1.885 0.1723 0.922 0.729;

1.104 0.4172 1.275 0.945;
1.699 0.0998

C22:5n-6 0.962 0.638;
1.434 0.8498 - - - - - -
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Table 3. Cont.

Umbilical Plasma (P-0y) Buccal Cells Birth (B-0y) Buccal cells AD/1 Year (B-1y)

OR 95% CI p-Value OR 95% CI p-Value OR 95% CI p-Value

Omega-3 C18:3n-3 0.912 0.679;
1.175 0.5067 0.891 0.637;

1.155 0.4409 0.927 0.676;
1.226 0.6160

C20:3n-3 1.063 0.702;
1.588 0.7686 - - - - - -

C20:5n-3 1.081 0.869;
1.321 0.4635 0.875 0.661;

1.096 0.2958 0.934 0.666;
1.243 0.6666

C22:5n-3 1.452 1.030;
2.050 0.0326 0.954 0.669;

1.307 0.7789 0.905 0.633;
1.227 0.5516

C22:6n-3 1.181 0.803;
1.734 0.3941 1.073 0.725;

1.582 0.7238 2.032 1.338;
3.131 0.0010

Ratios GLA/LA 1.169 0.796;
1.691 0.4145 0.967 0.759;

1.184 0.7608 1.000 0.817;
1.152 0.9960

ARA/DGLA 0.945 0.630;
1.387 0.7776 0.803 0.516;

1.229 0.3191 1.106 0.692;
1.763 0.6715

ARA/LA 0.840 0.559;
1.233 0.3864 0.912 0.618;

1.337 0.6409 1.832 1.351;
2.595 <0.001

DHA/DPA 0.591 0.371;
0.912 0.0215 1.085 0.768;

1.515 0.6368 1.472 0.975;
2.224 0.0646

DHA/ARA 1.255 0.863;
1.820 0.2307 1.222 0.848;

1.760 0.2800 0.940 0.621;
1.356 0.7560

Associations tested by logistic regression adjusting for covariates (parental education, sex, family atopic history,
exclusive breastfeeding for 4 months, paternal smoking, number of siblings, and frequency of illness). Significant
associations after Bonferroni correction for multiple testing are marked in bold (p < 0.0019 for umbilical plasma,
p < 0.0024 for buccal cells).

3.3. Effect Modification by FADS Variants

The minor allele frequencies (MAF) and HWE p-values of the 18 selected SNPs are
presented in Table 4. One SNP (rs968567) was monomorphic and was not further analyzed.
The other 17 SNPs were in HWE. The SNPs rs174548, rs174556, and rs174561 had an
identical MAF of 26.7% and were highly collinear, and hence, only rs174548 was further
analyzed. Similarly, rs174576 and rs174578 had an identical MAF of 21.6% and hence only
rs174576 was further analyzed.

Table 4. Characteristics of analyzed SNPs.

SNP Major/Minor Allele MAF (%) HWE p-Value

rs174448 T/C 47.7 0.684
rs174449 C/T 47.4 0.154
rs174455 C/T 45.5 0.414
rs174548 C/G 26.7 0.698
rs174556 A/G 26.7 0.698
rs174561 G/A 26.7 0.698
rs174570 T/C 23.2 0.568
rs174574 A/C 21.6 0.552
rs174575 C/G 29.3 0.902
rs174576 A/C 21.6 0.373
rs174578 A/T 21.6 0.373
rs174579 C/T 27.6 0.899
rs174602 C/T 41.2 0.531

rs2727271 T/A 49.5 0.684
rs3834458 DEL/T 21.9 0.460
rs498793 C/T 14.4 0.537
rs526126 C/G 22.5 0.080
rs968567 C/T 0.4 NA

MAF: minor allele frequency; HWE: Hardy-Weinberg equilibrium; NA: not available.
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There was a significant interaction for rs174449 with C14:0 measured in buccal cells
at birth (p = 0.00017). In subsequent analyses stratified by genotype, we observed nom-
inally significant associations in both homozygous major and homozygous minor allele
carriers (p < 0.05). Among those who were homozygous major (C/C), higher myristic acid
levels were associated with reduced odds of AD incidence (OR 0.343 [95% CI 0.123;0.779],
p = 0.022), whereas among those who were homozygous minor (T/T), higher odds of AD
were observed (2.245 [1.127;5.582], p = 0.039). Heterozygous allele carriers presented no
association of myristic acid with AD (0.912 [0.536;1.410], p = 0.701) (Figure 2).

Figure 2. Association between myristic acid (C14:0) and AD modified by rs174449 genotype. B-0y:
measured in buccal cells sampled at birth. * Nominal statistically significant (p < 0.05). •: homozygous
major genotype (C/C); �: heterozygous genotype (C/T); N: homozygous minor genotype (T/T).

4. Discussion

We analyzed the association of different fatty acids with the onset of AD up to one
year of age in a large Indonesian birth cohort, testing both prospective and cross-sectional
associations. Furthermore, we were interested in understanding the interaction of different
fatty acids with variants of the FADS1-3 gene cluster in this population.

The incidence of AD from birth to one year was 15.4%, slightly above the 12-month
prevalence of 10.9–12.9% reported in a recent multinational epidemiologic study among
children aged 6 months to 6 years in East Asian populations [30]. These values were based
on data from Japan and Taiwan, whereas the prevalence among children aged 1–6 years
in Malaysia has been reported at 13.4% [31]. Several characteristics differed significantly
between subjects who developed AD and those who did not, including a higher proportion
of parents with a history of atopy, and of parents with a higher level of education among
AD subjects. Both these aspects have been previously reported to be associated with an
increased risk of AD [32,33]. Results from a meta-analysis demonstrate that the effect of
parental atopic history is even greater if coming from both parents, and also increases
with the number of parental atopic diseases [32]. The most prominent explanation given
for the higher AD prevalence rates observed in relation to higher socioeconomic position
(as indicated by parental education in our study) is the “hygiene hypothesis” [34], or
the extended “biodiversity hypothesis”, which assumes that a greater exposure to diverse
microorganisms during pregnancy and early childhood in less affluent settings can be
protective against allergies [35]. Others propose that subjects with a higher socioeconomic
status are more likely to report allergic symptoms [36], but this does not apply in the
present study, as all participants were followed up with the same regularity and AD was
doctor-diagnosed. Subjects with AD in our study were also more frequently reported sick
(cold, cough, and fever) in the first year of life, with an average of 24 days versus only
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9 days in non-AD subjects. Patients with early AD onset typically experience immunological
changes, resulting in more susceptibility to bacterial and viral infections [37]. There is also
evidence of a correlation between respiratory viral infections and atopic diseases in children,
both demonstrating similar pathophysiology in the production of serum specific IgE [38].

Correlations between fatty acids in different samples were the strongest between
umbilical plasma and buccal cell samples collected at birth (P-0y and B-0y). LA and DHA
presented the strongest positive correlations between their respective levels in the two
samples (ρ > 0.5). Interestingly, the ARA/DGLA ratio reflecting ∆5 desaturase activity
was strongly positively correlated; however, the GLA/LA and DHA/EPA ratios reflecting
∆6 desaturase activity were not. Correlations between the GPL-FA measured at birth and
levels measured in buccal cheek cells at AD onset or at 1 year were weak, indicating a highly
variable fatty acid profile within this brief period. Descriptive statistics demonstrated that
the DHA/EPA ratio was much higher in P-0y than in B-0y and B-1y (23.2, 4.7, and 2.7,
respectively), whereas EPA levels were similar across samples, thus possibly reflecting
preferential materno-fetal DHA transfer across the placenta in P-0y [39].

We observed no significant prospective association of the GPL-FA measured at birth
with an AD incidence up to 1 year of age. This is in contrast to previous findings,
which indicated that lower omega-3 LC-PUFA concentrations in cord blood predicted
AD among infants at 14 months [40]. However, in line with our results, a large prospective
study observed no associations between cord blood LC-PUFA and AD at ages 2, 6, and
10 years [41]. The same study also assessed cross-sectional associations, and reported
lower concentrations of n-3 LC-PUFA and a higher omega-6/omega-3 LC-PUFA ratio in
children with AD at age 2 years [41]. Similarly, in our analyses, higher buccal cell (B-1y)
ARA levels were cross-sectionally associated with higher odds of AD (OR = 2.021), while
the opposite was observed for LA (OR = 0.567). As expected, a higher ARA/LA ratio in
buccal cells indicative of increased ∆5 desaturase activity, was associated with AD. ARA
serves as a precursor for the formation of eicosanoids, including prostaglandins (PG),
prostacyclins (PGI), thromboxanes (TX) and leukotrienes (LT). These substances are known
as pro-inflammatory mediators and T cell regulators. In AD pathophysiology, prostanoids
and LT are implicated in causing pruritus, skin barrier disturbances, and type 2 immunity
dysfunction [42]. On the other hand, our study did not indicate a protective effect of DHA;
instead, we found a positive association of DHA with AD in B-1y (OR = 2.032). This may
be a reflection of its high positive correlation with ARA (ρ = 0.73, Figure 1). It seems that
the inflammation-resolving properties of DHA are outweighed by the increased availability
of ARA, as the endogenous production of both LC-PUFA are intricately linked, given the
competition for desaturase enzymes. We observed a positive association of oleic acid in
B-1y samples (C18:1n-9) with AD (OR = 3.539). Within the B-1y sample, oleic acid was
inversely correlated with all other GPL-FA (see Supplementary Figure S1), which suggests
that levels in buccal cells do not reflect endogenous oleic acid production, as this would also
imply the increase in other ∆9 desaturase products (C16:1n7). Thus, our results suggest that
higher exogenous oleic acid, possibly obtained through diet, may lead to an increased risk
of AD. Studies in adults have reported a higher dietary intake of oleic acid to be positively
associated with hay fever [43] and allergic sensitization [44]. However, an international
study in children indicated the protective effects of olive oil consumption [45]. On the
other hand, oleic acid is also known for its anti-inflammatory properties [46], and given
the cross-sectional nature of our finding, reverse causation cannot be excluded, whereby
infants presenting AD symptoms might be more frequently treated with oleic acid-rich
products. Nevertheless, studies have demonstrated that topical use of oleic acid disrupts
the skin barrier function [47], so a causal interpretation of the association is also plausible.

Our study demonstrates a significant interaction between rs174449 and myristic acid
(C14:0) measured in buccal cells at birth (B-0y), which, to our knowledge, has not been
reported previously. Stratified analyses indicated a positive association of myristic acid
with AD in homozygous carriers of the minor allele (T/T), while major allele carriers (C/C)
demonstrated an inverse association. Other correlated SNP presented at least nominally



Nutrients 2022, 14, 4676 11 of 14

significant interactions with myristic acid (data not shown), suggesting that the observed
interaction is unlikely a chance finding. Evidence indicating a role of myristic acid in the
risk of AD is so far lacking. Myristic acid can be obtained from the diet, from sources such as
dairy (constituting 8–14% of bovine milk [48]), but it is also a minor product of the de novo
lipogenesis pathway [49]. Studies have demonstrated that myristic acid can regulate the
activity of desaturases via N-terminal myristoylation [50]. Myristic acid has been reported
to have a dose-dependent effect on ∆6 desaturase activity, thereby possibly regulating the
LC-PUFA bioavailability [51]. These effects are suggested to occur by the myristoylation
of the NADH-cytochrome b5 reductase, which is part of the whole desaturase complex.
Myristic acid has, however, been found to specifically regulate the ∆4 desaturase activity,
thus playing a role in the biosynthesis of ceramide and sphingolipid metabolism [52]. In
this context, it makes sense that we would specifically observe an interaction with rs174449,
as it is a variant of FADS3, and the FADS3 enzyme has been reported to act as a ceramide
desaturase [53]. Specifically, FADS3 introduces a cis double bond in the C14 position of the
long-chain base moiety of sphingosine-type ceramides, thereby producing sphingadiene-
type ceramides. It is not long ago (in 2020) that this 4,14-sphingadiene base was identified
in human skin for the first time [54]. The bent structure of the acyl chain due to the cis
double bond is suggested to decrease the packing density of the lipid bilayer and weaken
the lipid–lipid interaction [53]. While the relevance of this particular sphingoid base in AD
still requires further study, altered sphingoid base profiles have been observed in relation to
skin barrier abnormality in AD [55,56]. Our results point toward a possible role of FADS3
in AD etiology, with myristic acid representing a potential novel target for personalized
preventive approaches. Furthermore, these findings may be of particular relevance for
nanotechnology-based solutions, which offer promising new avenues for atopic dermatitis
prevention and treatment, through improved skin bioavailability, targeted drug delivery at
the inflammation site, and minimal side effects [57].

A major strength of the present study is the inclusion of a sizeable number of infants
with a comprehensive assessment of the GPL-FA profile and doctor-diagnosed AD. We
measured GPL-FA in buccal cheek cells, allowing for a less invasive sampling procedure
and likely increased participation levels as a result. The further inclusion of umbilical artery
plasma (P-0y) allowed for the comparison of the fatty acid levels across samples, while
also highlighting clear sample-specific differences in association with AD. Furthermore, the
study did not include participants whose mothers took omega-3 or omega-6 supplements,
which would potentially dilute the effects resulting from the natural enzymatic pathway.
To our knowledge, this is the first study in an Indonesian population to investigate the
interaction of genetic variation, nutrition, and the incidence of AD in infants. Nevertheless,
given the observational nature of the present study, we cannot infer causal effects, even
though the prospective analyses are less likely to be affected by reverse causation.

5. Conclusions

We conclude that Indonesian infants developing AD within the first year of life have
higher rates of ∆5 fatty acid desaturase activity, as reflected by higher ARA and lower LA
levels as well as a higher ARA/LA ratio. Oleic acid levels are also positively associated
with AD at the time of disease diagnosis. Fatty acid levels measured in cord blood or
buccal cells at birth are not associated with AD incidence. However, genotype interaction
analyses indicate an effect of myristic acid levels measured at birth on AD incidence, which
is modified by the FADS3 gene variant rs174449, and might offer new opportunities for
precision prevention strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14214676/s1, Figure S1: Correlations of GPL-FA (wt%) within
each sample; Table S1: Correlations between GPL-FA levels (wt%) in different samples.
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