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Abstract: Psoriasis is a chronic inflammatory skin disease with autoimmune pathogenic character-
istics and is caused by chronic inflammation, which results in uncontrolled keratinocyte growth
and defective differentiation. The link between the gut microbiota and immune system regulation
opened a novel angle to understand the pathogenesis of many chronic multifactorial diseases, in-
cluding psoriasis. Current evidence suggests that modulation of the gut microbiota, both through
dietary approaches and through supplementation with probiotics and prebiotics, could represent
a novel therapeutic approach. The present work aims to highlight the latest scientific evidence
regarding the microbiome alterations of psoriatic patients, as well as state of the art insights in terms
of microbiome-targeted therapies as promising preventive and therapeutic tools for psoriasis.
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1. Introduction

Psoriasis is a chronic inflammatory skin disease with autoimmune pathogenic charac-
teristics and a solid hereditary susceptibility. The majority of psoriasis cases include chronic
plaque-type psoriasis (known as Psoriasis Vulgaris). Typical clinical symptoms are sharply
defined, erythematous, pruritic plaques. These can cover large areas of skin as they consoli-
date. The scalp, trunk, and extensor surfaces of the limb are the common sites [1]. Psoriasis
is caused by chronic inflammation, which results in uncontrolled keratinocyte growth and
defective differentiation. Epidermal hyperplasia coexists with inflammatory infiltrates
constituted of dermal dendritic cells, macrophages, T lymphocytes, and neutrophils in the
histology of psoriasis plaques [2].

The gut microbiota is represented by trillions of microorganisms that colonize the
gastrointestinal tract and are involved in many local and systemic processes [3,4]. These
microorganisms are bacteria, viruses, and eukaryotic species, and 90% of them belong
to Bacteroidetes and Firmicutes phyla, followed by Fusobacteria, Proteobacteria, Tenericutes,
Actinobacteria, and Verrucomicrobia [5].

Many factors can influence intestinal microbiota composition and functions, including
dietary patterns, antibiotics, as well as the mode of delivery at birth having an essential
role in the bacterial diversity [6–8].

Commensal bacteria, especially bacteria in the gut, contribute to maintaining a healthy
immune system [9]. The intestinal mucosa host’s key immune system signaling molecules
and cells, such as subpopulations of T cells, neutrophils, natural killer lymphocytes and
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macrophages, are sensitive to the microbial composition. Dysbiosis, a condition associated
with the loss of beneficial microbial composition, as well as an overgrowth of pathogenic
microbes, can have a direct impact on gut immune cells [10]. Short-chain fatty acids
(SCFAs), such as propionate, acetate, and butyrate, are the end products of dietary fibers
digested by gut microbiome components, with the potential to lower proinflammatory
cytokine and chemokine production, suppressing inflammatory T cell function, and leading
to a systemic anti-inflammatory effect in the body [11]. In contrast, lipopolysaccharides
(LPS), which represent an element of the outer membrane of Gram-negative bacteria, could
induce the over-expression of pro-inflammatory cytokines, such as tumor necrosis factor
(TNF)-α, interleukin (IL)-6 and IL-8, promoting a moderate inflammation status in the
body [12,13].

Numerous studies associate gastrointestinal health to skin homeostasis, with both the
composition and function of the gut microbiota being disrupted in psoriasis patients [14,15].
The link between the gut microbiota and immune system regulation opened a novel angle
to understand the pathogenesis of many chronic multifactorial diseases, including psoriasis.
The present work aims to highlight the latest scientific evidence regarding the microbiome
alterations of psoriatic patients, as well as state of the art insights in terms of microbiome-
targeted therapies as promising preventive and therapeutic tools for psoriasis.

2. Gut Microbiota—An Overview

The gut microbiota is represented by a diverse collection of microorganisms found
in the digestive systems of humans, and when compared to other sections of the body, it
has the most significant number of microorganisms and the highest number of species [16].
This collection primarily consists of bacteria, but viruses and other eukaryotes invade the
gastrointestinal tract shortly after birth [17,18]. The human gut microbiota begins to develop
in the perinatal stage and is crucial to the regular functioning of the host organism [19].
It can produce several metabolic products when interacting with the host, positively or
negatively impacting human health. The disruption of short-chain fatty acid production
could have a variety of pathogenic repercussions for the host [20]. Moreover, patients with
psoriatic arthritis [21] and multiple sclerosis (MS) have negatively changed SCFA levels,
and the SCFAs could potentially affect the course and development of these diseases [22].

The Implications of Diet and External Factors on the Composition of the Gut Microbiota

Diet is appreciated as the most potent modulator of both microbiota composition and
function. It was revealed that dietary components have a beneficial impact on the host’s
microbiota diversity [23]. Both vegetarian and low-calorie Mediterranean diets, rich in
whole grains, probiotic foods, fruits and vegetables and bioactive dietary components,
have been demonstrated to positively alter the host’s microbiota diversity; however, it is
vital to note that both diets should persist longer than three months [24]. In contrast, a
Western diet consisting of energy-dense, processed foods, high in fat and sugar, and low
in fiber, decreased the diversity of the cecal microbiota, shifted its composition toward a
pro-inflammatory profile by enhancing the Desulfovibrionaceae and Proteobacteria’s relative
abundance, and altered the cecal metabolome [25]. Food additives frequently used in
a Western diet, such as polysorbate 80 and carboxymethylcellulose, may disrupt gut
homeostasis, contributing to tissue-damaging inflammatory responses [26]. Moreover,
maltodextrin, a polysaccharide, causes endoplasmic reticulum stress in intestinal cells,
decreasing mucus secretion and increasing the level of inflammation in mice models [27].

As presented in Figure 1, it is not only diet that impacts the gut microbiota. The
physical activity and body mass index, mode of delivery and feeding in newborns, as
well as the use of specific medication, especially antibiotics, are external factors that can
change the composition of the intestinal microbiota [28–32]. Thus, in order to prevent
such pro-inflammatory profiles and dysbiosis in the intestinal microbiota, it is essential to
make dietary choices and lifestyle changes that are associated with better outcomes in gut
microbiota diversity and functions [33,34].
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3. Gut microbiome Alterations in Psoriasis
3.1. The Role of the Gut Microbiota in the Pathogenesis of Psoriasis

The gut microbiome’s diversity can have a significant impact on immunological
development and disease risk, especially for autoimmune conditions, such as psoriasis [35].
Intestinal microbiota dysbiosis in psoriasis patients depends on the severity and status of
the disease (Figure 2). Various studies show different results regarding the composition
of the intestinal microbiota in psoriasis subjects. For example, levels of Prevotella spp.
(species) were either higher [36] or lower [37] among psoriasis subjects compared to the
healthy control. In both cases, intestinal dysbiosis was noticed. According to a study based
on microbiota and inflammation-related variables, microbiota dysbiosis may produce an
aberrant immune response in psoriasis. The microbiome changes were correlated with the
degree of inflammation-related markers that were irregular in psoriasis patients, specifically
the IL-2 receptor, which exhibited a positive relationship with Phascolarctobacterium and a
negative relationship with Dialister. Phascolarctobacterium and Dialister relative abundances
could be used as predictors of the psoriasis activity [38]. Moreover, complement 3 has
a negative correlation with Escherichia level [38], which tends to be higher in psoriasis
patients [39]. According to a study in Brazil that investigated the composition and diversity
of the gut microbiota in 21 subjects with psoriasis, when compared to the control group,
the psoriasis group showed a decrease in the Lachnospira and Akkermansia muciniphila
species [40]. This decrease in Akkermansia muciniphila was also highlighted by another
study that used 16S rDNA sequencing technology to examine microbiota composition in
14 psoriasis patients [41]. Such changes were linked to butanoate metabolism and butyrate
production in the human colonic microbiota [42,43]. Butyrate has been implicated in the
regulation of various inflammatory factors, including lipopolysaccharides, TNF-α, IL-10,
IL-1β [44].

Faecalibacerium spp. showed a lower abundance in psoriasis patients with a lower
richness and a difference in β diversity community composition [39,45], while Ruminococcus
torques and Ruminococcus gnavus exhibited a greater abundance [45]. Although the number
of subjects included in such investigations is limited, it appears that psoriasis patients
have decreased functional potential in the gut microbiota, due to intestinal dysbiosis [45].
More investigation on the gut microbiota profile in psoriasis patients would bring a more
reasonable perspective to the scientific field regarding the role of gut dysbiosis in the
pathogenesis of psoriasis.
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Figure 2. The role of gut dysbiosis in the pathogenesis of psoriasis. The green arrow represents
the low diversity of potentially beneficial bacteria in the gut microbiota of psoriasis patients. The
red arrow represents the high diversity of potentially harmful bacteria in the gut microbiota of
psoriasis patients.

The immunological and inflammatory responses in psoriasis patients are affected by
gut microbiota dysbiosis, enhanced pathways, and dysregulated metabolites [46].

Earlier, the identification of the IL-23/Th17 (T helper cells) axis as a significant signal-
ing channel elucidated the mechanism of increased inflammation in psoriasis, in addition
to the critical function of autoreactive T cells and cytokines [47]. Dendritic cells increase
the proliferation of T lymphocytes in psoriasis, specifically T helper Th17 and Th22 in
the acute phase and interferon-producing T cells in the chronic phase. T-cell infiltration
in active psoriatic skin creates a cytokine environment, mandating individual gene pro-
files in keratinocytes. This could overexpress various inflammatory mediators, enhancing
local immune reactivity [48,49]. Moreover, better outcomes of trials addressing TNF-α
inhibitors as a treatment in psoriasis patients reflect the critical role of this cytokine in the
immunopathogenesis of psoriasis [50,51]. TNF-α seems to have a modulatory role in the
activation and production of cytokines by Th1 and Th17 cells [52]. Furthermore, NFKB1
(nuclear factor kappa B subunit 1) was shown to be elevated in psoriasis patients, exacer-
bating the symptoms of this condition. In particular, NFKB1 performs a crucial influence
on keratinocytes in psoriasis by promoting Th1 and Th17 activation [53]. Additionally,
overexpression of NFKB1 in psoriasis mice led to more pustules, an evident increase in
acanthosis, as well as greater parakeratosis and desquamation [53].

The gut microbiota presents an essential role in host homoeostasis and immune
response, particularly in Th17 cells [54]. For example, according to the findings of a recent
prospective, randomized trial, dietary treatments can cause solid and repeatable changes
in the immune system, suggesting that they have the potential to enhance immunological
status as well as gut microbiome function. Fermented food intake decreased 19 cytokines,
chemokines and other inflammatory serum proteins, including IL-6, IL-10, IL-12b [9].
Regarding IL-6, it was shown to be a predominant upstream signal for keratinocytes in
mice with psoriasis-like dermatitis [55]. Curiously, adipocyte dysfunction was linked to
metabolic syndrome and is related to an increase in the M1 macrophage population inside
the adipose tissue. This could contribute to increased adipose tissue release of IL-6 and
other pro-inflammatory cytokines that could subsequently promote insulin resistance via a
variety of cellular signaling pathways, including mTOR and protein kinase C [56].
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3.2. Changes in Gut Microbiota after Antipsoriatic Treatment

Biologic therapy in other inflammatory pathologies, for instance inflammatory bowel
disease, might have a negative impact on the patients’ gut microbiota [57]. According to
a transdisciplinary study published in “Arthritis & Rheumatology”, the use of an IL-17A
inhibitor occurred in gut microbial dysbiosis and characteristics of subacute intestinal
inflammation in a group of psoriatic arthritis and spondyloarthritis patients [58]. How-
ever, to date, only a few studies have investigated the changes in gut microbiota after
antipsoriatic treatment.

3.3. TNF-α Inhibitor

Adalimumab (ADA), a TNF-α antagonist, was shown to be effective in the treatment
of psoriasis, despite its possible adverse reactions [59]. Lihong Zhao et al. investigated
the efficacy and safety of adalimumab in the treatment of psoriasis, as well as its impact
on the gut microbiota. They evaluated changes in the pre-treatment and post-treatment
intestinal microbiome composition in psoriasis patients following ADA medication and
variations in the microbiome composition between psoriasis patients and healthy controls.
The results showed no significant changes in the intestinal microbiome of patients before
and after three months of ADA treatment [60]. Given the modest number of psoriasis
participants included in this study (n = 13), long-term follow-up of patients treated with
ADA and subsequent psoriasis research based on microbiota may provide further support
for psoriasis treatment.

3.4. IL-17 and IL-12/23 Blockers

IL-17 inhibitor (secukinumab) and IL-12/23 inhibitor (ustekinumab) have already
been proven to be effective in the treatment of moderate-to-severe psoriasis [61].

By addressing their effect on the gut microbiota, they were investigated in an observa-
tional and longitudinal study that gathered 114 fecal samples from 12 healthy controls and
34 psoriasis patients at baseline, 3 and 6 months following secukinumab or ustekinumab
treatment. On the one hand, secukinumab therapy seemed to alter the gut microbiota
more significantly than ustekinumab treatment, including increases in the relative abun-
dance of the phylum Proteobacteria and decreases in Bacteroidetes and Firmicutes. Following
secukinumab medication, the relative abundance of the families Pseudomonadaceae, Enter-
obacteriaceae, and Pseudomonadales increased considerably. On the other hand, there was no
significant change in gut microbiome composition after ustekinumab treatment, and only
the genus Coprococcus grew considerably after six months of ustekinumab therapy [62].

Furthermore, biologic therapy in psoriasis patients may impact the composition of
the gut microbiota. In ten patients receiving systemic biologic therapy, six patients re-
ceiving anti-TNF-α (five receiving adalimumab and one receiving golimumab) and four
receiving anti-IL-12/23 (ustekinumab), as well as 20 patients who had not received an-
tipsoriatic systemic therapies in the previous six months or topical corticosteroids, α and
β diversity vary dramatically. Bacterial biodiversity was found to be lower in the group
of treated patients compared to the group of untreated patients. At the species level,
treated subjects had significantly higher abundances of Bacteroides plebeius, Roseburia faecis,
and Bifidobacterium adolescentis, and significantly lower abundances of Bacteroides caccae,
eggerthii and coprophilus, Blautia obeum, Alistipes indistinctus and massiliensis, Ruminococcus
lactaris, Haemophilus parainfluenzae. The species Akkermansia muciniphila showed the highest
variation in relative abundance between treated and untreated individuals [63].

Nevertheless, more research on the influence of antipsoriatic medication on the intesti-
nal microbiota of psoriasis patients, with a greater number of participants, is needed to
better understand this topic.

4. Gut Microbiome-Targeted Therapies for Psoriasis

Current evidence suggests that modulation of the gut microbiota, both through di-
etary approaches and through supplementation with probiotics and prebiotics, could
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represent a new therapeutic target in autoimmune pathologies, for instance multiple sclero-
sis [64], celiac disease [65] and psoriasis [66]. In the following, we will discuss if the gut
microbiota-targeted therapies, including dietary approaches and supplementation with
bioactive dietary components, probiotics and prebiotics, could present health benefits in
psoriasis patients.

4.1. Dietary Approaches
4.1.1. Mediterranean Diet

The Mediterranean diet encourages a high consumption of plant-based foods, such as
fruits, vegetables, nuts, legumes, grains and olive oil, while reducing the intake of red meat,
dairy products, and processed products [67]. Recent evidence suggests that adherence to
the Mediterranean diet could also impact the inflammatory markers in autoimmune dis-
eases [68] and may reduce the severity status of certain dermatological pathologies [69,70].
For instance, adherence to the Mediterranean diet, specifically the use of extra virgin olive
oil as the primary fat in the diet, reduced the disease severity among patients with sup-
purative hidradenitis by reducing the Hurley stage and the severity score [71]. Moreover,
adherence to the Mediterranean diet seems to be negatively associated with the severity
of acne; thus, increasing the consumption of foods specific to the Mediterranean diet can
benefit people with acne [70,72].

On the one hand, the anti-inflammatory effects of a Mediterranean diet could be
explained due to a high intake omega 3 fatty acids present in the Mediterranean diet that
were linked with favorable outcomes regarding their effects in psoriasis patients [73]. On
the other hand, the Mediterranean diet could also enrich the gut microbiota diversity,
including bacteria with anti-inflammatory properties [74]. The anti-inflammatory effects of
the Mediterranean diet in psoriasis patients were discussed in a prospective questionnaire
study performed by Céline Phan et al. [75]. It was revealed that low adherence to the
Mediterranean diet was correlated with a more severe status in psoriasis patients; however,
this study did not approach the gut microbiota’s role in the anti-inflammatory effects
observed in psoriasis patients but more on the biologically active components present in
the Mediterranean diet. The same results, with the same perspective, were also supported
by a cross-sectional study in 2015, with a smaller sample of mild-to-severe psoriasis patients
(n = 62), which can represent a limitation of the study [76]. The results showed that the
PASI (Psoriasis Area and Severity Index) score, measured for the severity status of psoriasis,
presented a significant association with the percentage of the C-reactive protein levels,
which was negatively correlated with adherence to the Mediterranean diet. The fish and
extra virgin olive oil intake were both independent predictors of PASI score and C-reactive
protein levels [76]. Similarly, an energy-restricted diet intended to enhance the intake of
omega-3 and decrease omega-6 PUFAs improved the metabolic profile and increased the
responsiveness to immunomodulating treatment in obese psoriatic patients [73]. Regardless
of whether the role of the diet in modulating the gut microbiota in psoriasis patients is not
fully understood, considering that psoriasis patients usually tend to have a hypercaloric
diet rich in processed foods, saturated fats, sugar and sodium with low nutritional quality
and a high inflammation profile [77], it is essential to consider modifying dietary habits
among these patients as an adjuvant therapy to the immunomodulating treatment.

4.1.2. Gluten-Free and Low-FODMAP Diet

Recent evidence shows that psoriasis corelates with celiac disease [78] and that patients
with psoriasis present a higher risk of developing this autoimmune disease [79]. Thus,
psoriasis patients must benefit from screening for celiac disease for a more precise and
effective nutritional therapy regarding gastrointestinal and inflammatory symptoms.

Despite the fact that a gluten-free diet was previously linked with favorable outcomes
in clinical studies, including patients suffering from other diseases, for instance autoim-
mune thyroid in women [80] or type 1 diabetes with subclinical celiac disease [81], at
times, insufficient studies address the efficacy of such a diet in psoriasis patients without
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celiac disease. In fact, dietary gluten intake is not considered a risk factor for psoriasis or
psoriatic arthritis [82]. Moreover, the National Psoriasis Foundation from the United States
performed a systematic review addressing the dietary recommendation for adults with
psoriasis or psoriatic arthritis [83]. They only recommend a gluten-free diet to psoriasis
patients who have been diagnosed with celiac disease. They advocate a 3-month gluten-free
diet trial for psoriasis patients with gluten sensitivity as an adjuvant intervention to the
regular treatment, but for patients without such symptoms, a gluten-free diet was not
indicated, due to limited data about this subject. However, in another national survey
from the United States with 1206 subjects, psoriasis patients reported skin improvement
after reducing the intake of alcohol and gluten and after increasing their intake of fish oil
and vegetables [84].

Short-chain carbohydrates and sugar alcohols are restricted in the low FODMAP
(which stands for fermentable, oligosaccharides, disaccharides, monosaccharides, and poly-
ols) diet. The restriction of these dietary components has been demonstrated to be beneficial
in individuals with irritable bowel syndrome by significantly reducing the abdominal pain
and bloating [85], but limited studies have addressed the effectiveness of a low-FODMAP
diet in psoriasis patients. In mice, the reduction in dietary FODMAPs did not increase
nor reduce inflammation. Moreover, it seems as if the microbiota profile changes were
caused by inflammation rather than diet, and a low FODMAP intake resulted in proteolytic
fermentation following inflammation [86]. Results from a randomized clinical trial that
studied the effects of a low-FODMAP diet on fecal microbiome and inflammatory markers
in patients with inflammatory bowel disease presented a reduction in the fecal abundance
of Bifidobacterium adolescentis, Bifidobacterium longum, and Faecalibacterium prausnitzii, but
no differences were observed with the inflammatory markers [87]. Although a gluten-free
and low-FODMAP diet appears to be beneficial in managing the gastrointestinal symp-
toms and modulating the gut microbiota in patients with irritable bowel syndrome [88],
further research is required to determine the long-term efficacy and safety of such a dietary
intervention on nutritional adequacy and the gut microbiome of psoriasis patients.

4.2. Probiotics/Prebiotics/Synbiotics

Probiotics are living microorganisms that can be found in fermented foods or nutri-
tional supplements and provide beneficial health properties to the host when they are
ingested or administered [89]. Probiotics enclose a wide range of microorganisms. Bacteria
from the Lactobacillaceae and Bifidobacteriaceae families are the most frequent, but other
bacteria, as well as yeasts, can be administered as probiotics [89,90]. In addition to probi-
otics, nondigestible dietary components, such as fructooligosaccharides (FOS), inulins, or
galactooligosaccharides, promote the development of beneficial bacteria in the intestinal
microbiota, and they are named prebiotics [91]. When ingested together from the same
mixture or dietary supplement, they are called synbiotics [92].

The revelation of the gut microbiota’s function in inflammatory diseases opens the
door to therapeutic microbiome modulation [93]. Probiotic and prebiotic supplementation
might be employed as a novel therapeutic in the treatment and prevention of a variety of
skin conditions [94,95].

The therapeutic approach of probiotic/prebiotic/synbiotic supplementation among
psoriasis patients has begun to arouse the interest of many researchers; thus, at the moment,
several studies are addressing this issue in both experimental and clinical studies.

In imiquimod-induced psoriasis-like mice, the supplementation with probiotics for
two weeks resulted in great relief from psoriasis-like pathological characteristics [96].
More precisely, Bifidobacterium adolescentis CCFM667, B. breve CCFM1078, Lactobacillus
paracasei CCFM1074, and L. reuteri CCFM1132 successfully reduced erythema, scaling, and
thickening, but B. animalis CCFM1148, L. paracasei CCFM1147, and L. reuteri CCFM1040
showed modest effects. Moreover, the immune responses through the IL-23/Th17 axis, B.
adolescentis CCFM667, B. breve CCFM1078, L. paracasei CCFM1074, and L. reuteri CCFM1132
were beneficial in alleviating psoriasis by suppressing the cytokine activity. The strains
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that effectively treated psoriasis symptoms elevated acetate or propionate levels in the
gut microbiota. The levels of acetate were considerably inversely connected to IL-17 and
IL-23, whereas the levels of propionate were significantly inversely related to the levels of
IL-23. This could demonstrate the practical applicability of probiotic supplementation in
regulating inflammation levels among psoriasis patients [96].

Promising outcomes regarding the efficacy and safety of oral administration of pro-
biotic strains/prebiotics/synbiotics in psoriasis patients were also highlighted by clinical
studies. A case report from 2012 showed the benefits of a Lactobacillus probiotic adminis-
tration, one sachet thrice daily with biotin 10 mg once daily, in the case of a 47-year-old
woman who had psoriasis with pustules all over her body and did not respond to the
anti-psoriatic treatment. After fifteen days of supplementation, no new lesions appeared,
and the ones existing started involuting. After six months of supplementation, the subject
was free of lesions [97].

Groeger David et al. showed in 2013 that the immunomodulatory effects of the
microbiota in humans are not limited to the mucosal immune system but extend to the
systemic immune system. The authors performed a study that revealed the beneficial
effects of Bifidobacterium infantis 35,624 in psoriasis patients not receiving anti-psoriatic
treatment. The supplementation for 6–8 weeks resulted in reduced pro-inflammatory status
by lowering the plasma CRP and LPS-stimulated TNF-α and IL-6 levels [98].

A recent randomized, double-blind trial performed by Jalal Moludi et al. [66] showed
that the supplementation with Lactobacillus strains in fifty psoriasis patients for eight
weeks improved the quality of life and the inflammatory markers. Compared with the
placebo group, a significant reduction in PASI and psoriasis symptom scale was found in
psoriasis patients. Moreover, the total antioxidant capacity levels were increased, while
a decrease in C-reactive protein was identified in the intervention group. However, it
is not mentioned if the subjects received anti-psoriatic treatment previous to the study.
Jalal Moludi et al. also highlighted the improvement in PASI score and quality of life
among psoriasis patients by assessing the efficacy of a multi-strain probiotic in forty-six
subjects. Besides an improvement in PASI score and quality of life, after two months of
supplementation, the blood pressure, pro-inflammatory cytokines (hs-CRP and IL1-β), and
LPS serum levels were considerably reduced [99].

Chuhui Lin et al. investigated the effect of Bacteroides fragilis BF839 in 26 psoriasis
patients. The subjects received the probiotic for 12 weeks while maintaining the anti-
psoriatic treatment. The results showed a statistically significant difference (p < 0.01)
in the reduction in PASI score, with only one case of constipation as a side effect [100].
Unfortunately, the changes in the composition of the intestinal microbiota among patients
with psoriasis have not been measured, which can represent a limitation for these studies.

Another twelve-week randomized, double-blind and placebo-controlled trial was
performed to assess the therapeutic efficacy and safety of Bifidobacterium longum CECT 7347,
B. lactis CECT 8145, and Lactobacillus rhamnosus CECT 8361 in ninety psoriasis patients
receiving anti-psoriatic treatment (topical corticosteroid betamethasone in combination
with calcipotriol) [101]. Besides a reduction in PASI score, a complete loss of the genera
Micromonospora and Rhodococcus and an increase in Collinsella and Lactobacillus were dis-
covered in the probiotic group. However, it is difficult to confirm the impact of probiotic
supplementation separated from topical treatment or whether the treatment had any impact
on the gut microbiota changes. Curiously, a lower abundance of Collinsella genera was
linked with other autoimmune disorders [102,103] and with lower production of butyrate
in the intestinal microbiota [104].

In lipopolysaccharide-induced endotoxemic mice, the supplementation with prebiotics
inulin, xylan and polysaccharides regulated key mediators, such as IL-18, and IL-22 and
suppressed the inflammatory Th cell response in the ileum [105]. Moreover, the gut
microbiota composition changed significantly in obese mice supplemented with cellulose,
short-chain FOS and inulin for four weeks. Mice fed short-chain FOS presented the highest
abundance in Actinobacteria and Verrucomicrobia, specifically Akkermansia spp. [106]. Such
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modifications were also observed in the gut microbiota of psoriasis models (Traf3ip2 mice)
after the supplementation with fucoidan, a dietary seaweed fiber. The relative proportions
of Bacteroidetes and Proteobacteria increased considerably in the fucoidan diet group’s fecal
microbiota at the phylum level. The genera Coprococcus, unclassified members of the
Ruminococcaceae family, and unclassified members of the order Clostridiales were lower in
the fecal microbiota of the intervention group. Moreover, a decrease in facial scratching and
ameliorated psoriasis symptoms were also observed, among an increased mucin volume
in feces [107].

Very few studies have investigated the effect of prebiotics or symbiotics among pa-
tients with psoriasis. For instance, a randomized, double-blind controlled clinical trial
evaluated the efficacy of a synbiotic, including Lactobacillus casei, L. acidophilus, L. rhamnosus,
L. bulgaricus, Bifidobacterium breve, B. longum, Streptococcus thermophiles and FOS, on the
serum electrolyte levels in psoriasis patients. The result highlighted that Fe, Ca, Mg, P, Zn,
and Na levels were greater at week twelve compared to the baseline in psoriasis patients.
The authors concluded that such changes might occur due to an improvement in mineral
absorption by favorable effects on the gastrointestinal system [108]. However, no changes
in the gut microbiota were examined in this study. Consequently, while recent studies
suggest encouraging effects of probiotic/prebiotic supplementation among psoriasis pa-
tients, further research with a more significant number of subjects and various bacterial
strains and prebiotics is required for a more effective therapeutic nutritional strategy in
those patients.

4.3. Bioactive Dietary Components

Non-essential biomolecules that are present in foods or dietary supplements (e.g.,
polyphenols, glucosinolates, curcumin, omega-3 polyunsaturated fatty acid) can alter
metabolic processes in the body and were shown to provide health benefits in many
pathological conditions, including gut microbiota dysbiosis [109–112]. Recent studies show
promising results regarding the efficacy of bioactive dietary components in autoimmune
diseases, even if the mechanism of action is not fully understood [113].

The efficacy of bioactive dietary components in psoriasis patients was also questioned
in several clinical trials, but none of them correlated these changes with the gut microbiota.
Phenolic compounds, which have antioxidant, anti-inflammatory, and immunomodulatory
properties, have been related to the beneficial properties in immune-mediated inflamma-
tory diseases [114]. For instance, after three months of treatment with 500 mg of an olive
polyphenolic extract, the PASI score significantly decreased, with 25% in the psoriasis group
receiving the supplement [115]. Accordingly, the polyphenolic extract from Abies alba im-
proved psoriasis patients’ signs and symptoms by lowering the IL-1β production; however,
the improvement was not significant. As previously found, a diet rich in polyphenols and
polyunsaturated fatty acids was linked with modified gut microbiota composition [116].
Precisely, significantly increased microbial diversity was noticed with an increased number
of Bifidobacteria. Lower diversity of Bifidobacteria is known to be associated with systemic
inflammation and immune dysregulation of intestinal Th2 and Th17 cytokines [117].

4.3.1. Curcumin

Curcumin, a natural compound known for its anti-inflammatory activity, accumulates
in the gastrointestinal tract following oral administration and may exercise its regulatory ef-
fect by modulating the microbial diversity and composition of the intestinal microflora [118].
For instance, changes in gut microbiota after curcumin supplementation were highlighted
by a human randomized placebo-controlled trial that studied the impact of turmeric and
curcumin dietary supplementation in 30 healthy subjects. The supplementation group re-
ceived 6000 mg of Curcuma longa extract daily and the microbiota analyses were performed
at the beginning of therapy and after 8 weeks. All of the participants had substantial
changes in microbiota composition over time, as well as a personalized response to therapy.
Most Clostridium spp., Bacteroides spp., Citrobacter spp., Cronobacter spp., Enterobacter spp.,
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Enterococcus spp., Klebsiella spp., Parabacteroides spp., and Pseudomonas spp. were uniformly
increased in the responsive participants. The lower relative abundance of many Blautia
spp. and the majority of Ruminococcus spp. were exhibited in both groups [119]. Further-
more, curcumin was demonstrated to be efficient for inducing mucosal immune cells with
regulatory features in mice by significantly suppressing NFKB activation in the colonic
epithelium and controlling the production of inflammatory mediators [120]. Furthermore,
the number of butyrate-producing bacteria and fecal butyrate levels increased, as did the
proliferation of CD4+ Foxp3+ regulatory T cells and CD103+ CD8- regulatory dendritic
cells [120]. The oral supplementation with curcumin in psoriasis patients was evaluated for
twelve weeks, resulting in a significant reduction in PASI score with a decrease in IL-22
serum levels [121]. Interestingly, in the gut microbiota of chronic kidney disease patients,
curcumin supplementation was linked with lower Escherichia spp. and Shigella spp., and
a greater abundance of Lachnoclostridium. Besides these changes, lower plasma levels of
pro-inflammatory mediators (CCL-2, IFN-γ, and IL-4), as well as lipid peroxidation, were
also reported [122]. Moreover, the oral administration of curcumin at the same time with
local phototherapy in patients with plaque psoriasis seems to induce a quicker and more
progressive therapeutic response to the treatment [123]. Considering that these inflam-
matory pathogenetic mechanisms are similar to those found in psoriasis subjects [9,53],
curcumin supplementation could represent a future perspective regarding the management
of this pathology.

4.3.2. Omega-3 Fatty Acids

There is a link showing the influence of PUFAs on immunity via modulating the gut
microbiota. For instance, the administration of flaxseed oil in rats resulted in a higher
level of SCFA production and a better microbial diversity, with Lactobacillus, Firmicutes,
Butyrovibrio, and Bifidobacterium being negatively linked with pro-inflammatory markers
(IL-1β, IL-6, IL-10, IL-17A, and TNF-α) [124].

Regarding the efficacy of omega-3 fatty acids in psoriasis, a recent randomized con-
trolled trial performed by Kåre Steinar Tveit et al. [125] highlighted that supplementation
with herring roe oil (containing 292 mg of polyunsaturated fatty acids omega-3) leads
to a significant improvement in the PASI score in psoriasis subjects. However, no sig-
nificant changes were observed at the levels of inflammatory markers [125]. Another
6-week randomized clinical trial, which included healthy subjects, highlighted that a
daily dose of 500 mg omega-3 increased the Coprococcus spp. and Bacteroides spp. and
significantly decreased Collinsella spp. At the same time, serum levels of iso-butyrate
and isovalerate seemed to increase by the end of the study [126]. Curiously, high lev-
els of Collinsella spp. characterize the fecal microbiota of psoriasis subjects [37], while
SCFAs and branched SCFAs, such as iso-butyrate and isovalerate, are known for their anti-
inflammatory effects [127]. Moreover, omega-3 PUFAs, which interfere with the synthesis of
pro-inflammatory eicosanoids [128], suppress the transcription of inflammatory cytokines
via inhibiting NFKB-mediated inflammation [129], which is similar to the processes un-
derlying inflammation in psoriasis [53]. Therefore, omega-3 supplementation may benefit
people diagnosed with psoriasis vulgaris in terms of regulating the pathophysiological
process of inflammation via modulating the gut microbiota.

4.3.3. Resveratrol

Resveratrol is a nonflavonoid polyphenol compound found in plants and is essential
for its anti-inflammatory benefits [130]. More studies investigated the effect of resveratrol
on the gut microbiota, showing promising results regarding the biodiversity and microbial
composition, as well as an improved intestinal barrier function and a greater intestinal
permeability [131–133]. For instance, in piglets, dietary supplementation of 300 mg/kg
of resveratrol for 28 days led to an anti-inflammatory effect by down-regulating toll-
like-receptor 4 mRNA in the intestine and lowering the release of critical inflammatory
compounds (IL-1β, TNF-α), as well as increasing the secretion of immunoglobulin [134].
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Favorable effects of resveratrol on the intestinal microbiota have also been found in mice
experiments. Oral administration of resveratrol is able to enhance intestinal barrier function,
while also reducing permeability and inflammation. The composition of the gut microbiota
was drastically changed following resveratrol treatment. Resveratrol therapy restored
dysbiosis in mice by increasing the abundance levels of Bacteroides, Alistipes, Rikenella,
Odoribacter, Parabacteroides, and Alloprevotella taxa, indicating a possible function for the
microbiome [133]. Moreover, resveratrol administration, 400 mg/kg resveratrol for 8 weeks,
increases the population of the butyrate producers Blautia and Dorea in the Lachnospiraceae
family in high-fat diet-fed rats [135]. The enrichment of the Lachnospiraceae family was
also highlighted by another study performed on high-fat diet-fed mice administrated with
300 mg/kg/day resveratrol for 16 weeks [136]. As previously presented, psoriasis patients
tend to have lower levels of Lachnospiraceae family and Blautia compared with healthy
individuals [40,137]; thus, resveratrol supplementation could lead to improvements in gut
microbial diversity among these patients.

4.3.4. Quercetin

Quercetin is a plant flavonol classified as a polyphenol flavonoid. It may be found in a
wide range of fruits, vegetables, and leaves, seeds, and grains [138]. Many studies have
previously shown the advantages of quercetin, especially regarding its anti-inflammatory,
cytoprotective and immunosuppressive properties [139–141]. Recent research has begun to
describe the influence of quercetin on the gut microbiota, due to an increased interest in this
topic [131,142,143]. For instance, quercetin seems to ameliorate gut microbiota dysbiosis
that drives hypothalamic damage and hepatic lipogenesis in monosodium glutamate-
induced abdominal obesity mice. The quercetin therapy specifically reversed Firmicutes
spp. and the Firmicutes/Bacteroidetes ratio was reduced following quercetin therapy. More
than that, the authors confirmed a decrease in Lachnospiraceae and Ruminicoccaceae family,
as well as an improvement in intestinal barrier function [144].

A recent study addressed the effect of quercetin supplementation (30, 60 and 120 mg/kg)
on imiquimod-induced mice, showing drastically reduced PASI scores, lower temperature
of psoriasis-like lesions, and improved psoriatic plaques. Furthermore, quercetin success-
fully reduced serum TNF-α, IL-6, and IL-17 levels strengthened the anti-inflammatory
effect and reduced buildup in skin tissue produced by imiquimod in mice. The authors of
the study concluded that this process might be linked to the regulation of the NFKB path-
way [145]. Moreover, oral supplementation with quercetin, a dietary flavonoid extracted
from Fagopyrum tataricum, reduced imiquimod-induced psoriasis-like dermatitis in mice,
dramatically lowering keratinocyte proliferation and aberrant differentiation, as well as
inflammatory cell infiltrates. A reduced expression of cytokines on the IL-23/Th17 axis and
a reduced Th17 cell response was noticed after the oral administration of quercetin [146].
However, more research is needed to determine the exact relationship of quercetin with
the gut microbiota and whether it may play a key role in modulating the gut microbiota
among psoriasis patients.

As presented in Table 1, most studies evaluating the effects of diet and biologically
active compounds on the intestinal microbiome are still in the preclinical phase. Table 2
summarizes most of the clinical trials that address the efficacy of such supplements in
psoriasis with favorable results regarding PASI score, proinflammatory cytokine levels, and
beneficial results on the quality of life of these patients. However, the positive intestinal
modulation of psoriasis patients in the context of supplementation with probiotics, pre-
biotics, and biologically active compounds may play a key role in the fortunate clinical
trial outcomes.
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Table 1. The effects of low-FODMAP diet and biologically active compounds on the intestinal
microbiome.

Therapy Study Population Intervention Outcomes Reference

Low-FODMAP
diet

Crohn’s disease or ulcerative
colitis patients
Randomized

n = 52
No previous probiotics, prebiotics,

azathioprine, mercaptopurine,
methotrexate, or biologics

Low-FODMAP diet for
4 weeks

↓Bifidobacterium adolescentis,
↓Bifidobacterium longum,
↓Faecalibacterium prausnitzii

Selina R. Cox
et al.
[87]

Omega-3 fatty
acids 6-week-old female rats 1 mg/kg/day of flaxseed

oil by gavage for 8 weeks

↑Allobaculum, ↑Lactobacillus,
↑Butyrivibrio, ↑Desulfovibrio,

↑Bifidobacterium, ↑Faecalibacterium,
↑Parabacteroides

↓Actinobacteria, ↓Bacteroides,
↓Proteobacteria, ↓Streptococcus,
↓Firmicutes/Bacteroidetes ratio

Ting Wang et al.
[124]

Resveratrol

Diabetic nephropathy mice
Oral administration of

10 mg/kg/day resveratrol
for 12 weeks

↑Bacteroides, ↑Alistipes, ↑Rikenella,
↑Odoribacter, ↑Parabacteroides,

↑Alloprevotella

Ting-Ting Cai
et al.
[133]

High-fat diet-fed rats

400 mg/kg/day
resveratrol,

200 mg/kg/day sinapic
acid or both
for 8 weeks

↑Blauta spp.
↑Dorea spp.

↓Bacteroides spp.
↓Desulfovibrionaceae spp.

ChenYang et al.
[135]

High-fat diet-fed mice 300 mg/kg/day
resveratrol for 16 weeks ↑Lachnospiraceae family Pan Wang et al.

[136]

Quercetin Monosodium glutamate-induced
abdominal obese mice

5 mg/kg quercetin
dissolved in 0.15%

carboxymethylcellulose
sodium, administrated by

gavage for 6 weeks

↓Firmicutes/Bacteroidetes ratio
↓Firmicutes

↓Bacteroides spp.
↓Lachnospiraceae spp.,
↓Ruminicoccaceae spp.

Lijun Zhao et al.
[144]

↓—decreased, ↑—increased.

Table 2. The effect of probiotics, synbiotics and bioactive dietary components supplementation in
human subjects.

Therapy Study Population Design Intervention Outcomes Reference

Probiotics

47-year-old woman
with psoriasis, having
pustules all over her

body; non-responsive
to the anti-psoriatic

treatment

6 month
case report

Lactobacillus
probiotic one

sachet thrice daily
with biotin 10 mg

once daily for 6
months

In 15 days, the lesions started involuting;
reduced blood sugar level

After 6 months she was free of lesions

Metikurke
Vijayashankar

et al. [97]

Psoriasis patients
n = 26

PASI < 16
Healthy subjects

n = 22
No previous

immunosuppresant
therapy

8 week RCCT 1 Bifidobacterium
infantis 35,624 ↓IL-6, ↓TNF-α, ↓CRP Groeger David

et al. [98]

Psoriasis patients
n = 50

Randomized
8 week RCCT

Lactobacillus
acidophilus,

Bifidobacterium
bifidum,

Bifidobacterium
lactis,

Bifidobacterium
langum

1.8 × 109

CFU/capsule

↑DLQI 2, ↑TAC 3, ↓PASI score, ↓PSS 4,
↓CRP, ↓IL-6

Jalal Moludi et al.
[66]
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Table 2. Cont.

Therapy Study Population Design Intervention Outcomes Reference

Probiotics

Psoriasis patients
n = 46

Randomized
2 month RCCT

Probiotic capsules
with multi-strain
bacteria 1.6 × 109

CFU/g

↑QOL 5, ↓serum LPS levels, ↓CRP, ↓IL-1β
Jalal Moludi et al.

[99]

Psoriasis patients
n = 27

Received
anti-psoriatic

treatment

12 week
single-arm,
clinical trial

Bifidobacterium
fragilis BF839

1 patient was excluded from the trial;
↓PASI score

1 case of side effect: constipation

Chuhui Lin et al.
[100]

Psoriasis patients
receiving topical

anti-psoriatic
treatment, age 18–70,

PASI > 6
n = 90,

Randomized

12 week
double-blind,

RCCT

Bifidobacterium
longum CECT
7347, B. lactis

CECT 8145 and
Lactobacillus

rhamnosus CECT
8361 with a total

of 1 × 109

CFU/capsule

2 patients did not complete the study
↓PASI score;

loss of the genera ↓Micromonospora,
↓Rhodococcus, ↑Collinsella, ↑Lactobacillus

Vicente
Navarro-López

et al. [101]

Synbiotic Psoriasis patients
n = 64

12 week
double-blind

RCCT

Lactobacillus casei,
L. acidophilus, L.

rhamnosus, L.
bulgaricus,

Bifidobacterium
breve, B. longum,

Streptococcus
thermophiles and

FOS

8 patients from the intervention group and
18 patients from the control discontinued

the study;
↑ serum levels of Fe, Ca, Mg, P, and Zn due

to
favorable effects on the gastrointestinal

system

Ali Akbarzadeh
et al. [108]

Curcumin

Healthy human
subjects n = 30

randomized
No previous

antibiotic, topical
medication, or oral
turmeric/curcuma

supplement

8 week
double-blind

RCCT

Supplementation
with 6000
mg/daily

Curcuma longa
extract

↑Clostridium spp., ↑Bacteroides spp.,
↑Citrobacter spp. ↑Cronobacter spp.
↑Enterobacter spp., ↑Enterococcus spp.,
↑Klebsiella spp., ↑Parabacteroides spp.,

↑Pseudomonas spp.,
↓ Blautia spp.,

↓Ruminococcus spp.

Christine T.
Peterson et al.

[119]

Psoriasis patients n =
63, PASI < 10.
Randomized

Receiving
anti-psoriatic

treatment

12 week
double-blind

RCCT

2 g/day of
curcumin ↓PASI score, ↓ IL-22 serum levels Emiliano Antiga

et al. [121]

Omega 3
fatty acids

Psoriasis patients
n = 64. Randomized

PASI < 10
53% of subjects used
local anti-psoriatic

maintenance
treatment

26 week
double-blind

RCCT

Herring roe oil
(containing 292

mg of
polyunsaturated

fatty acids
omega-3),

Daily dose: 2,6 g
EPA and DHA

6 patients from the interventional group did
not complete the trial

↓PASI score
No difference in inflammatory markers

Kåre Steinar Tveit
et al. [125]

Healthy subjects
n = 69

Randomized
No previous

treatment

6 week
randomized

interventional
trial

Daily dose of 500
mg of omega 3

(165 mg EPA, 110
mg DHA) vs. 20 g

inulin

Inulin:
↑Bifidobacterium spp.
↑Lachnospiraceae

spp.
↑iso-valerate
↑iso-butyrate
↑butyrate

Omega 3:
↑iso-valerate
↑iso-butyrate
↑ Coprococcus
↑ Bacteroides
↓Colinsella.

Amrita Vijay et al.
[126]

Fecal
microbiota
transplan-

tation

Severe plaque
psoriasis and IBS

patient
n = 1

5 week
interventional

clinical trial

FMT upper
endoscopy and

colonoscopy

↓BSA 6, ↓PASI,
↑DLQI, ↓TNF-α

Improved intestinal symptoms

G. Yin et al.
[147]

1 RCCT = Randomized controlled clinical yrial; 2 DLQI = Dermatology Life Quality Index; 3 TAC = total antioxidant
capacity; 4 PSS = Psoriasis Symptom Scale; 5 QOL = Quality of Life Index, 6 BSA = body surface area, ↓—decreased,
↑—increased.
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4.4. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) trials are more and more promising regarding
the health benefits of inflammatory diseases. In 2015, Paul Moayyedi et al. showed that
the FMT in active UC patients resulted in a greater microbial diversity along with the
remission of the disease [148]. Promising results were also highlighted by Sudarshan
Paramsothy et al. in an 8 week clinical trial. FMT increased gut microbial diversity and
altered microbial composition by enhancing the Eubacterium hallii and Roseburia inulivorans
species in active UC patients; all these changes along with the remission of the disease [149].
Moreover, FMT seems to be more efficient in treating Clostridium difficile infection compared
with fidaxomicin [150]. The efficacy of FMT in psoriasis patients is still a research topic,
but promising results from clinical trials have started to arouse interest. In a five week
interventional clinical trial, a subject with plaque psoriasis and IBS was administrated FMT
twice via endoscopy and colonoscopy. The body surface area, PASI score, dermatology
life quality index, intestinal symptoms and serum level of TNF-α were all improved after
the intervention with no adverse reactions observed [147]. No gut microbiota changes
were measured, and the small number of subjects represents a limitation of the study.
However, in peripheral psoriatic arthritis patients, FMT is not that efficient in treating the
active disease [151]. Although FMT may bring some benefits regarding the severity of the
disease in patients with psoriasis, more clinical trials are needed to demonstrate this and to
investigate whether or not modulation of the intestinal microbiota plays a crucial role in
this process.

5. Conclusions and Further Perspectives

This review highlighted the strong connection between psoriasis and the gut micro-
biota with the final purpose of adding novel wisdom for discovering the relationship
between the altered gut microbiota in psoriasis patients, but there are still challenges and
limitations that further research should address. Firstly, there is a need for improving
protocols regarding collection, transportation, storage and DNA extraction in both animal
and human studies to allow for optimal comparisons between studies. Moreover, there are
insufficient data on the potential therapeutic approach to modulating the gut microbiota
for better outcomes in psoriasis patients. Despite the increasing number of studies that
highlight the microbial disruption in psoriatic patients, the data regarding microbiota
modulation are lacking, meaning that the therapeutic strategy in clinical practice is based
on evidence from other inflammatory and autoimmune pathologies, where the ability of
diet, prebiotic/probiotic protocols, and biologically active compounds to modulate the
gut microbiota have been demonstrated, as well as the therapy experience.Given that the
severity and status of psoriasis are closely related to alterations in the intestinal microbiome,
maintaining a balance in bacterial species using the aforementioned modulating factors
could be an effective way to prevent the aggravation of the disease in these patients. Thus,
additional human studies that include an accurate nutritional evaluation and therapeutic
protocols are required in order to better understand the relationship between diet and
microbiota in psoriasis patients. We anticipate that comprehensive study will soon enable
us to characterize the gut microbiota as a tool for many diseases including psoriasis, and
will allow lifestyle interventions and other dietary protocols to serve as cornerstones in
treating the microbiome alteration of psoriatic patients.
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