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Abstract: Obesity is a complex chronic, relapsing, progressive disease. Association studies have
linked microbiome alterations with obesity and overweight. However, the results are not always
consistent. An integrated analysis of 4282 fecal samples (2236 control (normal weight) group,
1152 overweight, and 894 simple obesity) was performed to identify obesity-associated microbial
markers. Based on a random effects model and a fixed effects model, we calculated the odds ratios
of the metrics, including bacterial alpha-diversity, beta-diversity, Bacteroidetes/Firmicutes ratio,
common genera, and common pathways, between the simple obesity and control groups as well as
the overweight and control groups. The random forest model was trained based on a single dataset at
the genus level. Feature selection based on feature importance ranked by mean decrease accuracy and
leave-one-out cross-validation was conducted to improve the predictive performance of the models.
Chao1 and evenness possessed significant ORs higher than 1.0 between the obesity and control
groups. Significant bacterial community differences were observed between the simple obesity and
the control. The ratio of Bacteroidetes/Firmicutes was significantly higher in simple obesity patients.
The relative abundance of Lachnoclostridium and Faecalitalea were higher in people with simple obesity,
while 23 genera, including Christensenellaceae_R-7_group, Akkermansia, Alistipes, and Butyricimonas,
etc., were significantly lower. The random forest model achieved a high accuracy (AUC = 0.83). The
adenine and adenosine salvage pathway (PWY-6609) and the L-histidine degradation I pathway
(HISDEG-PWY) were clustered in obese patients, while amino acid biosynthesis and degradation
pathways (HISDEG-PWY, DAPLYSINESYN-PWY) were decreased. This study identified obesity
microbial biomarkers, providing fertile targets for the management of obesity.

Keywords: gut microbiota; obesity; 16S rRNA; BMI; humans; meta-analysis

1. Introduction

Obesity is a complex, chronic, relapsing, progressive disease in which abnormal or
excess body fat accumulates in adipose tissue. WHO criteria define overweight in adults
as a BMI of 25.0–29.9 kg/m2 and obesity as a BMI of 30.0 kg/m2 or higher [1,2]. Obesity
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affected 670 million adults worldwide in 2016 [3]. The World Obesity Atlas 2022 pre-
dicted that 1 in 5 women and 1 in 7 men will be living with obesity by 2030, equating
to over 1 billion people globally [4]. Overweight and obesity are risk factors for major
noncommunicable diseases, including type 2 diabetes, cardiovascular disease, and can-
cer [5]. Obesity incurs the burden of major obesity-related noncommunicable diseases and
reduces lifespan. Moreover, obesity is the second leading predictor after age for COVID-19
complications and mortality [6]. The WHO set a global action plan for the prevention and
control of noncommunicable diseases from 2013–2020, including halting the rise in diabetes
and obesity by 2025 [7]. The pathogenesis of obesity includes genetic susceptibility, biology,
health care access, mental health, sociocultural factors, nutritional transitions, economics,
commercial determinants, and environmental determinants [4,5]. The gut microbiome
impacts body fat by regulating host metabolism, such as bile acids, indole propionic acid,
branched chain amino acids, and endocannabinoids [8].

Reduction in sequencing costs and advances in bioinformatics have made it easier
to capture more views of the association between the gut microbiota and obesity [9].
Transplantation of normal microbiota harvested from conventionally raised animals to
adult germ-free mice produces a 60% increase in body fat content despite reduced food
intake [10]. Transplantation of fecal microbiota from adult female twin pairs discordant
for obesity into germ-free mice fed low-fat mouse chow can increase total body and fat
mass [11]. Although most studies have shown higher abundances of Firmicutes in obese
people, a few studies have shown different results [12–15]. Discrepant findings may be
due to differences in research methods, clinical characteristics, or study heterogeneity
(geography, ethnicity, diet). More individual patient-level meta-analyses—preferably with
standardized bioinformatics pipelines—are required to explain the heterogeneity given
that few of the previous systematic reviews [15–17] were quantitative systematic reviews.
Recently, one meta-analysis including 32 studies was included in the qualitative synthesis,
and 11 studies were included in the quantitative synthesis. Pinart, M., et al. investigated
microbial diversity and richness, differences in the relative abundance of bacteria at the
phylum level, and significant differences in the relative abundance of bacteria at the genus
level between obese and nonobese persons [15]. The limitation is that the analysis was
unable to provide species-level information. Almost at the same time, a large cohort was
employed to analyze the abundance of 50 prevalent and well-characterized gut microbes
using a validated quantitative PCR method [18]. The limitation of this study is that analysis
by bioinformatics methods to identify specific genes and pathways was not performed.

In this study, we performed a meta-analysis using fecal 16S rRNA gene sequence
data from eight studies. By analyzing all datasets in a uniform manner, we aimed to (i)
clarify the differences in fecal bacterial diversity and communities in patients with obesity,
(ii) identify a universal set of microbial markers to predict obesity, and (iii) predict the
functional pathways of microbial communities.

2. Materials and Methods
2.1. Database Search and Study Selection

Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) standard (Figure 1), the following keywords were selected to search the liter-
ature that were included in the PUBMED, EMBASE, and COCHRANE databases before
August 2021: obesity and gut microbiota and human and 16S rRNA. Body mass index
(BMI) was calculated as weight in kilograms divided by the square of height in meters.
Obesity was identified and classified by BMI according to WHO definitions [19]: normal
weight as a reference (BMI ≥ 18.5 but <25 kg/m2), overweight (BMI ≥ 25 but <30 kg/m2),
and obesity (BMI ≥ 30 kg/m2). The criteria for study inclusion were as follows: (1) studies
were based on human fecal samples from obese, overweight, and healthy normal weight
subjects who had not taken antibiotics for six months; (2) samples were sequenced by NGS
for the 16S rRNA gene; (3) raw sequencing data, barcodes, and metadata were publicly
available or provided by the authors until 31 August 2021, upon request by email; and



Nutrients 2022, 14, 2993 3 of 14

(4) the type of obesity was simple obesity without complications and comorbidities. Ulti-
mately, a total of eight sequencing datasets and metadata [13,20–25] were included in the
downstream meta-analysis (Table 1). After finishing quality filtering, we obtained a total
of 4282 samples (2236 control (normal weight) group, 1152 overweight, and 894 simple
obesity) for downstream analyses (Table 1).
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Figure 1. Description of the selection of the included studies following a PRISMA flow diagram.

Table 1. Characteristics of the datasets included in the fecal sample-based analysis.

Source Year Country Control Overweight Obesity DNA Extraction Region Sequencing
Platform

PRJNA290926 [20] 2016 USA,
Canada 44 48 33 PowerSoil-htp 96 Well Soil

DNA isolation kit V4 MiSeq

PRJEB25642 [23] 2018 India 228 259 425 QIAamp DNA Stool Mini Kit V4 Ion torrent
PRJNA417579 [22] 2019 Columbia 87 57 20 QIAamp DNA Stool Mini Kit V4 MiSeq
PRJNA434133 [24] 2019 UK 61 - 71 PSP Spin Stool DNA Plus Kit V4 MiSeq
PRJNA417691 [21] 2019 Mexico 20 - 30 ZR Faecal DNA MiniPrep V3 Ion torrent
PRJEB11419 [25] 2019 USA, UK 1697 739 240 - V4 MiSeq, HiSeq

PRJCA004023 [13] 2021 China 37 - 37 QIAamp DNA Stool Mini Kit V3-V4 MiSeq

PRJNA828327 2021 China 62 49 38 QIAamp Fast DNA Stool
Mini Kit V4 MiSeq
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2.2. Microbiome Data Processing

The most frequently sequenced fragment with the Illumina (MiSeq or HiSeq) or Ion
Torrent platform (PGM or S5) among the included studies was the V4 or V3-V4 region of
the 16S rRNA gene (Table 1). Due to the different sequencing platforms and hypervariable
regions of the 16S rRNA gene, we analyzed the different cohorts in a uniform analytical
pipeline to minimize the impact of these differences. Briefly, raw sequence data were
preprocessed. Clean reads with high quality were obtained through sequence merging and
quality control. First, when Fast Length Adjustment of Short Reads(FLASH) (V1.2.11) [26]
was used to assemble paired-end reads for the V4 region, the -x 0.15 option was selected
to control the maximum mismatched base pairs ratio in the overlap area, and the -M 150
or -M 250 option was selected to control the maximum length of the overlap area. Then,
cutadapt (V1.13) [27] was used to trim and filter the sequence data processed by FLASH,
including removing adapter sequences and discarding sequences with fewer than the
specified number of bases. Subsequently, sequences were quality filtered by Usearch with
the -fastq_maxee 1.0 option. After quality control, unique sequences were obtained by
eliminating redundancy, and they were sorted in descending order according to sequence
abundance. Meanwhile, singletons in the sequence data were removed. Clean reads were
clustered into operational taxonomic units (OTUs, similarity threshold 97%) by using
Usearch with the UPARSE-OTU algorithm [28]. Chimaera detection was performed using
UCHIME [29] against the Ribosomal Database Project (RDP) classifier [30]. For all taxo-
nomic and diversity analyses, samples with sequencing depths less than 10,000 sequences
in the OTU table were removed. The OTU table was rarefied to the lowest sequencing
depth within each study. The pathway abundances in each dataset were predicted by
PICRUSt2 [31].

2.3. Statistical Analysis

Based on the OTU tables derived from each study, alpha-diversity indices between the
simple obesity and control groups as well as the overweight and control groups were calcu-
lated, including bacterial richness (observed OTUs, Chao1, ACE), Shannon index, Simpson
index, and evenness (J). Significance tests of alpha-diversity indices were conducted by
the Wilcoxon test method. Principal coordinates analysis (PCoA) based on Bray–Curtis
distance at the genus level was utilized for beta-diversity to visualize the differences in
microbial community structure across samples. Significance tests of beta-diversity indices
were determined using permutational multivariate analysis of variance (PERMANOVA)
with 104 permutations in vegan [32]. Meta-analysis of bacterial alpha-diversity indices
and microbial taxa among the eight studies was performed in the metafor package [33] to
discover the consistency using both the random effects (RE) model and the fixed effects (FE)
model. PICRUSt2 was utilized for gut microbiota functional prediction in each dataset [31].
We further identified pathways shared between the simple obesity and control groups and
the overweight as well as control groups. Generally, we calculated the odds ratios (ORs)
of these metrics by assigning any value above the median of the metric within the study
as positive.

Random forest (R packages, caret [34]) models were trained for different cohorts,
and datasets combined all studies together at the common genus levels to test whether a
mixture of featured taxa can predict simple obesity or overweight. We evaluated their per-
formance using leave-one-out (LOO) cross-validation and scored the predictive power in a
receiver operating characteristic (ROC) analysis. In the first step, we ranked the common
genera importance based on mean decrease accuracy. Next, we conducted stepwise feature
selection with 10-fold cross-validation to avoid overfitting and overoptimistic evaluation.
This method was employed to select predictive microbial features and eliminate uninfor-
mative features [35]. The area under the ROC curve (AUC) was calculated to evaluate the
discriminatory power of genera.



Nutrients 2022, 14, 2993 5 of 14

3. Results
3.1. Microbiome Profile Differences among the Simple Obesity, Overweight, and Control Groups

There were significant differences in the overall microbial community structure among
all groups when combined all samples from the eight studies together (PERMANOVA,
F = 38.263, p < 0.001). However, the PCoA plot based on Bray–Curtis distance reflected
that samples were clustered mainly by individual studies, which may be attributed to
sample populations, DNA extraction methods, sequencing regions of the 16S rRNA gene,
and sequencing platforms adopted by individual studies (Figure 2). To more objectively
reflect the consistent differences of the gut bacterial community between the simple obe-
sity and control groups, as well as between overweight and control groups, we per-
formed a meta-analysis on the microbial metrics based on each individual study in the
following analysis.
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Figure 2. The principal coordinates analysis (PCoA) with Bray-Curtis distance based on genera. Each
point in the diagram represents a sample. The shapes represent the control, overweight, and simple
obesity groups, respectively. The colors represent the different studies.

We evaluated the differences in alpha-diversity metrics between the simple obesity and
control groups. Chao1 and evenness showed significant ORs higher than 1.0 (Figure 3A),
indicating that these indices of the control group were significantly higher than those of the
simple obesity group. Even when compared in individual studies, two of the eight studies
observed significantly higher microbial richness in the control than in the simple obesity
group (Table S1). One study showed that Shannon and Simpson diversities were signifi-
cantly higher in the control group than in the simple obesity group (Table S1). Significantly
higher evenness in the control group than in the simple obesity group was observed in
two of the eight studies (Table S1). Similarly, differences in alpha diversity between the
overweight and control groups were compared. None of the alpha-diversity metrics were
significantly different between the overweight and control groups (Figure S1A) in the RE
model. Two studies observed significantly higher microbial richness in the control than in
the overweight group (Table S2). One study showed that Shannon and Simpson diversities
were significantly higher in the control group than in the overweight group (Table S2). One
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study had significantly higher evenness in the control group than in the overweight group
(Table S2).
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Figure 3. Comparison of bacterial alpha-diversity, beta-diversity, the Bacteroidetes/Firmicutes ratio,
the pathway metrics between the simple obesity and control groups. Forest plots of (A) the alpha-
diversity metrics, (B) Bray-Curtis distances, (C) the Bacteroidetes/Firmicutes ratio, and (D) the
pathway metrics between the simple obesity and control groups. The error bars describe the 95%
confidence intervals. A value less than 1.0 (the left of the dotted lines) indicates that the metric is
higher in the simple obesity group than in the control group. The values larger than 1.0 (the right
of the dotted lines) indicate that the metric is lower in the simple obesity group than in the control
group. If the dotted line and the error bars did not cross, there is a significant difference between the
simple obesity and control groups.

When evaluating differences in the entire bacterial community among the simple
obesity, overweight, and control groups by PERMANOVA, significant differences in overall
communities between obese and control individuals were obtained in four of the eight
studies (Table S3). There were significant differences between the overweight and control
groups in two of the above five studies (Table S4). By RE model, significant bacterial
community differences were observed between the simple obesity and the control, but no
significant differences between the overweight and control groups (Figures 3B and S1B).
The ORs of the Bacteroidetes/Firmicutes ratio were significantly lower than 1.0 for both
the simple obesity and overweight groups than the control group (Figures 3 and S1C). As
for predicted bacterial pathways between the simple obesity and control groups, a total
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of 19 pathways possessed significant ORs higher than 1.0 for the control group. The total
19 pathways include L-lysine biosynthesis I (DAPLYSINESYN-PWY), aromatic biogenic
amine degradation (bacteria) (PWY-7431), pyruvate fermentation to acetone (PWY-6588),
guanosine nucleotides degradation III (PWY-6608), etc. For the simple obesity group
(Figure 3D), the total five pathways had significant ORs lower than 1.0. The total five
pathways include lactose and galactose degradation I (LACTOSECAT-PWY), adenine and
adenosine salvage III (PWY-6609), superpathway of thiamin diphosphate biosynthesis
II (PWY-6895), pyrimidine deoxyribonucleosides salvage (PWY-7199), and L-histidine
degradation I (HISDEG-PWY). Between the overweight and control groups, there were six
pathways with significant ORs lower than 1.0 for overweight patients, whereas none of the
pathways possessed significant ORs higher than 1.0 for the control group (Figure S1D).

For the purpose of further identifying the significantly different taxa among the control,
overweight, and simple obesity groups, we calculated the ORs of all common taxa in each
study. We identified 25 genera that were significantly associated with simple obesity
(Figure 4A) and 14 genera that were significantly associated with overweight (Figure S2A).
Lachnoclostridium and Faecalitalea had significant ORs lower than 1.0 for the simple obesity
group in the RE models. Twenty-three genera, including Christensenellaceae_R-7_group,
Akkermansia, Alistipes, and Butyricimonas, etc., possessed significant ORs higher than 1.0
for individuals with normal weight (Figure 4A), which means that these bacteria were
scarce in simple obesity patients. For overweight individuals, only one genus possessed
significant ORs lower than 1.0, while 13 genera had significant ORs higher than 1.0 for
individuals with normal weight (Figure S2A). The heat map showed the fold change
of the genera with significant ORs between the simple obesity and control groups in
individual studies (Figure 4B). Most of the genera were enriched in the control group. In
addition, we presented the relative abundance of genera in the control group with that in
the simple obesity group (Figure 4C). The top five taxa in terms of relative abundance at
different taxonomic levels in each study, including bacterial phyla, class, order, and family
were presented in Figures S3A–S10B. In most of the included studies, the changes in the
relative abundance of Bacteroidetes and Firmicutes phyla were consistent with the ORs in
the Bacteroidetes/Firmicutes ratio (Figure 3C). In the simple obesity group, the relative
abundances of Bacteroidetes and Proteobacteria were higher, whereas Firmicutes was lower.
To sum up, there were significant changes in the microbial community composition of
patients with simple obesity.

3.2. Metagenomic Simple Obesity and Overweight Classification Models

Is there a specific set of microbes that can be used to identify or predict simple obesity?
To obtain such biomarkers, we first constructed a random forest classifier model based on
genera shared among the simple obesity, overweight, and control groups of all included
studies. Tenfold cross-validation was carried out on the dataset of a single study, and
modeling was based on common features in all studies. However, the model performance
of the training model of a single study was not ideal. Hence, we took into account feature
selection based on feature importance ranking (mean decrease accuracy) for training the
model of individual studies. After feature selection based on 90 common genera between
the simple obesity and control groups, the AUC values of the models were improved
(Figure 5A). For example, the specificity and sensitivity of the PRJCA004023 simple obesity
classifier model were 49.25% ± 0.262 and 48.75% ± 0.268 (AUC = 0.506), respectively, before
feature selection. After feature selection, the specificity and sensitivity of the PRJCA004023
simple obesity classifier model were increased to 66.92% ± 0.251 and 81.66% ± 0.194
(AUC = 0.8099), respectively. In addition, five studies with overweight data were modeled
based on 162 features at the genus level shared by the overweight and control groups.
Similarly, according to the importance ranking of 162 features, overweight models were
trained after feature selection (Figure S11A).
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We further assessed whether including data from all but one study in model training
could improve prediction in the remaining hold-out study (LOOS validation). The LOOS
performance of genus-level simple obesity models ranged from 0.70 to 0.83 (Figure 5B). The
LOOS performance of overweight models ranged from 0.66 to 0.67 (Figure S11B). These
results suggest that the inclusion of multiple studies in the training set of a classifier did
substantially improve its predictive performance relative to models trained on data from a
single study. When pooling all studies together, the AUC value of the model (Total study)
achieved 0.83 after feature selection (Figure 5B). Subsequently, a total of 38 features were
retrieved with the ORs of each feature according to the random effect model (Figure 5C).
Similarly, we extracted 48 features from the overweight model and ranked the importance
of the features and the ORs (Figure S11C). Furthermore, a total of eight genera were both
selected as important features for the simple obesity model and significantly different between
simple obesity and control (Table 2) and a total of four genera for overweight (Table 3).

Table 2. Importance, odd ration, confidence interval, and relative abundance of the eight genera
selected for the RF model for simple obesity based on all samples.

Genera Mean Decrease
Accuracy OR CI_ub CI_lb p-Value Abundance (%)

in Control
Abundance (%) in

Simple Obesity

Christensenellaceae_R-7_group 4.80 × 10−3 1.726 1.280 2.326 3.45 × 10−4 1.707 ± 0.03 1.098 ± 0.02
Ruminococcaceae_NK4A214_group 1.56 × 10−3 1.596 1.209 2.107 9.61 × 10−4 0.488 ± 0.01 0.437 ± 0.01

Akkermansia 1.05 × 10−3 1.514 1.242 1.845 4.11 × 10−5 2.169 ± 0.07 0.985 ± 0.04
Ruminiclostridium_6 3.85 × 10−4 1.471 1.092 1.982 1.11 × 10−2 0.375 ± 0.01 0.175 ± 0.01

Barnesiella 6.29 × 10−4 1.380 1.009 1.888 4.39 × 10−2 0.453 ± 0.01 0.237 ± 0.01
Alistipes 2.18 × 10−3 1.269 1.060 1.520 9.58 × 10−3 1.798 ± 0.02 1.148 ± 0.03

Butyricimonas 5.67 × 10−4 1.243 1.024 1.509 2.82 × 10−2 0.084 ± 0.002 0.063 ± 0.002
Lachnoclostridium 6.37 × 10−3 0.755 0.575 0.990 4.18 × 10−2 0.451 ± 0.01 0.516 ± 0.01

Note: CI_lb, confidence interval_lower bound. CI_ub, confidence interval_upper bound.
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Table 3. Importance, odd ration, confidence interval, and relative abundance of the four genera
selected for the RF model for overweight based on all samples.

Genera Mean Decrease
Accuracy OR CI_ub CI_lb p-Value Abundance (%)

in Control
Abundance (%)
in Overweight

Succinivibrio 5.33 × 10−3 0.656 0.509 0.846 1.13 × 10−3 1.525 ± 0.03 3.679 ± 0.12
Christensenellaceae_R-7_group 3.10 × 10−3 1.335 1.029 1.732 2.99 × 10−2 1.78 ± 3 × 10−4 1.356 ± 0.02

Hydrogenoanaerobacterium 6.62 × 10−4 1.928 1.535 2.423 1.71 × 10−8 0.007 ± 0.02 0.003 ± 2 × 10−4

Methanobrevibacter 2.67 × 10−4 1.358 1.132 1.629 9.94 × 10−4 0.227 ± 0.08 0.168 ± 0.01

4. Discussion

An integrated analysis of 4282 fecal samples (2236 control (normal weight) group,
1152 overweight and 894 simple obesity) was performed to identify obesity-associated
microbial markers. Though observed, ACE, Shannon, Simpson were no significant dif-
ferences, Chao 1, J and beta-diversity changes were statistically significant between the
simple obesity and control groups and therefore should be used as general features dif-
ferentiating normal and obese human gut microbiota across populations. One previous
meta-analysis showed no significant differences in the Shannon index between obese and
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nonobese individuals in the meta-analysis [15]. This is consistent with our research. Al-
though conclusions are inconsistent in different researches for Chao1, the meta-analysis
does not include quantitative analysis for Chao1. Gordon and colleagues advocated that
the ratio of Bacteroidetes/Firmicutes in people with simple obesity was lower [15], which
might be considered as a biomarker of dysbiosis for simple obesity. In our study, com-
pared with the control group, the abundance of Firmicutes was significantly lower in
the simple obesity group, while Bacteroidetes was significantly higher, and the ratio of
Bacteroidetes/Firmicutes was increased, which was consistent with the research results of
Schwiertz A et al. [36].

The gut microbiota affects the energy balance of the host by regulating the genes
related to fat absorption and storage [37]. Meanwhile, the dysbiosis of gut microbiota leads
to the increase of endotoxin in the circulating system of the host, and induces chronic and
low-level inflammation, leading to obesity and insulin resistance [10,38]. The conclusion
that lipopolysaccharide-producing bacteria are enriched in obese humans is consistent
with our findings. We observed that Desulfovibrionaceae was enriched in obese humans
in our results. Lipopolysaccharide (LPS) causes obesity via an inflammation-dependent
pathway [39]. LPS from members of the families Desulfovibrionaceae exhibits an endotoxin
activity that is 1000-fold that of LPS from the family Bacteroideaceae [40].

We observed that the abundance of Ruminococcus-1, Akkermansia, Lachnospiraceae_NK4A136
_group, Christensenellaceae were decreased in the simple obesity group in our study. The
latest research suggests that Ruminococcus gnavus was positively associated with percent
body fat [18], inconsistent with our research. Contrary results may be related to different
recruitment criteria. It has been demonstrated that A. muciniphila can alleviate diet-induced
obesity by increasing energy excretion in the feces [41], indicating that Akkermansia insuffi-
ciency or deficiency may promote obesity by increasing food energy efficiency. Therefore,
Akkermansia is regarded as a novel candidate to prevent or treat obesity. Weight-reduction
interventions, such as dietary changes [42] and bariatric surgery [43], are often accompanied
by partial restoration of microbial dysbiosis. Certain gut microbial strains have been shown
to aid in weight loss in experimental models. For example, animal studies found that
Lachnospiraceae administration alleviated obesity [44]. Further associated with several mi-
crobial functional pathways, such as butyrate-producing pathway (PWY-5022), amino acid
biosynthesis and degradation pathways (HISDEG-PWY, DAPLYSINESYN-PWY), Lach-
nospiraceae bacterium 3 1 57FAA CT1 mediated the association of overweight/obesity
with the Homeostatic Model Assessment of Insulin Resistance [45]. Goodrich et al. showed
that C. minuta, a cultured member of Christensenellaceae, transplanted into germ-free mice
reduced weight gain in 2014 [46]. Animal studies found that C. minuta DSM33407 protected
against diet-induced obesity [47]. Mazier, Wilfrid et al. assessed the safety and tolerability
of C. minuta DSM33407 in a phase 1 clinical trial [47]. In addition, Alistipes onderdonkii,
Alistipes finegoldii, and Alistipes shahii were significantly higher in those individuals who
showed improvements in the android-to-gynoid fat ratio within the fecal microbiota trans-
plantation (FMT) group [48]. In a randomized, double-masked, placebo-controlled trial
of adolescents with obesity, we observed a reduction in abdominal adiposity, increasing
the relative abundance of Prevotellaceae in FMT recipient microbiomes by at least eight-
fold postdosing [49]. The abundance of Erysipelotrichaceae was higher in the normal
weight group in our study. It also was observed that the genus Erysipelotrichaceae_UCG-003
was significantly more abundant in the gut microbiota of the healthy aging group versus
non-healthy aging group [50].

The adenine and adenosine salvage pathway (PWY-6609), lactose and galactose degra-
dation I (LACTOSECAT-PWY), superpathway of thiamin diphosphate biosynthesis II
(PWY-6895), pyrimidine deoxyribonucleosides salvage (PWY-7199), and the L-histidine
degradation I pathway (HISDEG-PWY) were clustered in obese patients. Adenine and
adenosine salvage III are responsible for the conversion of the nucleotides to the nucleoside
(adenosine) and free base (adenine) forms. All adenosine receptors have been reported to
be involved in glucose homeostasis, inflammation, adipogenesis, insulin resistance, and
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thermogenesis, indicating that adenosine could participate in the process of obesity [51].
Histidine can be metabolized to imidazole propionate [52], which was found to be elevated
in individuals with type 2 diabetes mellitus, impairing insulin signaling through activation
of the p38γ–p62–mTORC1 pathway [53]. Lower histidine concentrations were observed
in obese women than in nonobese women [54]. Our study showed that the L-histidine
degradation I pathway was enriched in obese patients. In a Chinese supplementation study,
obese women who received 12 weeks of supplemental histidine experienced decreases
in body mass index, waist circumference, and body fat [55]. This finding indicates that
dysbiosis of intestinal flora may play an important role in the pathogenesis of obesity by
affecting amino acid bioavailability to the host [56].

The capability of microbial markers for the early prediction of obesity was compre-
hensively assessed in our study. The best-performing model achieved a high accuracy
(AUC = 0.83) with 38 important features to distinguish simple obesity from normal weight.
For a Chinese population, six biomarkers were identified to differentiate obese patients and
healthy individuals through random forest classifiers. However, a limitation of the research
is that the mediocre accuracy (AUC 0.68) was not tested in different populations [57]. With
LOOS validation across multiple datasets, the important features could overcome technical
and geographical discrepancies.

This is an individual participant data meta-analysis with standardized bioinformatics
pipelines clarifying the differences in fecal bacterial diversity and communities in patients
with simple obesity. We found that the microbiome composition in patients with simple
obesity did differ significantly. At the phylum level, the Bacteroidetes/Firmicutes ratio
was associated with the body mass index. We also identified a universal set of microbial
markers to predict obesity. Importantly, we explored the relationship between the metabolic
pathways of the intestinal flora and simple obesity. Despite including simple obesity
without complications and comorbidities, excluding confounding by comorbidities or
medications, no detailed adjustments for relevant confounders were performed. We also
recognize the limitations of this study. The studies included in our analysis were based on
16S rRNA sequencing rather than shotgun metagenomic sequencing data.

5. Conclusions

Evaluation of universal gut microbiota biomarkers in obese individuals can be applied
for the early prediction and potential gut microbiota targets for adjuvant treatments of
obesity given that the gut microbiome plays an important role in the onset and progression
of obesity [14]. Overall, our study identified universal biomarkers for obesity prediction
and therapeutic targets. The RF model can help us choose the most suitable bacterial strains
to utilize precision medicine, with greater benefits for obese patients.
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