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Abstract: Type 2 Diabetes (T2D) is a metabolic disease associated with long-term complications, with
a multifactorial pathogenesis related to the interplay between genetic and modifiable risk factors, of
which nutrition is the most relevant. In particular, the importance of proteins and constitutive amino
acids (AAs) in disease susceptibility is emerging. The ability to sense and respond to changes in AA
supplies is mediated by complex networks, of which AA transporters (AATs) are crucial components
acting also as sensors of AA availability. This study explored the associations between polymorphisms
in selected AATs genes and T2D and vascular complications in 433 patients and 506 healthy controls.
Analyses revealed significant association of SLC38A3-rs1858828 with disease risk. Stratification of
patients based on presence/absence of vascular complications highlighted significant associations
of SLC7A8-rs3783436 and SLC38A7-rs9806843 with diabetic retinopathy. Additionally, the SLC38A9-
rs4865615 resulted associated with chronic kidney disease. Notably, these genes function as AAs
sensors, specifically glutamine, leucine, and arginine, linked to the main nutrient signaling pathway
mammalian target of rapamycin complex 1 (mTORC1). Thus, their genetic variability may contribute
to T2D by influencing the ability to properly transduce a signal activating mTORC1 in response to AA
availability. In this scenario, the contribution of dietary AAs supply to disease risk may be relevant.

Keywords: Type 2 Diabetes; diabetes complications; amino acid transporters; SLC38 family; genetic
variability; amino acid availability; amino acid sensing; mTORC1 pathway

1. Introduction

Type 2 Diabetes (T2D) is a common metabolic disorder resulting from a combination
of inadequate secretion of insulin from β-cells and resistance to insulin action in insulin-
dependent tissues such as adipose, liver and muscle tissues [1]. Because of long-term
exposure to hyperglycemia, patients with T2D develop microvascular and macrovascular
complications, which are the major cause of death in these individuals [2].

Both the incidence and prevalence of T2D are currently growing worldwide [3], and
this is likely correlated to the great changes of lifestyles and dietary habits. An inadequate
consumption of protein is increasingly recognized as one of the most important nutritional
factors related to T2D development [4]. It has been reported, for instance, that a low protein
intake during middle age, which leads over time to a reduction in muscle mass, is associated
to an increased risk of disease, likely because of the implications on glucose handling by
muscle mass, the largest storage depot for glucose in the body [5,6]. On the other hand, it
has been documented that a diet relatively high in proteins (especially animal protein), may
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contribute to disease risk by worsening insulin sensitivity and glucose clearance from the
blood [4,7–9]. In line with these literature evidence, studies demonstrated that changes in
circulating amino acids (AAs) levels, particularly branched-chain AAs (BCAAs, i.e., leucine,
isoleucine, valine) are related the development of insulin resistance and T2D risk [10–13].

Mechanistically, dietary-derived amino acids appear to modulate blood glucose uti-
lization/disposal by acting as mediators of insulin signaling [14]. Recently, amino acids
transporters (AATs) have been reported to be crucial components of this regulation as they
are responsible for the fine control of cellular and circulating amino acid concentrations.
AATs are membrane-bound proteins that act both as carriers and sensors of specific AAs
to allow for proper transfer of these nutrients in/out of cells or cellular organelles [15].
They are widely expressed in various tissues and serve diverse functional roles ranging
from intracellular energy metabolism to neurotransmission, and anabolic and catabolic
reactions [16,17]. Several lines of evidence also indicate that AATs are involved in the
regulation of insulin secretion and glucose homeostasis, supporting their contribution to
T2D development [18–20].

In a previous study we provided some evidence supporting a relationship between
the genetic variability of some AATs genes (SLC7A5, SLC7A8, SLC36A1, SLC38A2, SLC3A2,
SLC38A7 and SLC38A9) and the progressive and generalized loss of muscle mass in the
elderly, as well as the chance to reach advanced ages, both of which are risk factors for
T2D [21]. Thus, based on these findings and the above-mentioned literature evidence, we
reasoned that the genetic variability of AAT genes could affects the susceptibility to the T2D
and/or its vascular complications. To explore this hypothesis, here we analyzed candidate
genetic variants (single nucleotide polymorphisms, SNPs) in AAT genes in a cohort of
939 individuals comprising 433 T2D patients and 506 ethnically matched non-diabetic
controls.

2. Materials and Methods
2.1. Subjects and Measurements

433 unrelated patients diagnosed as affected by T2D (mean age 65.7 ± 7.9 years)
and 506 healthy control subjects (the patient’s spouses)) (mean age 58.6 ± 12.3 years)
were recruited at the Italian National Research Center on Aging (INRCA) in Ancona
(Central Italy).

T2D was diagnosed according to the American Diabetes Association Criteria (Ameri-
can Diabetes Association, 2010). The inclusion criteria and the clinical information collected
from each subject were as previously reported in Montesanto et al. [22]. Briefly, demo-
graphic, anthropometric, and clinical data were collected for each individual and recorded
in a well-defined questionnaire. Measurements of biochemical parameters were undertaken
using standardized protocols.

The presence/absence of diabetic complications was established as follows: dia-
betic retinopathy was defined as dilated pupils evidenced by fundoscopy and/or fluores-
cence angiography; incipient nephropathy was defined as an urinary albumin excretion
rate > 30 mg/24 h and a normal creatinine clearance; chronic kidney disease was defined
as an estimated glomerular filtration rate > 60 mL/min per 1.73 m2; neuropathy was estab-
lished by electromyography; ischemic heart disease was defined by clinical history, and/or
ischemic electrocardiographic alterations.

Survival data for all cause of mortality were available for patients, gathered during an
average of 12 years of follow-up [23].

Ethical approval for this study has been granted by the Ethics Committee of National
Institute on Health and Science on Aging (INRCA). All participants gave written informed
consent. All methods were performed in accordance with the relevant guidelines and
regulations.
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2.2. SNP Genotyping

For the current study, seventeen SNPs from eight different AAT genes were analyzed,
whose basic characteristics are reported in Supplementary Table S1. Candidate genetic
variants in AAT genes were selected from a previously study in which significant genetic
associations with parameters related to the decline in muscle function and mass in the
elderly were identified [21].

DNA was extracted from whole blood (QIAmp 96 DNA Blood kit, QIAGEN). Multi-
plex SNP genotyping was performed by PCR followed by primer extension and MALDI-
TOF mass spectrometry using iPLEX Gold technology from Sequenom (Sequenom Inc., San
Diego, CA, USA). Primers for PCR and single base extension were designed by Sequenom
MassARRAY Assay Designer software (version 3). The products were PCR amplified using
standard procedures, and unincorporated nucleotides were then removed with the shrimp
alkaline phosphatase (SAP). Subsequently, a primer extension reaction was implemented
using the mass extension primer and the terminator. The primer extension products were
then desalted on resin and spotted onto the 384-element SpectroCHIP (Sequenom) for
MALDI-TOF analysis using SpectroACQUIRE v3.3.1.3 (Sequenom). Spectra were analysed
using MassARRAY Typer v3.4 Software (Sequenom).

For quality control, about ten percent of the analyzed samples was re-genotyped to as-
sess the reliability of the genotype identification protocols. Concordance among duplicates
was >99.8% for all SNPs polymorphisms. Additional quality control procedures include
the exclusion of SNPs out of the Hardy–Weinberg equilibrium in controls (p-value < 0.05)
or low genotyping success rates (<90%). Ultimately, three SNPs (rs12794763 in SLC3A2,
and rs7704138 and rs10056358 in SLC38A9) were excluded from analysis.

2.3. Statistical Analysis

Continuous variables were presented with mean and standard deviation, and cat-
egorical variables were presented with percentage. The Kolmogorov-Smirnov test was
used to evaluate the normality of data distribution. Differences in anthropometric and
clinical parameters between groups were determined by independent-samples t-test for
normal distribution data, the Mann–Whitney U test for skewed data or the χ2 test for
categorical variables. For each SNP, departure from Hardy–Weinberg equilibrium was
assessed in controls using the χ2 test. Logistic regression models were used to estimate
how the variability of analyzed genes influences the predisposition to T2D and related
complications. The association analyses were based on the estimation of the odds ratios
(ORs) and their 95% confidence intervals (CIs), using age, gender, BMI, and duration of
diabetes (when appropriate) as covariates in the formulated regression models.

Additive, dominant, and recessive genetic models were evaluated for each SNP.
Akaike’s Information Criterion (AIC) was employed to determine the best-fitting model for
each SNP. Only the dominant model was considered where the minor allele homozygote
count for either cases or controls was lower than 3%.

To estimate the effect of SNPs on patients’ all-cause mortality, we evaluated survival
after 12 years from the baseline visit. Hazard ratios (HR) and 95% confidence intervals
(95% CI) were estimated by using Cox proportional hazard models considering age, sex,
diabetes duration and complications as confounders.

All statistical analyses were carried out using SPSS software version 27.0 (SPSS, Inc.,
Chicago, IL, USA). p < 0.05 was considered statistically significant. To control for multiple
tests, false discovery rate (FDR) correction was applied with a significance threshold
(q-value) of 0.05.

3. Results
3.1. Subject Characteristics

Table 1 outlines the baseline characteristics of T2D patients (with and without diabetes-
related complications) and non-diabetic controls. T2D patients were older than control
subjects and had a larger proportion of males. As expected, subjects with diabetes differed
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for all diabetes-related variables, except for insulin levels, and biochemical lipid parameters,
when compared with healthy subjects.

Table 1. Clinical and biochemical characteristics healthy control subjects and patients with Type 2
Diabetes (T2D).

Characteristics Controls
(n = 506)

T2D
(n = 433) p

Sociodemographic factors

Age (mean, SD) 58.6 (12.3) 65.7 (7.9) <0.001
Gender (males, % ) 207 (40.9%) 244 (56.4%) <0.001

Diabetes-related variables

BMI, kg/m2 (mean, SD) 27.2 (4.8) 28.8 (4.4) <0.001
WHR (mean, SD) 0.88 (0.08) 0.93 (0.07) <0.001

HOMA-IR (mean, SD) 1.56 (1.47) 2.91 (2.8) <0.001
Fasting Glucose, mg/dL (mean, SD) 93.2 (10.1) 162.9 (47.5) <0.001

HbA1c, % (mean, SD) 5.65 (0.4) 7.44 (1.3) <0.001
Insulin, µIU/mL (mean, SD) 6.71 (5.4) 7.06 (5.4) 0.32

Age at onset (years) - 51.8 (11.5)
Durations of diabetes (years) - 13.7 (12.3)

Biochemical variables

Total cholesterol, mg/dL (mean, SD) 215.5 (37.4) 207.1 (37.8) 0.001
LDL cholesterol, mg/dL (mean, SD) 123.9 (31.9) 117.1 (32.2) 0.001
HDL cholesterol, mg/dL (mean, SD) 57.5 (14.3) 51.9 (14.2) <0.001

Triglycerides, mg/dL (mean, SD) 103.4 (69.5) 139.2 (94.0) <0.001

Complications

Retinopathy (n, %) - 110 (25.4)
Neuropathy (n, %) - 75 (17.3)

Nephropathy (n, %) - 52 (12)
Chronic Kidney Disease (n, %) - 14 (3.2)

Ischemic heart disease and stroke (n, %) - 76 (17.6)
Abbreviations: SD, standard deviation; BMI, Body Mass Index; WHR, waist-to-hip ratio; HOMA-IR, homeostasis
model assessment of insulin resistance; HbA1c, glycosylated haemoglobin; LDL-C, low-density lipoprotein
cholesterol; HDL-C, high-density lipoprotein cholesterol.

3.2. Association between AAT Polymorphisms and T2D

As shown in Table 2, significant evidence of association with T2D was detected for
rs1858828-G/T in SLC38A3 gene. Carriers of the TT genotype have approximately a 1.7-
fold higher risk of developing T2D than those carrying the G allele (OR = 1.68, 95% CI:
1.19–2.39; p = 0.003). The association remained significant after correction for multiple
testing (q-value = 0.046). In support of this result, the same association was replicated
when a cohort of self-declared healthy Italians (Tuscans), whose rs1858828 genotypes were
retrieved from 1000 Genomes Project (www.1000genomes.org, accessed on 18 July 2022),
was used as an additional control group (OR = 2.27, 95% CI: 2.6–4.10; p = 0.0037).

We did not find any evidence of nominally significant genotype-phenotype association
when the variability of rs1858828 genotypes was analyzed with respect to the anthropo-
metric and biochemical parameters, both in diabetic and non-diabetic individuals. Since
the rs1858828 variant has previously been found associated with the likelihood of reaching
very old age, we also assessed the effect of this polymorphism on the risk of all-cause mor-
tality in T2D patients using survival data at 12-year follow-up. However, Cox regression
analysis did not show a significant effect of this polymorphism on survival of patients (data
not shown).

None of the others analyzed polymorphisms showed association at the nominal
threshold of 5%. Yet, a borderline significant decreased risk of T2D was observed for SNPs

www.1000genomes.org
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rs731710-A/G (SLC7A5) and rs3783436-T/C (SLC7A8) under a dominant model (OR = 0.73,
95% CI: 0.51–1.03; p = 0.076 and OR = 0.70, 95% CI: 0.48–1.04, p = 0.078, respectively).

Table 2. Association analysis of AATs SNPs with Type 2 Diabetes.

Gene SNP Major/Minor
Allele MAF OR (95% CI) a Pets Model

SLC3A2
rs12804553 G/T 0.30 0.86 (0.62–1.20) 0.38 D

rs4726 C/T 0.21 0.91 (0.64–1.29) 0.59 D*

SLC7A5
rs4329925 T/C 0.15 1.10 (0.77–1.58) 0.59 D*
rs731710 A/G 0.42 0.73 (0.51–1.03) 0.076 D

SLC7A8
rs999165 T/A 0.24 0.89 (0.61–1.30) 0.55 D*

rs12588118 C/G 0.23 1.35 (0.67–2.72) 0.39 R

rs3783436 T/C 0.27 0.70 (0.48–1.04) 0.078 D

SLC36A1
rs357618 A/G 0.32 0.78 (0.45–1.37) 0.39 R

rs357629 A/G 0.34 0.82 (0.46–1.45) 0.49 R

rs14160 T/C 0.14 0.72 (0.47–1.10) 0.12 D*
SLC38A2 rs1873793 T/C 0.45 1.14 (0.77–1.69) 0.50 D

SLC38A3 rs1858828 G/T 0.43 1.68 (1.19–2.39) 0.0033 R

SLC38A7 rs9806843 A/G 0.40 1.20 (0.85–1.69) 0.30 D

SLC38A9 rs4865615 G/C 0.26 1.56 (0.84–2.90) 0.16 R

Abbreviation: MAF, Minor Allele Frequency; OR, odds ratio; CI, confidence interval. OR adjusted for age, sex,
BMI. a The best genetic-effect model for each SNP on diseases risk was estimated based on the smallest Akaike’s
information criterion (AIC) value. D is dominant model (T2D risk in heterozygotes plus minor allele homozygotes
relative to common allele homozygotes) and R is recessive model (T2D risk in minor allele homozygotes relative
to common allele homozygotes plus heterozygotes). * For these SNPs, only the dominant model was considered
since the rare homozygous genotype was <3%.

3.3. Association between AAT Polymorphisms and T2D Complications

Nearly 50% of T2D patients showed at least one of the five diabetes-related micro-
macrovascular complications analyzed in this study. Among these patients, 120 (27.7%)
had one, 66 (15.2%) had two, 19 (4.4%) had three, 13 (3%) had four and 1 (0.2%) had five.
In Table S2 are reported the demographics and clinical characteristics of T2D patients
with and without vascular complications. Table S3 lists the results of the association test
for each SNP, while Table 3 summarizes the associations significant at the 0.05 threshold.
Specifically, homozygous carriers of the minor rs3783436-T/C allele in SLC7A8 and carriers
of the minor allele of rs9806843-A/G in SLC38A7 gene were at lower risk of retinopathy
(OR = 0.17, 95% CI: 0.03–0.93; p = 0.016, and OR 0.51, 95% CI: 0.27–0.97; p = 0.039 respec-
tively). Moreover, we found that the presence of the minor allele of rs4865615-G/C in
SLC38A9 conferred a protective effect against risk of chronic kidney disease (OR = 0.170,
95% CI: 03–0.82; p = 0.012).

Table 3. SNPs associated with diabetic microvascular and macrovascular complications.

Diabetic Complication Gene SNP (Allele) OR (95% CI) a p-Value

Retinopathy SLC7A8 rs3783436 (T/C) 0.17 (0.03–0.93) R 0.016
SLC38A7 rs9806843 (A/G) 0.51 (0.27–0.97) D 0.039

Chronic Kidney Disease SLC38A9 rs4865615 (G/C) 0.17 (0.03–0.82) D 0.012
Abbreviation: OR, odds ratio; CI, confidence interval. OR adjusted Age, sex, BMI, and diabetes duration were
included as covariates. a The best genetic-effect model for each SNP was estimated based on the smallest Akaike’s
information criterion (AIC) value. D is dominant model (risk of diabetic complication in heterozygotes plus minor
allele homozygotes relative to common allele homozygotes) and R is recessive model (risk of diabetic complication
in minor allele homozygotes relative to common allele homozygotes plus heterozygotes).

4. Discussion

Herein, we explored the association between variants of some candidate AATs genes
and risk of T2D and related complications. We identified a risk SNP (rs1858828) in SLC38A3,
a gene belonging to the sodium-coupled neutral amino acid transporters (SNAT) of the
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SLC38 (System n) family and highly expressed in liver, kidney, and brain, but also in
pancreas and skeletal muscle. Specifically, an increased risk of diabetes was found among
homozygous carriers of the minor T allele of rs1858828, which lies at 291bp 5′ of SLC38A3
gene in a DNase I hypersensitive region that alters a binding site for Yin Yang 1 (YY1), a
dual function transcription factor involved in T2D [24,25], as suggested by inspection of
databases providing functional annotation of SNPs.

The SLC38A3 encoded protein, also known as SNAT3, mainly mediates both the
import and export, depending on cellular demand, of glutamine, a conditionally essential
amino acid under metabolic and nutritional stress conditions [26,27]. Glutamine is the
most abundant free amino acid in human body, involved in many fundamental biological
functions such as protein and glutathione synthesis, energy production, maintenance of
optimal antioxidant status, and immune function [28].

Several evidence support a role for SLC38A3 in glucose homeostasis. SLC38A3 induc-
tion mediates glutamine transport in β-cells of pancreas [29], and its downregulation was
found in islets of diabetes-prone db/db mice [30]. Studies reported that elevated plasma
levels of glutamine induce the uptake of this AA by SLC38A3 with consequent stimulation
of insulin secretion through the conversion of glutamine to glutamate [27,31]. Conversely,
when plasma levels of glutamine are low it is released by SLC38A3 and taken up by α-cells
inducing the release of glucagon and the increase of hepatic gluconeogenesis [32,33], a pro-
cess substantially increased in patients with T2D [34]. Hepatic gluconeogenesis is inhibited
by insulin, a process that does not work properly when insulin signaling is compromised,
such as insulin resistance in T2D [35]. Interestingly, the expression of SLC38A3 was found
downregulated by chronic treatment of insulin in hepatocytes via the insulin-activated
PI3K-mTOR signaling pathway [36]. To this regard, it is worth remarking that glutamine is
one of the AA that activate the nutrient-sensitive kinase mammalian target of rapamycin
complex 1 (mTORC1), the major signaling hub that integrates different inputs, such as
nutrients, energy, and growth factors, to regulate diverse cellular functions [37]. mTORC1
signaling activity was found significantly increased in islets/β cells from patients with
T2D [38], and, more recently, it was shown to modulate β-cell mass and function [39]. In
this respect, the marginal association of the allelic variants SLC7A5 rs731710-G and SLC7A8
rs3783436-C with a reduced risk of diabetes is a result that deserves some attention. These
two genes encode for plasma membrane sodium-independent AA antiporters, named
LAT1 and LAT2 respectively, typically mediating the simultaneous efflux of glutamine
out of cells and uptake of extracellular leucine, the primary essential AA that activates
protein synthesis in skeletal muscle through activation of mTORC1 [40,41]. Leucine also
acts at multiple points along the insulin signaling and glucose metabolism pathways [42,43]
playing a role on diabetes development [44,45]. Interestingly, perturbed levels of both
glutamine and leucine are reported in people with T2D with respect to non-diabetic sub-
jects [11,12]. It is also interesting to note that in elderly subjects the same allelic variants
of SLC7A5-rs731710 and SLC7A8-rs3783436 were found associated with better physical
performance [21], reported to be impaired in people with diabetes [46]. Overall, results so
far indicate that genetic variability of AAT genes may contribute to diabetes development,
most likely by affecting mTORC1 activity in multiple metabolic organs such as the pancreas,
liver, and skeletal muscle.

mTORC1 signaling pathway has been also related to the pathophysiology of diabetes
complications [47]. Interestingly, we found the rs3783436 variant at SLC7A8 gene associated
to a reduced risk of diabetic retinopathy, the most common diabetic eye disease leading
cause of vision loss among adult people [48]. Of note, dysfunctional SLC7A8 has been
associated with formation of cataract [49], a relatively frequent side effect in people with
diabetes [50]. A protective effect against retinopathy was also observed for the intronic
SNP rs9806843 in SLC38A7 gene which encodes a sodium-coupled AAT, known also as
SNAT7, which has glutamine as the preferred substrate. Hägglund et al. [51] reported
that SLC38A7 has a relatively broad expression, with high levels in both glutamatergic
and GABAergic neurons, and that it may have an important function in the reuptake and
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recycling of glutamate in these cells. This proposed role of SLC38A7 provides a possible
mechanism on which to base the association between the rs9806843 variant of this gene
and retinopathy we found. Indeed, glutamate acts as an excitatory neurotransmitter in
the retina, yet an excess of glutamate may be toxic to retinal neurons by overactivation of
glutamate receptors [52].

Finally, the SLC38A9 rs4865615-C variant was significantly associated with a decreased
risk of chronic kidney disease. SLC38A9 (SNAT9) is a sodium coupled AAT located in
lysosomes which acts as an arginine sensor to activate mTORC1 [53] and mediates the
efflux of most essential AAs from lysosomes, including leucine, in an arginine-regulated
manner [54]. mTORC1 plays an important role in the regulation of renal cell homeostasis
and in the development of several kidney disorders [55]. On the other hand, kidney plays
a central role in arginine metabolism, being the proximal tubule a major site of arginine
production from citrulline [56]. Because rs4865615 is a missense mutation (p.Ser182Thr), it
could impact on SLC38A9 function with potential consequences for mTORC1 activity.

5. Conclusions

In summary, data herein provide the first evidence, to our knowledge, that sequence
variations in AAT genes may affect the risk of developing T2D and related outcomes.
Importantly, the susceptibility genes we identified encode for carriers, but overall, for
sensors of AAs, specifically glutamine, leucine, and arginine, directly connected with the
activation of the major nutrient signaling pathway mTORC1. The positive link between
elevated mTORC1 activity in presence of AA overload and diabetes is now recognized and
supported by several studies (for a recent review see [57]. The mTORC1-centric paradigm
of T2D proposed by Bar-Tana [58] points indeed to mTORC1 as an upstream driver that may
generate the multiple disease aspects of T2D. It is, therefore, reasonable to hypothesize that
the variability of the above AAT genes can induce changes in the activation of mTORC1, by
affecting the capability to transduce a signal in response to AA availability. Consequently,
alteration and disturbance of diabetes-related metabolic traits, such as glucose metabolism,
insulin resistance, and β-cells functioning may occur.

It is clear, though, that validation of the current results in an independent set of
patients is necessary to conclude on a relationship between variability at the AAT loci
and T2D susceptibility, and this is a limitation of our study. Also, the elucidation of the
functional aspects of the identified SNPs can shed some light on the molecular signaling
events or mechanisms behind the genetic associations found. Finally, since some research
has suggested that a high intake of dietary proteins may have negative effects on T2D
occurrence, it would be of interest to investigate possible effects of SNP–diet interactions on
T2D risk. A correlation, if any, between the presence of risk variants and inadequate amino
acid intake from dietary proteins could be useful for personalized nutritional therapy that
considers personal genotype. Insight into all these aspects could suggest new avenues of
investigation.
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SNPs with diabetic microvascular and macrovascular complications.
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