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Abstract: Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease
2019 (COVID-19) with other comorbidities such as diabetes. Diabetes is the most common cause
of diabetic nephropathy, which is attributed to hyperglycemia. COVID-19 produces severe com-
plications in people with diabetes mellitus. This article explains how SARS-CoV-2 causes more
significant kidney damage in diabetic patients. Importantly, COVID-19 and diabetes share inflamma-
tory pathways of disease progression. SARS-CoV-2 binding with ACE-2 causes depletion of ACE-2
(angiotensin-converting enzyme 2) from blood vessels, and subsequently, angiotensin-II interacts
with angiotensin receptor-1 from vascular membranes that produce NADPH (nicotinamide adenine
dinucleotide hydrogen phosphate) oxidase, oxidative stress, and constriction of blood vessels. Since
diabetes and COVID-19 can create oxidative stress, we hypothesize that COVID-19 with comorbidities
such as diabetes can synergistically increase oxidative stress leading to end-stage renal failure and
death. Antioxidants may therefore prevent renal damage-induced death by inhibiting oxidative
damage and thus can help protect people from COVID-19 related comorbidities. A few clinical trials
indicated how effective the antioxidant therapy is against improving COVID-19 symptoms, based on
a limited number of patients who experienced COVID-19. In this review, we tried to understand how
effective antioxidants (such as vitamin D and flavonoids) can act as food supplements or therapeutics
against COVID-19 with diabetes as comorbidity based on recently available clinical, preclinical, or in
silico studies.

Keywords: COVID-19; diabetes mellitus; oxidative stress; kidney damage; antioxidant

1. Introduction

The novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory
syndrome CoV2 (SARS-CoV-2) virus and can be associated with infected patients with
various comorbidities such as diabetes, hypertension, and cardiovascular disorders. Studies
show that the viral infection triggers severe clinical symptoms and mortality with people
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experiencing comorbidities such as diabetes, cancer, and heart and lung disorders. Impor-
tantly among these people, diabetic patients experience the most severe clinical symptoms
that cause the highest proportional death than non-diabetic patients after SARS-CoV-2
infection [1,2]. Along with diabetes, old age, congestive heart failure, smoking, β-blocker
use, presence of bilateral lung infiltrates, elevated creatinine and severe vitamin D defi-
ciency” are significant cause of mortality in COVID-19 patients [3]. In addition, high plasma
lactate dehydrogenase level, a marker of oxidative stress, and advanced age 70 years or
above) showed increased mortality, anxiety, and severity of COVID-19 symptoms in the
clinic [4–6]. Several questions need to be answered to understand the pathophysiological
connections between COVID-19 and diabetes mellitus, which leads to an increase in fatali-
ties. Approximately four different pathogenesis are involved in SARS-CoV-2 infection, such
as activation of the renin-angiotensin (RAS) pathway, oxidative stress, excess cytokines
release, and dysfunction of endothelium. COVID-19 develops after SARS-CoV-2 entry in
host’s cells and RAS activation with oxidative bursts [7,8]. In this article, we give some
insights on common features between diabetes and COVID-19-induced kidney damage
and discuss the implications of increased oxidative stress in the process, which may help
improve patient prognosis.

2. Is Oxidative Stress a Major Cause of Diabetes-Induced Kidney Damage?

Diabetes is one of the most common metabolic disorders influenced by several factors
such as age, sex, ethnicity, genetic factors, and pregnancy and appears as a comorbidity
with obesity, cardiovascular diseases, atherosclerosis, renal failure, cancer, and many other
chronic diseases [9]. People with diabetes show an impaired function of insulin (insulin
resistance) and therefore need an increased amount of insulin than β cells (in the pancreas of
a person) can produce. As a result, the presence of higher blood glucose in the bloodstream
is observed. It has been postulated that diabetic nephropathy develops due to localized
oxidative stress, where the key initiator may be increased mitochondrial production of
reactive oxygen species (ROS) arising from hyperglycemia and leading to various renal
disorders [10]. Diabetic nephropathy is present in almost one-third of Type 1 and Type 2
diabetic patients [11]. Diabetic neuropathy, nephropathy, and retinopathy can arise from
oxidative stress-induced complications in diabetes mellitus along with a host of other
disorders like coronary artery disease [12].

Diabetes is considered to be one of the major indicators for severe COVID-19 prog-
nosis, as more diabetic patients (diabetes type-2 is mainly evident, with limited evidence
from diabetes Type-1) showed severe COVID-19 symptoms and deaths after exposure to
SARS-CoV-2 virus [1,13–15]. A meta-analysis concluded that the diabetic patients showed
a 200% increased probability of death with severe COVID-19 symptoms than non-diabetic
patients [16]. Importantly, Toll-like receptor 4 (TLR4) is responsible for initiating diabetes
by expressing the transcriptional factor nuclear factor-kappaB (NF-κB) and the enzyme
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to produce ROS, which
also induce activation of endothelial nitric oxide synthase (eNOS) and xanthine oxidase en-
zymes [17]. Together these enzymes produce excess ROS and can be the causative agent(s)
for diabetes-like diseases [18]. Another recent study reported that presence of diabetes
mellitus type 1 results in increased morbidity and mortality rates during coronavirus
(COVID-19) disease [13]. Diabetic patients displayed higher cell counts of leukocytes and
neutrophils in their blood during admission with comparatively severe COVID-19 symp-
toms than non-diabetic patients. The diabetic patients also required more antibiotic therapy
and artificial ventilation, but still resulted in more deaths during their stay in the healthcare
facilities in China [1]. Oxidative stress also causes decreased use of glucose by muscles
and adipose tissues. An increase of 8-epi-prostaglandin F2α, an oxidative stress indicator,
is positively correlated with insulin resistance [19] (Figure 1). Insulin resistance is also
thoroughly interrelated with inflammation as a preclinical study showed increased tumor
necrosis factor α (TNF-α) from adipose tissues of obese and diabetic animals), a proinflam-
matory cytokine that can cause insulin resistance; suppression of TNF-α helps recovery of
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insulin resistance [20] (Figure 1). NLRP3 (nucleotide-binding oligomerization domain-like
receptor family pyrin domain containing 3), a polyprotein complex inflammasome found
in macrophages, is also responsible for causing diabetes and the release of inflammatory
cytokines. NLRP3 is stimulated by the activation of NF-κB (nuclear factor-kappa B, which is
triggered by TNF-α) and causes the secretion of proinflammatory cytokines pro-IL-1β and
pro-IL-18 (Figure 1). NLRP3 matures by PAMPs (pathogen-associated molecular patterns)
and DAMPs (damage-associated molecular patterns) or lipopolysaccharides. The matu-
ration of NLRP3 causes the release of cytokines such as IL (interleukin)-1β and IL-18 and
inflammation in the body [21]. Adipose tissues mainly produce inflammatory biomarkers
such as TNF- α, and macrophages and other immune cells are partially responsible for
insulin resistance. Type-2 diabetic patients show increased inflammatory cytokines and
autoimmune responses in the pancreatic islet cells and can cause insulin resistance and de-
creased insulin secretion, although the whole mechanism is not yet clearly understood [22].
Oxidative stress, insulin resistance, inflammation, and kidney cell damage are interrelated
and part of a chronic pathophysiological mechanism.
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Figure 1. Correlation between SARS-CoV-2, oxidative stress, diabetes, and obesity. Abbreviations:
↑: increase; ROS, reactive oxygenated species; TNF-α, tumor necrosis factor α, TLR, Toll-like receptor;
IL, interleukin; NADPH, nicotinamide adenine dinucleotide phosphate oxidase; IFNγ, gamma
interferon; NF-κB, nuclear factor-kappa B; NLRP3, nucleotide-binding oligomerization domain-like
receptor family pyrin domain containing 3 inflammasome; PAMPs, pathogen-associated molecular
patterns; DAMPs, damage-associated molecular patterns; MHC-II, major histocompatibility complex
class II. (The figure was made with www.biorender.com, accessed on 13 December 2021).
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3. What Is the Clinical Evidence on the Relationships between COVID-19
and Diabetes?

Some studies suggest that the COVID-19 vaccination should be prioritized in diabetic
patients (both type 1 and 2) as they have a poorer prognosis with COVID-19 compared
to COVID-19 patients without diabetes [23,24]. A recent randomized clinical trial on the
Scottish population (a population cohort study) in the first wave found increased severity
in COVID-19 symptoms and admitted for fatal and critical care units for treatment with
diabetes compared with those without diabetes [25]. The overall odds ratio for diabetes
was 1·395, calculated against patients without diabetes, which means diabetes was strongly
positively correlated with the severity of COVID-19 patients. Noticeably, the odds ratio for
the severity of Type-1 diabetic patients were much higher than Type-2 diabetic patients [25].
Another RCT with children with Type-1 diabetes in the US suggested that preintervention
and social support improved the children to manage COVID-19 pandemic-related stress
and depressive symptoms for the children and their parents [26].

Another ongoing RCT with COVID-19 patients introduced “telemetric continuous
glucose monitoring” for patients with positive diabetes suggested remote glucose moni-
toring may provide similar results to conventional finger-prick test (n = ~36 each group)
but better outcomes as it needs less exposure of healthcare workers and fewer risk of
cross-contaminations or reinfections [27].

A further RCT in Taiwan tried to educate and guide patients with diabetes Type-2 to
maintain their health during the COVID-19 pandemic and found that the health-related
coaching helped keep patient’s glycosylated hemoglobin (HbA1 c) levels under control;
they maintained physical exercises, and reduced eating out [28].

A systematic review investigated the relationships among periodontal diseases, dia-
betes, and COVID-19 and indicated that hyperglycemia (e.g., diabetes) might increase the
possibilities of periodontitis development and influence excessive expression of angiotensin-
converting enzyme 2 (ACE-2) in periodontal tissue of diabetes Type-2 patients [29]. In
addition, the excessive ACE-2 can favor the SARS-CoV-2 virus to develop COVID-19 [29].
Therefore, periodontal diseases or diabetes type 2 can potentially influence the development
of COVID-19 symptoms and go for mild to severe form depending on the physiological
and pathological conditions of the patients. However, no proper randomized clinical trials
are evident to date proving this relationship.

4. How Can SARS-CoV-2 Damage the Kidneys?

SARS-CoV-2 enters the host body interacting with the angiotensin-converting en-
zyme-2 (ACE-2), which is present in multiple organs, mainly kidneys, lungs, testis, breast,
heart, and gastrointestinal systems [30]. SARS-CoV-2 interacts with angiotensin-converting
enzyme 2 (ACE2) and causes an increase of angiotensin-2 in tissues that activates CD8+
and CD4+ T-lymphocytes macrophages and NK cells and releases pro-inflammatory and
inflammatory cytokines such as IL-1β, IL-2, IL-4, IL-17, IL-21, and IFNγ (gamma inter-
feron) [31]. SARS-CoV-2 interaction with TLR4 in macrophages can also activate major
histocompatibility complex (MHC) class II molecules and thus in-crease T-cells- and B-cells-
mediated secretions of proinflammatory cytokines (IL-1β, IFNγ, and TNF-α) (Figure 1).
The released inflammatory cytokines from the lungs, kidneys, or elsewhere in the body
because of SARS-CoV-2 infection, are transported through the bloodstream that causes
quick acute inflammation in the capillaries of kidneys, lungs, heart, and all major organs.

ACE-2 receptor is expressed mainly in proximal tubular epithelial cells in both dia-
betic and healthy kidneys, but diabetic patients express higher ACE-2 receptors in their
pancreatic islets than normoglycemic patients [32]. In COVID-19 patients, ACE-2 receptor
containing proximal tubular epithelial cells has been detected in urine samples, suggesting
a common infection pattern of SARS-CoV-2 in patients with diabetes [33]. Importantly,
overexpression of ACE-2 receptors in the proximal tubular epithelium of diabetic patients
may cause severe SARS-CoV-2 associated clinical symptoms and damage to kidneys as
microscopic examination of COVID-19 infected kidneys showed proximal tubular injury
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and acute tubular necrosis [34]. Another study indicated that acute injury in the kidney is
responsible for the increased morbidity and mortality of SARS-CoV-2 infected patients [35].

ACE-2 binding of SARS-CoV-2 causes depletion of ACE-2 receptors that may facilitate
the binding of angiotensin-II with angiotensin receptor-1 from blood vascular membranes
that produce NADPH (nicotinamide adenine dinucleotide hydrogen phosphate) oxidase,
oxidative stress and cause constriction of blood vessels, platelet aggression, the release of
proinflammatory cytokines (i.e., inflammation), and increase the severity of the infection [36,37].
SARS-CoV-2 induced severe infection also causes a high neutrophil/lymphocyte ratio that
generates increased reactive oxygen species levels. The oxidative stress further induces platelet
dysfunction and tissue damage in the lung, kidney, and other major organs [38].

In a cross-sectional study conducted with 50 COVID-19 patients in Nigeria, oxidative
stress marker, 8-isoprostaglandin F2α, was found to be significantly higher (p = 0.049); on
the other hand, malondialdehyde (MDA) was lower (p < 0.001) in COVID-19 patients than
controls. The authors further concluded that COVID-19 infections and other comorbidities
such as diabetes, malaria, and hypertension increased the risks of developing oxidative
stress [39]. Furthermore, increased oxidative stress could be responsible for “amplifying and
perpetuating the cytokine storm, coagulopathy, and cell hypoxia” in COVID-19 patients [40].
Oxidative stress has also been described as a ‘key player’ in the pathogenesis, severity,
and mortality risk in SARS-CoV-2 infections [41]. A systematic review and me-ta-analysis
showed that acute respiratory distress syndrome development in COVID-19 patients
accelerated the development of acute kidney injury (AKI) and higher mortality rate [42].

5. Synergistic Kidney Damage and Morbidity Due to COVID-19 and Diabetes

Both diabetes and COVID-19 cause oxidative damage and inflammation in tissues
and share common molecular pathways to generate clinical symptoms. As discussed, the
presence of both diseases, COVID-19 and diabetes can cause synergistic oxidative stress,
severe inflammation, vasoconstriction, and thrombosis in capillary blood vessels, mainly in
the kidney and lungs, and therefore cause synergistic damage in these organs that leads to
death. A study conducted on 174 COVID-19 patients (24 patients among them diabetic)
found that diabetic patients with COVID-19 were at an increased risk of poor prognosis
due to higher risks of severe pneumonia and out-of-control inflammatory responses [43].
Another study reported that the chance of developing COVID-19 pneumonia is 87.9%
higher in patients with diabetic nephropathy, and the probability of ventilation is 101.7%
higher, probability of a fatal outcome is 20.8% more compared to chronic kidney disease
alone [44]. Noticeably in this regard, a recent study found significantly lower mortality
in metformin-administered COVID-19 diabetic patients (3/104, 2.9%) than in the non-
metformin-administered COVID-19 diabetic group (22/179, 12.3%, p = 0.01), suggesting
that blood sugar control is a significant factor in reducing mortality rates when diabetes is
a comorbid factor with COVID-19 [45]. However, metformin can act through a secondary
mechanism. Since the drug acts through AMPK (AMP-activated protein kinase) activation,
such activation can lead to phosphorylation of ACE2, the receptor for SARS-CoV-2 [46].
This in turn can lead to conformational and functional changes in ACE2 leading to de-
creased binding ability of the SARS-CoV-2 spike protein receptor binding domain (S-RBD),
leading to decreased entry of the virus into human host cells. The presence of a large
phosphate moiety on ACE2 due to phosphorylation by AMPK can further be a factor in
decreased binding ability of S-RBD to ACE2 because of steric hindrance [46]. Furthermore,
COVID-19 can by itself cause AKI, a fact recognized earlier on following the outbreak of
the pandemic [47]. We hypothesize that COVID-19 and diabetes increase oxidative stress
that can play a synergistic role in damage to the kidneys, when present as comorbidities
(Figure 2) [48,49].
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13 December 2021).

Interestingly, some antioxidants like flavonoids have been suggested as a complemen-
tary therapy for COVID-19 [50] and diabetes [51], which could be beneficial in ameliorating
kidney damage during COVID-19 infection with diabetes as a comorbidity [52]. For ex-
ample, the flavonoid apigenin reportedly attenuated renal dysfunction, oxidative stress
and fibrosis in streptozotocin-induced diabetic rats [53]. Apigenin has also been shown in
in silico studies to be an inhibitor of Mpro, the main protease of SARS-CoV-2 and which
plays a vital role in viral replication [54]. Apigenin is not the only example of its type. The
flavonoid quercetin reportedly acts as a prophylactic to COVID-19 [55,56], as well as an
antidiabetic and antioxidant compound. Moreover, recently, a preclinical study showed
quercetin’s renal protective effects [57]. Intragastric administration of quercetin (1.5 and
3 g per kg body weight daily for eight weeks) effectively reduced apoptosis of renal cells
and plasma levels of blood urea nitrogen, creatinine, and uric acid in male Sprague Dawley
rat model of chronic renal failure [57]. The study also reported that quercetin treated rats
showed reduced inflammation by preventing phosphoinositide 3-kinase (PI3 k)/Akt (pro-
tein kinase B) signaling pathway by targeting phosphoinositide 3-kinase regulatory subunit
1 (PIK3 R1) and reduced expression NLRP3, p-PI3 k, Phospho-Akt (p-Akt), and caspase1
in kidney tissues [57]. Another study reported that in a mouse model of renal dysplasia,
quercetin treatment increased the epithelial organization of developing nephrons, inhibited
nuclear beta-catenin, and thus improved renal dysplasia [58]. A report showed that com-
bined pretreatment of 30 mg/kg resveratrol and 50 mg/kg quercetin over a period of seven
days prevented paracetamol-induced (2 g/kg body weight) acute renal failure via reducing
plasma creatinine, urea, and inflammatory markers (e.g., MDA, IL-6, and TNF-α) [59].

Modlinger and colleagues show that oxidative stress can cause salt retention in kidneys
by promoting the expression of vasoconstrictor molecules and NADPH oxidase, and thus

www.biorender.com
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it can cause acute to chronic renal failure [60]. Another report mentioned that COVID-19
causes activation of the innate immune response and secretion of inflammatory cytokines
due to the development of oxidative stress [61]. The cytokine storm seen repeatedly in
COVID-19 patients has been hypothesized to be a consequence of oxidative stress [50];
as such, it can be expected that antioxidants such as flavonoid compounds would relieve
COVID-19 severity, similar to antioxidant flavonoid effects on ameliorating diabetic cardiac
myopathy through alleviation of oxidative stress [62] and diabetic nephropathy through a
similar mechanism. Quercetin, apigenin, baicalin, luteolin, hesperidin, genistein, proan-
thocyanidin and eriodictyol have been found to be capable of alleviating oxidative stress
in diabetic nephropathy [63]. Incidentally, all the above flavonoid compounds have been
reported to bind to SARS-CoV-2 protein components or the receptor hACE2 [54–56,64–69].
These flavonoids are also antioxidants suggesting a common mode of action in both COVID-
19 and diabetes, which in all probability is through reducing oxidative stress.

There are also recommendations on using Chinese herbal medicines and polyphenolic
compounds containing antioxidants as an adjuvant to reduce the severity and mortality
of COVID-19 patients with diabetes [70,71]. Besides flavonoids, phenolic compounds,
which have antioxidant capacity and are present in essential oils of plants, may play a
similar beneficial role in reducing oxidative stress during diabetes and COVID-19. Eugenol,
a phenolic compound present in clove (Syzygium aromaticum (L.) Merr. & L. M. Perry,
family: Myrtaceae), has been shown to ameliorate insulin resistance, oxidative stress, and
inflammation in high fat diet/streptozotocin-induced diabetic rat [72], inhibit pancreatic α-
amylase [73], and inhibited α-glucosidase activity and formation of advanced glycation end-
products [74]. Antioxidant therapy prevented the cardiovascular disorders of patients who
require dialysis, but the effect was not seen in patients with chronic kidney disease (CKD).
Importantly, Jun and colleagues reported that antioxidants could reduce the development
of kidney disease (late-stage) and serum creatinine levels by improving serum clearance of
creatinine. The study reported that antioxidant therapy did not increase life-threatening
adverse events, indicating its possible safety, although it needs validation from a larger
population cohort and more comprehensive observational studies [75].

A recent RCT investigated the effect of 1 g of quercetin (along with standard care)
over a period of four weeks in COVID-19 patients (n = 76, per group) and observed
reduced severity of COVID-19 symptoms, duration of hospitalization, artificial ventilation,
and fewer deaths in comparison with patients with standard care (without quercetin
supplementation) [76]. Another pilot RCT from the same group of authors found that
600 mg of quercetin supplement over a period of 2 weeks improved COVID-19 related
clinical symptoms and relevant plasma parameters on a small number of patients and
compared against standard care group (n = 21) [77]. On the other hand, another RCT did
not observe any effect of the antioxidant, ascorbic acid on a small number of COVID-19
patients (n = ~53 each group) treated over a period of 10 days with ascorbic acid (8 g),
zinc gluconate (50 mg), or both agents, and none (standard of care) [78]. Similarly, a
second RCT with 6 g/day (1.5 g, four times daily) intravenous ascorbic acid supplement
with standard care for 5 days produced no improvement against patients with standard
care (n = 30 per group) [79]. Another RCT planned to administer 24 g/day vitamin C
for 7 days intravenously on COVID-19 patients but finished the study without reporting
any results [80]. From these limited numbers of available clinical trials, the reports were
based on small numbers of patients. More extensive studies are required over an extended
period to make any fruitful comment on the effectiveness of these antioxidant compounds
against SARS-CoV-2.

Molecular docking studies showed that the compound (quercetin) has high binding
affinities to various targets in SARS-CoV-2 [81], and can be a potential nutraceutical against
COVID-19 [82–84]. It is evident that both diabetes and COVID-19 induce the over-production
of reactive oxygen species, which ultimately may cause damage to many vital organs, includ-
ing the kidney, heart, and lungs [17]. It is also evident from some studies that antioxidants can
reduce kidney disease. There are increased hospitalization and mortality rate with COVID-19
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patients with diabetes. It is hypothesized that antioxidant therapy may reduce the fatality
of COVID-19 patients with diabetes by reducing the over-production of the reactive oxygen
species. However, this concept is in an early stage and needs many studies to validate this
concept. The case can then be made for antioxidants (flavonoids and phenolic compounds) for
use as therapeutic or nutraceutical in the case of COVID-19 patients and who have diabetes
as a comorbidity for these compounds antioxidative capacities (Table 1).

Table 1. Several dietary flavonoids with anti-COVID-19, antioxidant and antidiabetic properties.

Flavonoid Anti-COVID-19 Antioxidant Antidiabetic

Quercetin

In silico and in vitro studies
demonstrated that quercetin can

interfere with various stages of the
coronavirus entry and replication cycle

such as PLpro, 3CLpro, and
NTPase/helicase [85,86].

Significantly increased antioxidant
enzyme activities in streptozotocin

(STZ)-induced diabetic rats [87].
DPPH and ABTS radical scavenging

activities reported [88].

Pre-treatment prevented STZ-induced
diabetes in rats [87].

Kaempferol
In silico studies showed that
kaempferol can inhibit Spike

glycoprotein of SARS-CoV-2 [89].

DPPH and ABTS radical scavenging
activities reported [88].

Antioxidant effect observed in DPPH
(2,2-diphenyl-1-picrylhydrazyl), ABTS+

radical scavenging and xanthine oxidase
inhibition assays [90].

Dipeptidyl peptidase IV (DPP-4) and
α-glucosidase inhibitory effect was

observed [90].

Myricetin

Inhibition of SARS-CoV-2 replication
by targeting Mpro (in silico) and

ameliorating pulmonary inflammation
(reducing bleomycin-induced

pulmonary inflammation in mice) [91].

Antioxidant effect observed in DPPH
(2,2-diphenyl-1-picrylhydrazyl), ABTS+

radical scavenging and xanthine oxidase
inhibition assays [89].

Dipeptidyl peptidase IV (DPP-4) and
α-glucosidase inhibitory effect was

reported [89].

Luteolin

In silico studies show luteolin to bind
strongly to Mpro, PLpro, and ACE-2

[65].
In silico studies indicated that luteolin
can bind to S2 unit of spike protein (S)

of SARS-CoV-2 [92].

DPPH and ABTS radical scavenging
activities reported [88].

Luteolin ameliorated diabetes in mice.
Luteolin improved blood glucose,

HbA1c (hemoglobin A1c), and insulin
levels. Anti-inflammatory and

anti-oxidative effects of luteolin were
also observed [93].

Apigenin
In silico studies indicated that apigenin
can bind to S2 unit of spike protein (S)

of SARS-CoV-2 [92].

DPPH and ABTS radical scavenging
activities reported [88].

The beneficial roles played by apigenin
in diabetes mellitus have been reviewed.

The compound is an antioxidant;
metabolism of glucose and transfer to

peripheral tissues are enhanced;
pancreatic secretion of insulin is

increased; activities of gluconeogenic
enzymes and aldose reductase enzyme
are suppressed leading to prevention of

diabetic complications like cataract,
retinopathy, and neuropathy [94].

Naringenin

In silico evidence of Mpro inhibition
and reduction of

angiotensin-converting enzyme
receptors activity, reviewed by

Tutunchi et al. [95].

Antioxidant and anti-diabetic effects
observed in STZ-nicotinamide-induced
diabetic rats as shown by significantly

lower mean levels of fasting blood
glucose and glycosylated hemoglobin,

significantly elevated serum insulin
levels, significantly higher mean
activities of pancreatic enzymatic

antioxidants, significantly higher mean
levels of plasma non-enzymatic

antioxidants, lower mean pancreatic
tissue levels of MDA and lower mean
activities of alanine aminotransferase

(ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP) and lactate

dehydrogenase (LDH) in serum [96].

Antioxidant and anti-diabetic effects
observed in STZ-nicotinamide-induced
diabetic rats as shown by significantly

lower mean levels of fasting blood
glucose and glycosylated hemoglobin,

significantly elevated serum insulin
levels, significantly higher mean
activities of pancreatic enzymatic

antioxidants, significantly higher mean
levels of plasma non-enzymatic

antioxidants, lower mean pancreatic
tissue levels of MDA and lower mean
activities of alanine aminotransferase

(ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP) and lactate

dehydrogenase (LDH) in serum [96].
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Table 1. Cont.

Flavonoid Anti-COVID-19 Antioxidant Antidiabetic

Hesperidin

In silico studies indicate that hesperidin
may bind to multiple components of

SARS-CoV-2 (like Mpro, PLpro, Spike
protein) and its human receptor ACE2,

reviewed by Agrawal et al. [97].

Antioxidant and anti-diabetic effects
observed in nicotinamide-STZ-induced

diabetic rata [98].

Antioxidant and anti-diabetic effects
observed in

nicotinamide-STZ-induced diabetic
rata [98].

Catechin
As shown in in silico studies, catechin

can bind to S protein of SARS-CoV-2 and
hACE2, thus inhibiting viral entry [99].

Catechin showed antioxidant activity such
as free radical scavenging activity against

DPPH and ABTS free radicals [100].

Catechin inhibited activity of
α-amylase and α-glucosidase;

catechin also significantly decreased
the different lipid parameters,

hepatic, and renal function enzyme
levels along with Hb1c level in

diabetic rats [100].

Abbreviations: ACE-2, angiotensin-converting enzyme 2; DPPH, 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl;
PLpro, papain-like protease; 3CLpro, 3-chymotrypsin-like protease; NTPase, nucleoside-triphosphatase; Mpro,
main protease; HbA1c, hemoglobin A1c; DPP-4, Dipeptidyl peptidase IV; STZ, streptozotocin; ABTS, 2,2′-azinobis-
(3-ethylbenzthiazolin-6-sulfonic acid); SARS-CoV-2, severe acute respiratory syndrome coronavirus-2; COVID-19,
coronavirus disease 2019.

Various in silico studies demonstrated that quercetin, luteolin, myricetin, naringenin,
and hesperidin could interfere with various stages enzymes of SARS-CoV-2 (viral pa-
pain such as protease (PLpro) [85], and main protease (Mpro; 3 CLpro, also named 3-
chymotrypsin-like protease) [92,97], NTPase/helicase) [99] of the coronavirus entry and
replication cycle [85,92,95,97]. On the other hand, kaempferol [89], luteolin [92], api-
genin [97], and catechin-like flavonoids [99] interact and inhibit (in silico) SARS-CoV-2
spike proteins (especially S2) and hACE-2 receptors, and thus can prevent viral entry inside
the host cells [89,92,97,99] (Table 1).

It is noticeable that most of the antioxidant activities of flavonoids were measured (Table 1)
using chemical reactions and assessing the kinetics or reaching the equilibrium state such
as free radical scavenging activity against 2,2′-Azinobis-(3-ethylbenzothiazoline−6-sulfonic)
acid (ABTS) and [2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl] (DPPH) free radicals, as these
reagents cause oxidative stress (overproduction of reactive oxygenated species, ROS) [101].
The main issue is that normal cells produce small amounts of ROS, which cannot be measured
correctly using current colorimetric methods. Noticeably, some of these flavonoids were
tested for antioxidant enzyme activities such as superoxide dismutase, glutathione peroxidase,
and catalase enzymes in pancreatic cells using a STZ-induced diabetic rat model [87,102]. It
needs to be further pointed out that flavonoids do not just reduce oxidative stress through
scavenging of free radical species but also through inhibition of ROS producing enzymes such
as xanthine oxidase [85] or through chelation of metal ions [87].

Flavonoids showed antidiabetic effects, such as quercetin inhibited glucose absorption
from intestine, improved glucose use from peripheral tissues, as well as it simulated insulin
secretion. Studies also suggest that consumption of quercetin displayed a long plasma half-
life in humans [103]. Furthermore, a meta-analysis on the effects of quercetin showed that
the flavonoid reduced blood glucose levels in a dose-dependent manner in experimentally
induced (e.g., STZ-induced) diabetic animals, and it is effective at higher doses (10, 25 or
50 mg/kg body weight) [104]. Quercetin inhibits the enzymes dipeptidyl peptidase IV
(DPP-IV) and thus shows antioxidant and antihyperglycemic properties [105]. Importantly,
it is a generally recognized as a safe compound according to FDA [106]. Quercetin also
inhibited TNF-α-mediated inflammation and insulin resistance in human adipose cells in an
in vitro study [107]. Another flavonoid, kaempferol increases glucose uptake and glucose
transporter 4 translocation via a Janus kinase 2-dependent pathway in skeletal (L6) myoblast
cell line, which indicates kaempferol’s hyperglycemic effect in vitro [108]. A clinical study
showed that consumption of a formulation that contained myricetin, quercetin, chlorogenic
acid (another group of polyphenol compounds) reduced plasma glucose levels in confirmed
diabetes-2 patients, and cotreatment with metformin showed potentiation of metformin’s
antidiabetic activities [109]. Three times daily application of a topical formulation contained
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quercetin for four weeks improved numbness, jolting pain, and irritation, and quality of
life of patients who experience symptomatic diabetic peripheral neuropathy in a small
number of patients (total n = 34) [110]. Another clinical trial showed no effect of a flavonoid
against placebo over a 12-week combined treatment of isoquercetin (225 mg once daily) and
sodium nitrite (40 mg twice daily) in CKD patients (n = 35 per group) [111]. Noticeably, an
antioxidant such as resveratrol (a stilbenoid compound) caused suppression of angiotensin-
2 that may be used as an adjunct therapy to COVID-19 [112,113]. It seems that not all
antioxidants are effective in preventing oxidative stress. The capability of preventing
oxidative damage varies between compounds, which needs further extensive clinical trials
to elucidate the efficacies of these compounds.

Vitamin D (a natural antioxidant) and magnesium deficiencies also exacerbate the
underlying pathogenetic mechanisms in COVID-19 [114]. Vitamin D is essential to main-
taining a healthy immune system [115]. Vitamin D levels were shown to be associated with
blood glucose and body mass index of COVID-19 patients. As suggested by di Filippo
and colleagues, a common pathophysiological mechanism might be involved with hyper-
glycemia, adiposity, and COVID-19 severity [116]. Magnesium activates vitamin D and
protects cells from oxidative stress [114]. Severe COVID-19 patients showed lower vitamin
D levels and higher oxidative stress parameters (like plasma LDH, peroxides, and oxidative
stress index) than less severe COVID-19 patients [117]. A randomized clinical trial in Spain,
oral supplement of calcifediol (25-hydroxyvitamin D3: 0.532 mg on day 1, 0.266 mg on
days 3 and 7, and weekly afterwards) in COVID-19 patients (n = 50) along with standard
treatment for COVID-19 in hospital reduced the severity of symptoms and admission to
Intensive Care Units (ICU) than standard care group (n = 26) [118]. As the study was based
on a small number of COVID-19 patients (total n = 76) and there was in-equality of sample
sizes between control and treatment groups, the study requires further validations to com-
ment on the efficacy of vitamin D against COVID-19. However, it is re-ally a promising
study that antioxidants such as calcifediol helped reduction of COVID-19 severity and ICU
admission [118]. Noticeably, people with inherited glucose-6-phosphate dehydrogenase
(G6 PD) deficiency can cause of reduced circulatory 25-hydroxyvitamin D in blood, and can
be vulnerable to excess oxidative stress, cytokine release, and pulmonary dysfunction due
to COVID-19 infection [119]. It is important to note that there is no strong clinical evidence
for flavonoids or vitamin C against protection from oxidative damage caused by COVID-19.
Vitamin D can prevent oxidative damage produced by SARS-CoV-2 in people suffering
from COVID-19. However, further evidence is required in larger population cohorts based
on various geographical locations, age groups, food habits, and ethnicity.

Various fruits and vegetables are sources of flavonoids. Common vegetables such
as tomatoes are natural sources of quercetin, kaempferol, and naringenin [120] (Figure 3).
Broccoli, celery, cabbages, peppers, and parsley are sources for luteolin [121,122]. Noticeably
onions and tea are main dietary sources of flavonols (e.g., quercetin and kaempferol) and
flavones (apigenin and luteolin) [123]. Onions, parsley, sage, tea, citrus fruit (like oranges,
lemons, and limes), apples, grapes, cherries, and berries are potential sources of quercetin
and other flavonoids [123–126] (Figure 3). Noticeably parsley, onion, zinger (source of
hesperidin), citrus fruit-peels, sage are sources of essential oils, which can improve the
bioavailability of flavonoids (like quercetin microemulsion of peppermint, clove and rose-
mary oils) [127]. Essential oils are sources of antioxidants, improve the quality of life of
diabetic patients, analgesics, and may have the capability to improve COVID-19 and related
comorbidities [128–132]. Iddir and associates reported that poor nutrition stimulates in-
creased oxidative stress and inflammation, which render poor immunity against pathogens.
However, dietary protein intake can help antibody production, and micronutrients such
as vitamins D, A, C, and E, flavonoids, carotenoids, and minerals such as zinc can prevent
the expression of transcription factors (NF-kB and Nrf-2) related to inflammation [133].
This information is also supported by a clinical study with COVID-19 patients that showed
reduced plasma antioxidant levels than people without SARS-CoV-2 infection [39].
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6. Conclusions

COVID-19 and diabetic patients have a common feature of increased oxidative stress.
Patients with both disorders generally end up with poor prognosis and death. A large
part of this poor prognosis and death is caused by kidney failure. COVID-19 and diabetes
may both be responsible by increasing oxidative stress in a synergistic manner. Flavonoids
and polyphenols, because of the nature of their chemical structure are good antioxidants.
These phytochemicals can scavenge reactive oxygen species (ROS) and inhibit enzymes
responsible for making ROS. They also inhibit production of ROS through chelation of
metal ions. We suggest that this oxidative stress factor of COVID-19 with diabetes as
a comorbidity and vice versa has been overlooked largely. We further recommend that
judicious use of vitamin D, flavonoids, and other antioxidants as possible therapeutics,
may mitigate this oxidative stress effect and improve the prognosis of patients suffering
from both COVID-19 and diabetes.
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