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Abstract: Vitamin D is a critical regulator of calcium and bone homeostasis. While vitamin D has
multiple effects on bone and calcium metabolism, the regulation of intestinal calcium (Ca) absorption
efficiency is a critical function for vitamin D. This is necessary for optimal bone mineralization during
growth, the protection of bone in adults, and the prevention of osteoporosis. Intestinal Ca absorption
is regulated by 1,25 dihydroxyvitamin D (1,25(OH)2 D), a hormone that activates gene transcription
following binding to the intestinal vitamin D receptor (VDR). When dietary Ca intake is low, Ca
absorption follows a vitamin-D-regulated, saturable pathway, but when dietary Ca intake is high, Ca
absorption is predominately through a paracellular diffusion pathway. Deletion of genes that mediate
vitamin D action (i.e., VDR) or production (CYP27B1) eliminates basal Ca absorption and prevents the
adaptation of mice to low-Ca diets. Various physiologic or disease states modify vitamin-D-regulated
intestinal absorption of Ca (enhanced during late pregnancy, reduced due to menopause and aging).
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1. Introduction

It has now been 100 years since E.V. McCollum first identified a fat-soluble compound
in food that supported bone growth and prevented rickets; he called this compound vitamin
D. In the intervening century, many scientists have contributed to our understanding for
how vitamin D regulates the physiology of calcium (Ca) metabolism. For example, in
1937 Nicolaysen showed that vitamin D is critical for intestinal Ca absorption [1] while
later studies by Pansu et al. [2] and Sheikh et al. [3] showed that vitamin D deficiency
significantly reduces intestinal Ca absorption. The critical breakthrough defining the
mechanism used by vitamin D to regulate Ca metabolism came in the early 1970′s when
research by Holick et al. [4] and Norman et al. [5] isolated the active metabolite of vitamin D,
1,25 dihydroxyvitamin D3 (1,25(OH)2D), from the intestine. Shortly thereafter, Brumbaugh
and Haussler [6] discovered the nuclear receptor for 1,25(OH)2D, the vitamin D receptor
(VDR), in intestinal mucosa as well. Since then, we’ve learned the detailed mechanism used
by 1,25(OH)2D to regulate gene expression [7] while global and conditional VDR knockout
mice have allow us to study the function of vitamin D in Ca/bone metabolism and in
other physiologic systems. As part of this effort, my research group has shown that the
single most important role for vitamin D during growth is the regulation of intestinal Ca
absorption [8] but that 1,25(OH)2D signaling through the VDR has a broad array of target
genes in the intestine [9]. Because of the central role that vitamin D plays in the regulation
of intestinal Ca absorption, this review provides a critical starting point for anyone who
wants to understand the physiologic importance of vitamin D.

2. Vitamin D Has a Critical Physiologic Role for Protecting Bone through the
Regulation of Intestinal Ca Absorption

Bone mass is lost when dietary Ca intake is inadequate and so one usually thinks of
bone when the term “Ca homeostasis” is used. However, Ca homeostasis is not regulated
to maintain bone integrity. Instead, bone, the parathyroid gland, intestine, and kidney
make up a multi-tissue axis that work together to maintain serum Ca within a narrow
range (8.9–10.2 mg/dL). As a result, after a meal intestinal Ca absorption is a signal that
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disturbs and elevates serum Ca while bone formation and resorption, along with renal Ca
excretion, respond to fluxes in serum Ca in an attempt to limit perturbations in serum Ca.
This coordination was shown clearly by Bronner and Aubert who used Ca kinetics in rat
models to show how the body adapts to habitual low Ca intake by increasing Ca absorption
efficiency, reducing renal Ca loss, and mobilizing Ca from the bone (i.e., resorption) [10].
Pansu et al. [11] showed the impact of dietary Ca intake on intestinal Ca absorption directly
when they found that feeding rats a 0.17%, low Ca diet for 5 weeks increased duodenal Ca
absorption efficiency by increasing the saturable component of transport (Vmax increased
55%). Similarly, Norman et al. [12] found that in adult humans, feeding a diet with 300 mg
of Ca/day for 8 weeks increased Ca absorption efficiency by 43% compared to subjects
consuming 1600 mg Ca/day. These studies, and others like them, led to the identification
of 1,25 dihydroxyvitamin D (1,25(OH)2 D) and parathyroid hormone (PTH) as the major
hormonal regulators of Ca homeostasis.

When dietary Ca is habitually low, there is a transient reduction in serum Ca that is
sensed at the parathyroid gland through the Ca sensing receptor (CaSR). This cell surface
receptor mediates signals into the parathyroid gland to increase the production and release
of PTH into the circulation—a condition called nutritional secondary hyperparathyroidism.
PTH has several important functions in Ca metabolism. First, it regulates renal production
of 1,25(OH)2 D by inducing the CYP27B1 gene that encodes the enzyme 25 hydroxyvitamin
D-1α hydroxylase [13] and it suppresses expression of the CYP24A1 gene that encodes
the 25 hydroxyvitamin D-24 hydroxylase [14,15]. 1,25(OH)2 D released from the kidney
is the most important regulator of increased intestinal Ca absorption. Of course, this
physiologic adaptation has limits so that if the degree of dietary Ca deprivation is too great,
the adaptation of intestinal Ca absorption will not be sufficient to compensate. This case,
1,25(OH)2 D and PTH will both promote bone resorption by stimulating osteoclastic activity
while also enhancing renal Ca reabsorption in the proximal renal tubule. Collectively, this
physiological adaptation can protect serum Ca but at the expense of bone mass.

The central role for vitamin D as a regulator of intestinal Ca absorption has been
known for more than 80 years [1,16]. In vitamin D deficient animals intestinal Ca absorption
efficiency falls by >75% [2]. Similarly, dialysis patients with low circulating 1,25(OH)2
D levels also have low intestinal Ca absorption [3]. Finally, in elderly adults, secondary
hyperparathyroidism can maintain serum 1,25(OH)2 D (and Ca absorption) until serum
25-hydroxyvitamin D (25(OH)D) levels fall to ≤10 nmol/L, at which point there is not
enough substrate to convert to 1,25(OH)2 D [17].

A challenging concept for many people examining Ca absorption is that it is not a
single process but the sum of events that occur through two routes, a transcellular, sat-
urable pathway and non-saturable, paracellular diffusion pathway [11,18–20] (see Figure 1).
The relative importance of these two routes depends upon a person’s habitual Ca intake.
When Ca intake is low, like most adult American women [21], the saturable pathways
predominates while when Ca intake is high the bulk of absorption occurs through the dif-
fusional route. Absorption through these two routes can be modeled mathematically using
a Michaelis–Menten-like equation that contains a linear component that models diffusion
(Figure 1). The saturable transport pathway comprises three parts, apical membrane Ca
entry, transcellular diffusion, and basolateral membrane extrusion. The apical membrane
transport occurs down a concentration gradient while basolateral membrane extrusion is
against a concentration gradient and requires energy [22]. The saturable pathway is present
in the proximal small intestine (duodenum and jejunum), cecum, and colon [23–27] but is
absent in the ileum [2]. Studies in rat duodenum [2] and in differentiated monolayers of the
human intestinal cell line Caco-2 [28], show that 1,25(OH)2 D acts on the saturable transport
component where it increases the Vmax (maximal absorptive capacity) but not Km (the
affinity of the process for Ca). This suggests that 1,25(OH)2 D increases the production
of intestinal Ca transporters (which we’ll discuss below) but that this increase has limits.
In contrast, the passive Ca movement across the intestinal barrier occurs at ~13% of the
luminal Ca level per hour in humans [20]) and is seen in all segments of the intestine. There
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is some evidence that the non-saturable portion of Ca absorption in the human ileum is
also vitamin D sensitive; the slope of the non-saturable transport pathway is reduced in
chronic renal disease patients, and it returns to normal after 1,25(OH)2 D injection [20].
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creasing serum 25(OH)D levels beyond 50 nmol/L [34–37]. 

Figure 1. A Mathematical model of intestinal calcium (Ca) absorption. By studying Ca absorption
over a range of luminal Ca levels it has been shown that the total amount of Ca absorbed across
the intestinal barrier can be described as a curvilinear function. Total transport (A) is the sum of a
saturable component (likely transcellular, B) that can be defined by the Michaelis–Menten equation
and a diffusional process (C) that is defined by a straight line. [Ca] = luminal Ca concentration;
S = the slope of the diffusional component; Vmax = the maximum transport rate seen for the saturable
transport component; Km = the luminal concentration of the mineral at 1

2 the Vmax.

In normal healthy adults, the Km for the saturable component of Ca absorption from
the small intestine of adults is 3.3 mM, a concentration met by 265 mg Ca in a meal (calcu-
lated from data in [19,20]). As a result, when a person eats a meal with ~400 mg (1/3 the
RDA for Ca), saturable Ca transport is about 60% of total Ca absorption. However, the
apparent efficiency of total Ca absorption falls as the meal Ca intake level is increased and
the diffusional component of absorption takes a larger role. Normally, the amount of Ca
absorbed in each intestinal segment is determined by: (a) the presence of the saturable and
non-saturable pathways, (b) the residence time in the segment, and (c) the solubility of Ca
within the segment (e.g., lower Ca solubility at higher pH [29–31]) (Figure 2). Although
1,25(OH)2 D clearly increases intestinal Ca absorption efficiency [2,32,33], some have ar-
gued that elevated serum 25(OH)D levels might also regulate intestinal Ca absorption. This
is not supported by several large, well-designed studies that show no benefit of increasing
serum 25(OH)D levels beyond 50 nmol/L [34–37].
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There are many studies that show adequate dietary Ca and vitamin D, and therefore
total intestinal Ca absorption, is necessary for adequate bone growth. Deficiency of either
Ca or vitamin D in growing children or animals causes nutritional rickets characterized
by under-mineralized bone and low bone mass [39,40]. This is consistent with the concept
that bone matrix cannot mineralize in the absence of mineral. However, net Ca absorption
(which reflects both transport routes) is positively correlated to Ca balance in children,
reflecting the critical role for Ca absorption in optimizing peak bone mass [41]. Consistent
with this idea, we have shown that efficiency of Ca absorption through the saturable,
vitamin-D-regulated pathway is significantly positively correlated with femoral trabecular
bone volume/total volume in a genetically diverse population of 11 inbred mouse lines [42].
In addition, Patel et al. [43] reported that femur neck BMD was significantly positively
correlated with Ca absorption efficiency in adult men. Several studies also indicate the
high intestinal Ca absorption efficiency can protect against femoral bone loss in mice fed
low Ca diets [44] or reduce the risk of osteoporotic hip fracture in women with low dietary
Ca intake [45]. Collectively, these data show that both adequate Ca intake and genetically
programed high intestinal Ca absorption efficiency are necessary to build and protect
strong bones.

3. Vitamin D Effects on Intestinal Ca Absorption Are Mediated through the VDR

1,25(OH)2 D regulates Ca metabolism and intestinal Ca absorption by regulating gene
transcription, a process that requires binding of the hormone to the Vitamin D Receptor
(VDR), a nuclear receptor that is a ligand-activated transcription factor [7,46]. A number
of studies have shown the critical importance of VDR for the regulation of Ca and bone
metabolism. For example, children with inactivating mutations in the VDR gene (i.e., type
II genetic rickets) have defects in Ca metabolism that include lower intestinal Ca absorption
efficiency [47]. Similarly, VDR knockout mice have severe defects in bone growth and
mineralization as well as a >70% reduction in Ca absorption efficiency [48,49]. While the
gross phenotype of VDR knockout mice is abnormal bone, several lines of evidence indicate
that the most important role for VDR in Ca/bone metabolism during growth is the control
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of intestinal Ca absorption. First, the phenotype of the intestine-specific VDR knockout
mouse is identical to dietary Ca deficiency (osteomalacia, reduced serum Ca, elevated
serum 1,25(OH)2 D levels) [50]. Conversely, feeding high Ca/high phosphate/high lac-
tose “rescue” diets that promote passive/diffusional intestinal Ca absorption can prevent
the abnormal bone and Ca metabolism phenotype of VDR knockout mice [51]. Finally,
experiments from my lab showed that the VDR knockout mouse phenotype (e.g., hypocal-
cemia, elevated serum PTH, low bone mineral density) can be completely prevented by
intestine epithelial cell-specific, transgenic expression of VDR that normalizes intestinal Ca
absorption [8].

Several studies show that lower intestinal VDR levels disrupt the physiologic re-
sponse to 1,25(OH)2D. In VDR KO mice, low level, intestine-specific transgenic VDR
expression (10% of wild-type values) was insufficient to maintain normal intestinal Ca
absorption [52]. Meanwhile, my lab has shown that a 50% reduction in intestinal VDR
levels blunts 1,25(OH)2 D-regulated intestinal Ca absorption efficiency [53]. Consistent
with the idea that reduced VDR function impairs intestinal Ca absorption, several studies
have shown that Ca absorption efficiency is reduced in people with the longer, less tran-
scriptionally active “f” allele of the Fok I restriction fragment length polymorphism [54–56].
Collectively these data support the hypothesis that variations in VDR level or function
can influence vitamin-D-regulated intestinal Ca absorption as well as optimal intestinal
responses to the increased serum 1,25(OH)2 D levels that accompany dietary Ca restriction.

4. Molecular Models of Ca Absorption

Ion microscopy reveals that Ca can enter at the apical membrane and flow through
the absorptive epithelial cell in 20 min [57]. However, during vitamin D deficiency Ca
becomes trapped in the region just below the microvilli. Treating vitamin D deficient chicks
with 1,25(OH)2 D reverses this effect starting 2–4 h after treatment [58], consistent with the
induction of gene expression mediated through the VDR. In 1986 Bronner et al. [59] critically
reviewed transport data from a wide variety of well-controlled mechanistic studies, and
from this analysis built the facilitated diffusion model (Figure 3, with protein distributions
across the intestinal tract in Figure 2). In the first step of this model, brush border membrane
uptake of Ca is mediated by an apical membrane Ca channel, which was later identified as
the transient receptor potential cation channel vanilloid family member 6 (TRPV6, originally
called CaT1 or ECAC2) [60]. TRPV6 gene expression is strongly regulated by 1,25(OH)2 D
in the duodenum of mice [33,61] and in Caco-2 cells [62] and this induction is mediated
by VDR binding enhancers upstream from the transcription start site [63,64]. Induction
of TRPV6 mRNA precedes the increase in duodenal Ca absorption that occurs following
1,25(OH)2 D injection [33]. While initial studies suggested that 1,25(OH)2 D-mediated Ca
absorption was not reduced in TRPV6 knockout mice [65,66], later studies showed that
TRPV6 knockout mice [66], and mice with a D541A variant TRPV6 that inactivates Ca
movement through the channel [67], had a blunted ability to increase Ca absorption in
response to feeding a low Ca diet. In addition, my lab has shown that intestine-specific
transgenic expression of TRPV6 increases Ca absorption efficiency and that this prevents
the abnormalities in bone/Ca metabolism of VDR knockout mice [68].

An alternative model for apical membrane Ca uptake during Ca absorption is that
Ca flows through the L-type Ca channel Cav1.3 (Figure 3), a transporter activated by
glucose-induced membrane depolarization following a meal (reviewed in [69]). However,
several studies do not support a physiologic role of Cav1.3 for vitamin-D-regulated Ca
absorption in growing mice [70,71]. In contrast, other studies suggest that Cav1.3 may have
a prolactin-regulated role in transcellular Ca transport during lactation [72] and contributes
to Ca absorption prior to the development of vitamin-D-regulated Ca absorption in the
neonatal mouse [73].
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tight junction complex. For details of how vitamin D regulates various aspects of these models refer
to the text.

The central player in the facilitated diffusion model is calbindin-D, a cytoplasmic
Ca binding protein [59] found in intestine (the 9 kd form, calbindin D9k) and the kid-
ney (the 28 kd form, calbindin D28k) [74] (Figures 2 and 3). This was based on studies
that show: (a) intestinal calbindin D9k protein levels are positively correlated to Ca ab-
sorption [59], (b) intestinal calbindin D9k levels are significantly reduced in vitamin D
deficient animals and in VDR knockout mice [48,75], (c) 1,25(OH)2 D injections increase
intestinal calbindin D9k levels [76], and (d) theophylline-mediated inhibition of Ca bind-
ing to calbindin D9k disrupts intestinal Ca absorption [77]. These observations led to
the hypothesis that calbindin D acts as a ferry for intracellular Ca movement during Ca
absorption [57,78]. In contrast, other studies indicate that calbindin D9k is not essential
for intestinal Ca absorption but may instead act as an intracellular Ca buffer that protects
cells from increases in intracellular Ca during Ca absorption. For example, neither basal
nor 1,25(OH)2 D-induced Ca absorption are reduced in calbindin-D9k null mice [66,79]. In
contrast, 1,25(OH)2 D-induced Ca absorption is reduced by 60% in calbindin-D9k/TRPV6
double knockout mice [66], suggesting the interaction of TRPV6 and calbindin-D9k has a
special role in Ca absorption. Another observation that suggests elevated calbindin levels
alone are not sufficient to drive intestinal Ca absorption is that calbindin-D protein remains
elevated in the intestine even after 1,25(OH)2 D-induced Ca absorption returns to normal
in chicks [80] and mice [33]. Finally, we have observed that intestinal calbindin-D9k levels
increase in intestine-specific TRPV6 transgenic mice with elevated intestinal Ca absorption
efficiency even in VDR knockout mice [68]. This suggests that calbindin-D9k is an intracel-
lular Ca buffer that increases in response to elevated transcellular Ca absorption and that it
is not induced to act as a facilitator of transcellular Ca movement.

The final step in the facilitated diffusion model is the extrusion of Ca from the cell.
This is an energy dependent process [22] mediated by the plasma membrane Ca ATPase 1b
(PMCA1b) [81,82] (Figures 2 and 3). Deletion of the PMCA1b gene (Atp2b1), or the 4.1R
protein that stabilizes PMCA1b in the basolateral membrane, reduces basal and 1,25(OH)2
D-induced intestinal Ca absorption [83,84]. While some suggest that the basolateral ex-
trusion of Ca is also be mediated by a sodium-Ca exchanger [85], disrupting the sodium
gradient necessary for sodium-Ca exchange did not block duodenal Ca transport [22].

Most intestinal Ca absorption research has focused on vitamin-D-regulated saturable
Ca transport but several studies have shown that vitamin D signaling can increase Ca
diffusion across the jejunum and ileum [20,86]. Tudpor et al. [87] found that 1,25(OH)2 D
induced Ca ion movement across the intestinal barrier by a solvent drag mechanism that
may involve charge selectivity of the tight junction. This is similar to the role of paracellin 1
(aka claudin 16), a tight junction protein that regulates ion-specific movement of magnesium
and Ca in the kidney [88]. Consistent with this idea, 1,25(OH)2 D treatment significantly
increased claudin-2 and 12 mRNA levels in Caco-2 cells and siRNA against these claudins
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reduced Ca permeability across Caco-2 cell monolayers [89]. In vivo, claudin 2/claudin 12
double knockout mice (but not single KO mice) have reduced Ca absorption across the
colon but not small intestine [90]. Claudin-2 and -12 expression is highest in the distal small
intestine [91] but essentially absent from the duodenum. A role for claudins in paracellular
Ca transport may explain why the non-saturable component of ileal Ca absorption was
reduced in chronic kidney disease patients with low serum 1,25(OH)2 D levels [20].

Two other models have been presented to explain vitamin D-mediated, transcellular
intestinal Ca absorption: vesicular transport and transcaltachia. The vesicular transport
model is an alternative to the role proposed for calbindin-D as a Ca ferry during tran-
scellular intestinal Ca absorption. This is based on the observation that 1,25(OH)2 D
treatment increased the activity and cycling of lysosomes [92,93], that Ca accumulates
within brush border membrane endosomes [94] and in lysosomes [95] during Ca absorp-
tion, and that disrupting lysosomal pH prevents lysosomal Ca accumulation and blocks Ca
absorption [95,96]. While these data suggest that vesicular movement may be a legitimate
pathway for uptake and movement of Ca through the intestinal epithelial cell, it is not clear
what makes the vesicular transport pathway specific for Ca. Transcaltachia is a mode of
Ca transport that occurs within minutes of exposing the basolateral side of enterocytes to
physiologic levels of 1,25(OH)2 D. Transcaltachia has been directly demonstrated in the
perfused chick duodenum [97]. Some data suggests transcaltachia results from 1,25(OH)2
D binding to a unique, alternative ligand binding pocket [98,99] in VDR within caveo-
lae [100], i.e., a novel non-nuclear role for the receptor. Other data suggest the basolateral
membrane protein mediating transcaltachia is a multi-functional Membrane Associated
Rapid Response Steroid receptor (MARRS). However, while intestine-specific deletion of
MARRS in mice reduced cellular 1,25(OH)2 D binding, disrupted 1,25(OH)2 D regulated
Ca and phosphate uptake into enterocytes [101,102] and reduced basal Ca absorption in by
30% [103], these reports have not reported the physiological impact of MARRS deletion on
bone density. Additionally, the rapid fluxes in serum 1,25(OH)2 D needed for transcaltachia
have not been reported during the consumption of Ca-rich meals when transcaltachia
would have to occur for the physiologic benefit of the process to be realized. As such,
transcaltachia is not a generally accepted mechanism for vitamin-D-regulated intestinal
Ca absorption.

5. Physiologic Regulation of Vitamin D-Mediated Intestinal Ca Absorption

As it has been described above, the major physiologic condition where vitamin D
signaling is engaged to regulate intestinal Ca absorption is the habitual consumption of a
low Ca diet. However, there are a number of other physiologic states that affect vitamin D
metabolism or action to influence intestinal Ca absorption, i.e., growth and development,
pregnancy/lactation, and aging.

The bulk of mechanistic studies on intestinal Ca absorption have been conducted
in growing 2–3-month-old rodents, but recent studies in mice indicate that vitamin D-
mediated Ca absorption is not important prior to weaning [73]. This is not completely
surprising as VDR is not expressed prior to 14d postnatally in rodents [104,105]. Ca
absorption studies in premature infants also suggests that Ca absorption during late
development is vitamin D independent [106]. Research suggests that during childhood
and adolescence, growth hormone (GH) and its physiologic mediator insulin-like growth
factor I (IGF-1) promote intestinal Ca absorption in two ways. The first effect is through
activation of renal CYP27B1 and the elevation of serum 1,25(OH)2 D levels [107]. However,
in adult animals, GH treatment increases intestinal Ca absorption without significantly
increasing serum 1,25(OH)2 D levels [108]. It does so by modulating intestinal VDR levels
and increasing cell sensitivity to 1,25(OH)2 D [109]. The effect of GH on Ca absorption is
likely mediated through IGF-1 but the intestinal actions of IGF-1 may also be independent
of vitamin D signaling [49,110].

Dietary Ca requirements increase significantly during the third trimester of pregnancy
and during lactation to meet the needs of the fetus and term infant. While pregnancy
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causes a vitamin D-independent increase in Ca absorption whose mechanism is not clearly
understood [111–114], during late pregnancy serum 1,25(OH)2 D levels and intestinal
Ca absorption are both elevated [115]. This is because of PTH-independent 1,25(OH)2
D production by the placenta [116]. Ca absorption is also regulated during lactation in
rodents (but not humans) but this is due to a prolactin-dependent mechanism [117,118].
However, prolactin cooperates with 1,25(OH)2D3 to regulate intestinal Ca transport and
the expression of TRPV6 and calbindin-D9k in rats [119], suggesting prolactin acts together
with 1,25(OH)2D3 to increase active intestinal Ca absorption.

Aging reduces Ca absorption efficiency [120–125]. Yet, despite the fact that age-
associated Ca malabsorption was discovered 50 ago, we still do not know the molecular
mechanism underlying this phenomenon. Lower serum 1,25(OH)2D levels in the elderly
has been reported in some studies [126,127] but not others [128]. In fact, some research
indicates that serum 1,25(OH)2 D is higher in older subjects even though fractional Ca ab-
sorption is not changed [128–130]. Similar age-associated intestinal resistance to 1,25(OH)2
D signaling has been formally demonstrated in rats [124] and humans [125]. Some evidence
suggests that this phenomenon may be caused by lower intestinal VDR levels [130–132]
but after adulthood is reached, age-related declines in intestinal VDR content are modest
(−20%) [130,131] or non-existent [124]. Consistent with the lack of an impact of age on
VDR expression, we recently reported that the open chromatin regions that control the ex-
pression of the intestinal VDR gene are not different between 3- and 21-mo-old mice, [104].
Thus, while my research group [53] has shown that a 50% reduction in intestinal VDR level
blunts the intestinal response to elevated serum 1,25(OH)2D levels, the inconsistency in the
reports on the impact of age on intestinal VDR levels suggests that other mechanisms may
contribute to age-associated intestinal resistance to vitamin D.

Another aspect of aging that could negatively impact vitamin D metabolism or in-
testinal regulation of Ca absorption is the decline in sex hormone levels. Consistent with
this, estrogen loss severely disrupts Ca metabolism in post-menopausal women, including
reducing Ca absorption [133,134]. While estrogen signaling directly regulates intestinal Ca
absorption [135–137], it also enhances the intestinal responsiveness to 1,25(OH)2 D [138].
Some [109,139,140], but not all [141], studies report that low estrogen levels reduce intesti-
nal VDR levels and that this is responsible for intestinal vitamin D-resistance following
estrogen loss. In prepubertal boys, testosterone therapy increased intestinal Ca absorption
by 61% [142] and this was accompanied higher serum IGF-1 levels that might influence
vitamin D metabolism. As men age, both Ca absorption efficiency and serum levels of the
sulfated form of the testosterone prohormone DHEA, dehydroepiandrosterone sulphate
(DHEAS), fall significantly [143]. However, the change in Ca absorption was independent
of changes in serum 1,25(OH)2 D, suggesting changes in androgen signaling do not alter
vitamin D metabolism. It is not known if testosterone regulates intestinal VDR levels.

6. Conclusions

A large amount of data supports the conclusion that adequate vitamin D status and
adequate production of the metabolite 1,25(OH)2 D are needed to support transcellular,
saturable intestinal Ca absorption. 1,25(OH)2 D regulates intestinal biology by activating
the VDR to stimulate gene expression. This increases the maximum capacity of the Ca
transport system by increasing levels of a transporter that mediates saturable, transcellular
Ca transport. The saturable, vitamin-D-regulated component of intestinal Ca absorption
plays a significant role in maintaining Ca absorption efficiency because in most individuals,
serum 1,25(OH)2 D levels are elevated by habitually low dietary Ca intake that is common
in the general population. The exact mechanism that describes Ca movement through
the enterocyte is still in question. The facilitated diffusion model is the best characterized
mechanism but there are some inconsistencies in the model that must be resolved through
additional research. In contrast, research supports a model for regulated paracellular Ca
movement through tight junctions that predominates across the ileum and in the early
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postnatal period. Overall, the data suggest that vitamin D signaling regulates intestinal Ca
absorption by different mechanisms that are segment specific.
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