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Abstract

:

Prospective cohort studies show that higher intakes of ultra-processed food (UPF) increase the risk of obesity and obesity-related outcomes, including cardiovascular disease, cancer and type 2 diabetes. Whether ultra-processing itself is detrimental, or whether UPFs just have a lower nutritional quality, is debated. Higher UPF intakes are inversely associated with fruit, vegetables, legumes and seafood consumption. Therefore, the association between UPFs and poor health could simply be from excess nutrient intake or from a less healthful dietary pattern. If so, adjustment for dietary quality or pattern should explain or greatly reduce the size of the significant associations between UPFs and health-related outcomes. Here, we provide an overview of the literature and by using a novel approach, review the relative impact of adjusting for diet quality/patterns on the reported associations between UPF intake and health-related outcomes in prospective cohort studies. We find that the majority of the associations between UPFs, obesity and health-related outcomes remain significant and unchanged in magnitude after adjustment for diet quality or pattern. Our findings suggest that the adverse consequences of UPFs are independent of dietary quality or pattern, questioning the utility of reformulation to mitigate against the obesity pandemic and wider negative health outcomes of UPFs.
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1. Introduction


Obesity (defined as an excess accumulation of fat that may result in adverse health [1]) is a leading cause of poor health, increasing the risk of non-communicable disease (NCD), all-cause mortality and negatively impacting on quality of life [2,3,4]. Management strategies for obesity prevention and treatment are therefore important.



Diet has long been a cornerstone of weight management, with dietary policies being a core feature of government and health organisation strategies to reduce obesity worldwide. Indeed, poor diets are a leading cause of preventable obesity-related death and NCD, including cancer, cardiovascular disease (CVD) and type 2 diabetes (T2DM), accounting for 11 million deaths annually [5,6]. As such, dietary improvements could prevent one in every five deaths [5]. There is converging evidence that a healthy diet consists predominantly of whole, plant-based foods, including fruit, vegetables, pulses, nuts, whole grains and oily fish [7,8,9,10,11,12,13,14]. Such diets, as exemplified by the Mediterranean diet and Dietary Approaches to Stop Hypertension (DASH), are high in fibre and limit saturated fat, sodium and added sugar intake. In contrast, Western diets high in refined grains, red and processed meat, sweets and sugar-sweetened beverages are rich in saturated fat, sodium and added sugar and associated with an increased risk of disease [13,14,15,16,17].



Despite the importance of specific nutrients and food groups within overall dietary patterns for health, it is becoming increasingly clear that other dimensions of diets are important [18]. In recent decades, a nutrition transition has resulted in a global shift away from consuming minimally processed foods, and towards ultra-processed alternatives [19,20], away from home-prepared dishes, and towards ready-to-eat meals and snacks [21]. This same period has seen a rapid rise in the global prevalence of obesity in children and adults [22]. Besides their nutrient content, healthy dietary patterns such as the Mediterranean diet tend to be minimally processed [15], and unhealthy dietary patterns such as the Western diet tend to be ultra-processed [11,16,23].



Whether ultra-processed diets are detrimental to health simply because they are of a poor nutritional quality, or whether the nature and extent of processing itself has health consequences is an ongoing debate [24]. Several recent systematic reviews, meta-analyses and reviews have discussed the prevalence of UPF consumption and its impact on health-related outcomes. However, no reviews to date have considered how dietary adjustment in prospective cohort studies may alter the significance and magnitude of effect estimates. This review provides a brief overview of the current state of the literature as well as the current key discussion points regarding mechanisms of action, before reviewing in detail the prospective analyses adjusting for dietary quality, which provides important insights into the relative role of nutrient content compared with ultra-processing on obesity risk and adverse health-related outcomes.




2. NOVA Classification


Several classification systems have been developed to categorise food and drink based on levels of processing, including the International Food Information Council, International Agency for Research on Cancer and NOVA classifications [25]. The most commonly used is the NOVA classification, which considers the nature, extent and purpose of processing, not the act of processing itself, to be important [26]. The NOVA food classification consists of four groups: minimally processed foods (MPF), processed culinary ingredients (PCI), processed foods (PF) and ultra-processed foods (UPF) (Table 1) [27]. UPFs are industrial formulations, typically with five or more ingredients including additives, flavourings and colours that no longer resemble their original constituent ingredients [28]. Nutritional quality, such as nutrients to limit content, is not a core aspect of the NOVA classification.



In recent decades, the contribution of UPFs to diets worldwide has been increasing year on year [29]. In the US and UK, over 55% of the average daily energy intake now comes from UPFs, and those in the highest quintiles consume over 75% of their daily energy intake from UPFs [30]. Additionally, UPFs are becoming increasingly more prevalent in the diets of infants, children and adolescents [31,32].




3. UPFs, Obesity Risk and Health-Related Outcomes


Systematic reviews and meta-analyses of prospective cohort studies and cross-sectional studies show that UPF consumption is associated with an increased risk of weight gain, overweight and obesity [33,34,35,36,37,38], as well as other obesity-related health outcomes [33,34], including hypertension, type 2 diabetes (T2DM) [38,39], cancer [33], cardiovascular disease (CVD) [33,34], depression and all-cause mortality [33,35,36,37,40]. In Europe, a 1% increase in the national household availability of UPFs is associated with a 0.25% increase in the national prevalence of obesity, after adjusting for income, physical inactivity and smoking [41]. Additionally, increases in ultra-processed food and drink volume sales per capita are associated with population-level BMI trajectories [42]. The rising contribution of UPFs to diets worldwide poses a significant threat to addressing the obesity epidemic.




4. Mechanisms and Current Debates around Ultra-Processing: Correlation or Causation?


There is increasing evidence showing that UPFs are linked with obesity and other adverse health-related outcomes. However, the potential mechanisms that lead to these adverse health outcomes are diverse, and still largely debated (readers are directed to other comprehensive overviews for further reading on potential mechanisms [43,44,45]). These mechanisms can be broadly considered as being as a result of nutrient content, or as a result of ultra-processing [43].



From a nutrient perspective, UPFs have on average a higher energy density (2.3 vs. 1.1 kcal/g) and lower nutrient density than minimally processed foods [44,46]. UPFs tend to be high in saturated fat, added sugar and sodium [47], with meta-analyses demonstrating that diets higher in UPFs tend to contain greater intakes of total energy, free sugars and total and saturated fat, and lower intakes of fibre, protein and some micronutrients [30,48]. The high palatability of UPFs has the potential to promote a faster eating rate and energy overconsumption [44], with daily energy intake increasing as the proportion of daily energy intake from UPFs increases (3.47 kcal increase per 1% increase in daily energy intake from UPFs) [30].



However, aspects of ultra-processing may also increase the risk of obesity and other adverse health-related outcomes. Textural and structural changes to the food matrix as a result of ultra-processing can also allow for UPFs to be consumed more quickly [49,50,51]. Reducing the oro-sensory exposure (OSE) time of a food can delay the onset of satiation [52], and UPFs have been shown to be less satiating than minimally processed foods [53,54]. The delayed satiation from faster eating rates can promote increased energy intake [55]. Food matrix changes can also alter nutrient bioavailability, and the harm from UPFs may come from the fact that they tend to be more hyperglycaemic than MPFs [53,54]. Besides the nutritional quality of UPFs and degradation of the food matrix, the additive content and excessive heat treatment of UPFs have also been proposed to lead to changes in gut microbiota and promote inflammation [56,57].



Beyond nutrients and ultra-processing, behavioural aspects of UPFs and the local, environmental and systemic drivers influencing food choice are also important [58]. The heavy marketing [59,60], low cost [46], high availability [61] and large portion sizes of UPFs [43,62] can make them preferable choices over minimally processed options.




5. UPF Removal or UPF Reformulation: The Case for ‘Healthy’ UPFs?


Actions to reduce the risks associated with UPF intake have largely been either reformulation to improve the nutrient profile of UPFs, or avoidance of UPFs altogether. Whether experts support UPF reformulation or UPF avoidance is dependent on the views regarding which mechanisms link UPFs with poor health.



Both those in favour of limiting UPFs [63], and those against the NOVA classification [64,65,66], acknowledge that the nutritional quality of UPFs is an important factor. Even some proponents of NOVA and reducing UPF intake have suggested that the saturated fat, added sugar and sodium content of UPFs is important, despite this not being a core aspect of the UPF definition [28]. For example, authors have focussed on the impact of reducing UPF intake on changes in saturated fat, added sugar and sodium intake and dietary quality, and the subsequent benefit of these changes on disease risk [67,68,69,70]. Critics of NOVA/supporters of reformulation argue that any link between UPFs and adverse health is solely due to their nutrient content; that some UPFs are just high in saturated fat, added sugar and sodium and that some UPFs are not nutritionally inferior, with some studies showing no difference in saturated fat, added sugar and sodium intakes across extremes of UPF intake [64,71,72].



Indeed, many UPFs are nutritionally poor and energy dense, but not all are. Studies demonstrate that UPFs tend to relate with existing nutrient profile indices, based on saturated fat, added sugar and sodium content [73]. In comparison with the Nutri-Score (ranking foods from class A to E, where A is high and E is low nutritional quality) used across several European countries, the majority of UPFs are class C, D or E, whereas the majority of unprocessed or minimally processed foods are class A or B [74]. However, 26% of class A foods are UPFs, largely being UPF ready meals or dairy products. Studies comparing UPFs with other nutrient indices (such as the Nutrient Rich Foods index, based on the protein, fibre, vitamins, minerals, saturated fat, added sugar and sodium content of food) show similar findings; most UPFs are low in nutritional quality, but some are high, and most MPFs are high in nutritional quality, but some are still low in quality [46]. Indeed, a range of UPFs have been identified as being ‘healthy’, based on nutrient profiling [65]. ‘Healthy’ UPFs are often reformulations and plant-based alternatives [65,74], which carry nutritional claims such as ‘fat free’, ‘reduced salt’, ‘low sugars or ‘added fibre’ according to European Food Safety Authority guidelines [75]. Other ‘healthy’ UPFs such as fortified bread have been suggested to be important sources of vitamins and minerals [64,65,76], and avoidance of such UPFs may result in micronutrient deficiencies [77]. Therefore, two foods can be defined as having a high level of nutritional quality, but with very different levels of processing [78].



Given that particular UPFs, such as reformulations, can be considered to be of a similar or greater nutritional quality than some MPFs, it has been suggested that these UPFs are therefore healthy and nutritious [65,76]. Experts proposing that reformulations are sufficient to address all issues surrounding UPFs are making the assumption that the association between UPF intake and adverse health is mediated solely by their content of specific nutrients [71]. Experts proposing avoidance of all UPFs and arguing that reformulations are insufficient to significantly improve health are making the assumption that no UPFs can be considered to be healthy [79]. Such experts argue that reformulation does not address aspects of ultra-processing [80,81,82]; reformulated UPFs still have a degraded food matrix [83,84], and components of the raw constituent foods are still lost [85].



In summary, there is agreement that energy dense foods high in saturated fat, sodium and added sugar are harmful to health and should be limited. Such foods also tend to be ultra-processed, but not all are [73,74]. Despite the mounting evidence showing the adverse impacts of UPFs, the argument between nutrients and ultra-processing, and therefore between reformulation or avoidance of UPFs, is ongoing [24,81,82]. Further research understanding the relative impact of nutrients vs. ultra-processing is therefore warranted. However, largely overlooked to date, is the fact that many published prospective cohort studies have already considered the overlap between nutrition and ultra-processing, performing dietary adjustments of models to delineate the association between UPF intake, obesity and adverse health-related outcomes.




6. Review of Prospective Studies Adjusting for Dietary Quality


One of the main criticisms against the NOVA classification is that UPFs simply capture nutrient poor foods high in saturated fat, sodium and added sugar [71,73]. Furthermore, it is well established that the overall dietary pattern is important for health [10]. Higher UPF intakes are inversely associated with MPF intake, including fruit, vegetables, cereals, beans, legumes and seafood intake [30]. Therefore, the association between high UPF intake and poor health could simply be from excess nutrient intake, or from a less healthful dietary pattern. If this were the case, adjustment for participants’ dietary saturated fat, sugar and sodium intake, or adjustment for their overall dietary pattern should explain the significant associations found between higher intakes of UPF and adverse health-related outcomes in prospective cohort studies, either rendering the association to be non-significant, or greatly reducing the size of the association.



Many prospective studies in adults have performed dietary adjustments, with only a small proportion not adjusting for aspects of dietary quality [86,87,88,89,90,91]. A greater proportion of prospective studies during gestation [92,93], or in children [94,95,96,97,98,99,100,101], have not performed dietary adjustments. These dietary adjustments can be broadly classed as adjustment for fat (typically saturated fat), carbohydrate (typically sugar) and sodium, adjustment for dietary patterns (including Mediterranean diet, Healthy Eating Index (HEI), Alternate Healthy Eating Index (AHEI), Dietary Guidelines for Americans Adherence Index (DGAI), healthy and Western dietary patterns and Food Standards Agency Nutrient Profiling System Dietary Index (FSA-NPS-DI)), or other dietary adjustments (typically for specific food groups such as fruit and vegetables).



Table 2 presents the 37 longitudinal, observational studies that report some form of adjustment for diet quality/pattern in their analyses investigating the association between UPF intake as defined by NOVA, and health-related outcomes (the search process and criteria for the review is detailed in the Supplementary Materials). Table 2 also presents the association between UPF intake and health-related outcomes from adjusted models preceding the dietary adjustment, or where not reported, the adjusted model including the dietary adjustment.



Across 37 studies, 87 health-related outcomes were assessed using 91 models. Of the 66 models that demonstrate a significant association between UPF and a health-related outcome, 64 remained significant following adjustment for diet quality or diet pattern. In total, 136/142 dietary adjustments did not explain the significance of the association between UPF intake and a health-related outcome. Across four studies, all four models demonstrated higher UPF intakes were significantly associated with all-cause mortality [102,103,104,105]. No dietary adjustments (15/15) altered the significance of UPF intake with all-cause mortality. Across 13 models within five studies, 11 were significantly associated with a CVD outcome [104,105,117,118,119]. 29/31 dietary adjustments did not alter the significance of UPF intake with CVD outcomes. Across two studies, UPF intake was significantly associated with cancer outcomes in 2/5 models [105,126]. 8/8 dietary adjustments did not alter the significance of the association between UPF intake and the two cancer outcomes. In two models significantly associated with T2DM, 7/7 dietary adjustments did not alter the significance [123,124]. Across nine studies, 23/26 models demonstrated a significant association between UPF intake and adult and child anthropometrics (weight/body mass index (BMI)/fat mass index (FMI) gain, other measures of adiposity and risk of overweight/obesity) [106,107,108,109,110,111,112,113,115]. 40/43 dietary adjustments did not alter the significance of these associations.



6.1. Adjustment for Saturated Fat, Sugar and Sodium, and for Dietary Pattern


Table 3 presents the adjustments for saturated fat, sodium and added sugar. Table 4 presents the adjustments for dietary pattern. All but one study retained the significant association between UPF and the health-related outcome after adjustments for saturated fat, sodium and added sugar intake. All but two studies retained the significant association between UPF and the health-related outcome after adjustment for dietary pattern.



Within the NutriNet-Santé cohort, several studies have performed dietary adjustments for the associations between UPF intake and all-cause mortality, CVD, overweight/obesity incidence, T2DM, cancer and functional gastrointestinal disorders [102,106,117,124,126,127,129]. Schnabel et al. found a 15% (95% confidence interval: 1.04, 1.27) increased risk of all-cause mortality per 10% increase in UPF intake in the diet [102]. Adjusting for French dietary guideline adherence or for both French dietary guideline adherence and for Western dietary pattern still resulted in each 10% increment in UPF intake being associated with a 14% (1.04, 1.27) or 19% (1.05, 1.35) increased risk, respectively, of all-cause mortality [102].



Srour et al. reported a 12% (1.05, 1.20), 13% (1.02, 1.24) and 11% (1.01, 1.21) increased risk of CVD, coronary heart disease (CHD) and cerebrovascular disease, respectively, per 10% increase in UPF in the diet [117]. Multiple dietary adjustments did not alter these risk estimates. First, adjusting for saturated fat, sodium and added sugar intake resulted in a 13% (1.05, 1.20), 14% (1.03, 1.26) and 12% (1.02, 1.22) increased risk of CVD, CHD and cerebrovascular disease, respectively [117]. Second, adjusting instead for a healthy dietary pattern still resulted in an 11% (1.03, 1.19), 11% (1.00, 1.23, p = 0.04) and 10% (1.00, 1.20, p = 0.04) increased risk of CVD, CHD and cerebrovascular disease, respectively [117]. Third, adjusting for intakes of sugary products, red and processed meat, salty snacks, beverages, fats and sauces also still resulted in a 12% (1.04, 1.20), 12% (1.01, 1.24) and 11% (1.01, 1.22) increased risk of CVD, CHD and cerebrovascular disease, respectively, per 10% increase in UPF in the diet [117].



In a separate study, Srour et al. reported a 15% (1.06, 1.25) increased risk of T2DM with each 10% increase in UPF in the diet, which included adjustment for dietary quality using the FSA-NPS-DI [124]. Again, subsequent dietary adjustments did not alter the increased risk of T2DM. A 10% increase in UPF in the diet was still associated with a 19% (1.09, 1.30) increased risk when further adjusting for saturated fat, sodium, sugar and dietary fibre intake, a 13% (1.04, 1.24) increased risk after adjusting for healthy and Western dietary patterns, and a 14% (1.04, 1.25) increased risk after adjusting for intakes of red and processed meat, sugary drinks, fruits and vegetables, whole grains, nuts, and yogurt in place of the FSA-NPS-DI adjustment [124]. Srour et al. also adjusted for absolute amounts of unprocessed or minimally processed food intake, which few studies have performed to date. This adjustment also did not alter the increased risk of T2DM (hazard ratio (HR) per 100g/day increase in UPF intake: 1.05 (1.02, 1.08) [124].



Fiolet et al. reported a 12% (1.06, 1.18) and 11% (1.02, 1.22) increased risk of all cancer and breast cancer, respectively, per 10% increase in UPF in the diet [126]. Adjustment for lipids (including fat), sodium and carbohydrate intake had no impact on the risk of all cancer (HR: 1.12 (1.07, 1.18)) or breast cancer (HR: 1.11 (1.01, 1.21)) per 10% increase in UPF in the diet, respectively [126]. Adjustment instead for Western dietary pattern also did not change the 12% (1.06, 1.18) and 11% (1.02, 1.22) increased risks [126].



Beslay et al. reported a greater BMI gain (β: 0.02 kg/m2 (0.01, 0.02)) and increased risk of overweight (HR: 1.11 (1.08, 1.14)) or obesity (HR: 1.09 (1.05, 1.13)), per 10% increase in UPF in the diet [106]. Adjusting for healthy and Western dietary patterns did not alter the greater BMI gain (β: 0.02 kg/m2 (0.01, 0.02)), or increased risk of overweight (HR: 1.10 (1.07, 1.13)) or obesity (HR: 1.11 (1.07, 1.15)), and neither did adjustment for saturated fat, sugar, sodium and dietary fibre intake, which also resulted in a greater BMI gain (β: 0.02 kg/m2 (0.01, 0.02)), and increased risk of overweight (HR: 1.10 (1.08, 1.13)) or obesity (HR: 1.10 (1.06, 1.14), per 10% increase in UPF intake [106].



Schnabel et al. identified an increased risk of irritable bowel syndrome (IBS) (odds ratio (OR): 1.24 (1.12, 1.38)) and functional dyspepsia (OR: 1.26 (1.07, 1.48)) when comparing the highest vs. lowest quartiles of UPF intake [129]. Adjustment for adherence to French dietary guidelines did not alter the increased risk of IBS (OR: 1.25 (1.12, 1.39)) or functional dyspepsia (OR: 1.25 (1.05, 1.47)) across extreme quartiles of UPF intake [129].



Four studies within the Seguimiento Universidad de Navarra (SUN) cohort have adjusted for fat, added sugar and sodium intake, or for dietary pattern. Rico-Campa et al. demonstrated that the highest vs. lowest quartile of UPF intake was associated with a 62% (1.13, 2.33) increased risk of all-cause mortality [103]. Adjustment for saturated and trans fats, added sugar and sodium intake still resulted in a 69% (1.12, 2.56) increased risk of all-cause mortality. A 58% (1.10, 2.28) increased risk still remained after adjusting for Mediterranean diet pattern adherence instead [103].



Llavero-Valero et al. reported that the highest vs. lowest tertile of UPF intake was associated with a 53% (1.06, 2.22) increased risk of T2DM, which was unaltered (HR: 1.50 (1.02, 2.21)) after adjusting for Mediterranean diet pattern adherence [123].



Gómez-Donoso et al. found a 41% (1.15, 1.73) increased risk of incident depression in the highest vs. lowest quartile of UPF intake, which was still associated with a 33% (1.07, 1.64) higher risk of incident depression after further adjustment for other covariates, including Mediterranean diet pattern adherence [132].



Leone et al. identified an increased risk of gestational diabetes in females aged 30 and over (OR 1st vs. 3rd tertile: 2.05 (1.03, 4.07)), which was unaltered after adjustment for Mediterranean diet pattern adherence (OR 1st vs. 3rd tertile: 2.06 (1.05, 4.06)) [114].



In the US Third National Health and Nutrition Examination Survey (NHANES III) cohort, there was a 31% (1.09, 1.58) increased risk of all-cause mortality in the highest vs. lowest quartile of UPF intake, which remained significant after further adjustment for dietary quality score using the HEI-2000 (p-trend = 0.001) [104]. However, diet-adjusted risk estimates were not provided.



In the Italian Moli-sani cohort, the highest vs. lowest quartile of UPF intake was associated with a 32% (1.15, 1.53) higher risk of all-cause mortality, 65% (1.29, 2.11) higher risk of CVD mortality, and a 63% (1.19, 2.25) higher risk of ischemic heart disease (IHD)/cerebrovascular mortality [105]. Adjusting for saturated fat, sugar, sodium and dietary cholesterol intake resulted in a 28% (1.09, 1.49), 56% (1.19, 2.03) and 33% (0.94, 1.90) increased risk of all-cause, CVD and IHD/cerebrovascular mortality, respectively, in the highest vs. lowest quartile of UPF intake. Bonaccio et al. also individually adjusted for saturated fat, sugar, sodium and dietary cholesterol in turn, with UPF intake remaining significantly associated with all-cause, CVD and IHD/cerebrovascular mortality in all adjustments, except for sugar intake and IHD/cerebrovascular mortality (HR: 1.37 (0.98, 1.90)). Adjusting instead for Mediterranean diet pattern adherence resulted in a 26% (1.09, 1.46), 58% (1.23, 2.03) and 52% (1.10, 2.09) increased risk of all-cause, CVD and IHD/cerebrovascular mortality [105].



In the Framingham Offspring cohort, each additional serving of UPF per day was associated with a 5% (1.02, 1.08), 9% (1.02, 1.16), 7% (1.03, 1.12) and 9% (1.04, 1.15) increased risk of overall CVD, CVD mortality, hard CVD and hard coronary heart disease, respectively [118]. Further adjustment for diet quality using the DGAI-2010 still resulted in a 4% (1.01, 1.07), 9% (1.02, 1.16), 6% (1.02, 1.11) and 9% (1.03, 1.15) increased risk of overall CVD, CVD mortality, hard CVD and hard coronary heart disease [118].



In the US Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial cohort, the highest vs. lowest quintile of UPF intake was associated with a 50% (1.36, 1.64) increased risk of CVD mortality, and a 68% (1.50, 1.87) increased risk of heart disease mortality [119]. Multiple dietary adjustments did not alter this risk; adjustment for saturated fat, added sugar and sodium resulted in a 48% (1.34, 1.63) and 65% (1.47, 1.85) increased risk of CVD mortality and heart disease mortality, adjustment for diet quality using HEI-2005 resulted in a 48% (1.35, 1.63) and 67% (1.49, 1.86) increased risk of CVD mortality and heart disease mortality, and adjustment instead for red meat, processed meat, whole grains, fruit, vegetables, fibre and dairy intake also still resulted in a 49% (1.35, 1.64) and 66% (1.48, 1.86) increased risk of CVD mortality and heart disease mortality, respectively [119].



In the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, each additional standard deviation (SD) increment in UPF intake per day was associated with a 0.12 kg (0.09, 0.15) greater increase in weight over 5 years of follow-up, which was unaltered after further adjusting for Mediterranean diet score (β: 0.12 kg/5 years (0.09, 0.15)) [111]. In sensitivity analyses of fully adjusted models including Mediterranean diet adherence, UPF intake was associated with a higher risk of overweight/obesity (relative risk (RR): 1.05 (1.04, 1.06)) and obesity (RR: 1.05 (1.03, 1.07)) per 1SD increase in UPF per day. This corresponded to a 15% (1.11, 1.19) higher risk of overweight/obesity in participants with normal weight and a 16% (1.09, 1.23) higher risk of obesity in participants with overweight at baseline, when comparing the highest vs. lowest quintiles of UPF intake [111].



In the China Nutrition and Health Survey (CNHS), consuming ≥50 g of UPF per day was associated with an increased risk of overweight/obesity (OR: 1.85 (1.58, 2.17)) and central obesity (OR: 2.04 (1.79, 2.33)), when compared to no UPF intake. Adjustment for traditional and modern dietary patterns did not alter the increased risks (overweight/obesity, OR: 1.45 (1.21, 1.74), central obesity, OR: 1.50 (1.29, 1.74)) [108].



In the Seniors Study on Nutrition and Cardiovascular Risk in Spain (Seniors-ENRICA-1), Sandoval-Insausti et al. found an increased risk of abdominal obesity (OR: 1.62 (1.04, 2.54) in the highest vs. lowest tertile of UPF intake, which was unaltered after adjustment for Mediterranean diet adherence and fibre and omega-3 fatty acid intake (OR: 1.61 (1.01, 2.56)) [110].



Donat-Vargas et al. identified an increased risk of hypertriglyceridaemia (OR: 2.00 (1.04, 3.85)) and low-HDL cholesterol (OR: 2.04 (1.22, 3.41)), as well as a significant increase in blood triglycerides (β: 6.11 mg/dL (1.30, 10.91)) when comparing the highest vs. lowest tertile of UPF intake [136]. Adjustment for unprocessed or minimally processed food intake did not alter the increased risk of hypertriglyceridaemia (OR: 2.66 (1.20, 5.90)), low-HDL cholesterol (OR: 2.23 (1.22, 4.05)) or change in blood triglycerides (β: 6.87 mg/dL (1.48, 12.27)) [136].



In the Pelotas-Brazil 2004 Birth Cohort, Costa et al. found a 0.09 kg/m2 (0.07, 0.10) greater gain in FMI from ages 6 to 11, per 100 g daily increase in UPF intake [116]. Adjustment for other NOVA food groups (minimally processed and processed food, and processed culinary ingredients intake) significantly increased the associated FMI gain to 0.14 kg/m2 (0.13, 0.15) from age 6 to 11, per 100 g daily increase in UPF intake [116].



In the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, the highest vs. lowest quintile of UPF intake was associated with a 0.06 kg/m2 (0.04, 0.08) and 0.03 kg/m2 (0.01, 0.05) greater yearly increase in BMI and FMI, respectively, from the age of 7 to 24 [115]. Adjustment for saturated fat, sugar, sodium and fibre intake did not alter the association between UPF intake and increases in BMI (β: 0.07 kg/m2/year (0.04, 0.08)) or FMI (β: 0.03 kg/m2/year (0.01, 0.05)) [115].



Koniecnzna et al. conducted a prospective analysis of the PREDIMED-Plus trial over the course of 12 months. Each 10% increment in UPF intake was associated with increases in total (β: 0.09 (0.06, 0.13)) and visceral (β: 0.09 (0.05, 0.13)) fat mass z-scores. Adjusting for overall repeated measures of saturated and trans fat, sodium, glycaemic index, alcohol and fibre intake across the 12 month study did not alter the significant association between UPF intake and increases in total (β: 0.06 (0.03, 0.09) and visceral (β: 0.06 (0.01, 0.10)) fat mass z-scores per 10% increase in daily UPF intake [109]. Adjusting instead for overall repeated measures of Mediterranean diet pattern adherence across the 12 month study also did not alter the association between each 10% increment in UPF intake and increases in total (β: 0.06 (0.02, 0.09)) and visceral (β: 0.06 (0.01, 0.10)) fat mass z-scores [109].



In the Tianjin Chronic Low-grade Systemic Inflammation and Health (TCLSIH) Cohort Study, the highest vs. lowest quartile of UPF intake was associated with a 17% (1.07, 1.29) higher risk of non-alcoholic fatty liver disease (NAFLD) in the age, sex and BMI adjusted model. After adjustment for other confounders including for a healthy diet score based on fruit, vegetable, red meat and fish intake, the increased risk associated with the highest vs. lowest quintile of UPF intake was 19% (1.08, 1.31) [125].



Zhang et al. found a 21% (1.10, 1.33) increased risk of hyperuricaemia in the highest vs. lowest quartile of UPF intake, which was still associated with a 17% (1.06, 1.30) increased risk of hyperuricaemia after adjustment for dietary pattern [134].



In a separate study, Zhang et al. reported that each 10% increment in UPF in the diet was associated with a −0.30 kg (−0.50, −0.09) and −0.0043 kg/kg weight (−0.0073, −0.0014) yearly reduction in absolute and weight-adjusted grip strength, respectively [138]. Adjustment for further covariates including a healthy diet score (based on fruit, vegetable, unprocessed red meat and fish intake), dietary supplement use and protein and milk intake did not alter the association, with each 10% increment in UPF intake still associated with −0.32 kg (−0.53, −0.11) and −0.0046 kg/kg weight (−0.0076, −0.0016) yearly reductions in absolute and weight-adjusted grip strength, respectively [138].



In a combined analysis of the Nurses’ Health Study, the Nurses’ Health Study II and the Health Professionals Follow-up Study, Lo et al. found a 75% (1.29, 2.35) increased risk of Crohn’s disease in the highest vs. lowest quartile of UPF intake after adjusting for age, cohort and calendar year. The increased risk was unchanged after further covariate adjustments, including for diet quality defined by the AHEI-2010 (HR: 1.70 (1.23, 2.35)) [130].



In the Prospective Urban Rural Epidemiology (PURE) cohort, Narula et al. identified an 82% (1.22, 2.72) increased risk of inflammatory bowel disease (IBD) and a 450% (1.67, 12.13) increased risk of Crohn’s disease in those consuming five or more UPF servings per day, compared with those consuming less than one serving per day. Adjustment for AHEI-2010 still resulted in a 92% (1.28, 2.90) increased risk of IBD and a 490% (1.78, 13.45) increased risk of Crohn’s disease [128].



In the Norwegian Mother, Father and Child Cohort Study, Borge et al. reported that each 1 SD increase in maternal UPF intake was associated with an increase in absolute (0.38 (0.27, 0.49)) and relative (4.5% (3.3, 4.9)) measures of child attention deficit hyperactivity disorder (ADHD) symptoms at age 8, using the Parent Rating Scale for Disruptive Behaviour Disorders [137]. Adjustment for child Diet Quality Index (based on diet diversity, diet quality and diet equilibrium [139]) did not alter the associated increase in absolute (0.25 (0.13, 0.38)) or relative (3.0% (1.5, 4.5)) ADHD symptoms [137].



Three studies have considered the impact of diet quality and dietary pattern using alternative methods. In the ATTICA cohort, each additional weekly serving of UPF was associated with a 10% (1.02, 1.21) increased risk of CVD. Kouvari et al. then performed sub-group analysis based on Mediterranean diet pattern adherence. Participants with moderate to high adherence to the Mediterranean diet had an attenuated (8% (0.98, 1.19)) risk of CVD per weekly serving of UPF, whereas participants with low adherence to the Mediterranean diet had an even greater risk of 19% (1.12, 1.25), per weekly serving of UPF [140].



Bonaccio et al. identified that diet quality (defined by the FSA-NPS-DI) was only significantly associated with all-cause mortality in high UPF consumers (HR per 1 SD increase in FSA-NPS-DI: 1.14 (1.05, 1.25), but not in low UPF consumers (HR: 1.00 (0.93, 1.07) (p for interaction = 0.034) in the Moli-sani cohort [141]. The interaction between diet quality and UPF intake was not significant for CVD mortality.



In the ENRICA study, the highest vs. lowest quartile of UPF intake had a 44% (1.01, 2.07) increased risk of all-cause mortality [91]. Instead of dietary adjustment, Blanco-Rojo et al. compared the highest vs. lowest intakes of nutrients from UPF intake, including total, saturated and trans fat, carbohydrates, sugar, sodium and fibre [91]. The nutrient content of UPFs was not associated with an increased mortality risk, except for trans fat (HR highest vs. lowest quartile: 1.39 (1.00, 1.92), p = 0.047).




6.2. Adjustment for Fat, Sodium, Carbohydrate and Dietary Pattern


Two studies have simultaneously adjusted for fat, sodium and carbohydrate intake and for dietary pattern, which are reported in Supplementary Table S1. For cancer outcomes, Fiolet et al. adjusted for both intakes of lipids (including fat), sodium, and carbohydrates and Western dietary pattern, resulting in a 13% (1.07, 1.18) and 11% (1.01, 1.21) increased risk of all cancer and breast cancer per 10% increase in UPF in the diet [126].



Adjibade et al. identified a 21% (1.15, 1.27) higher risk of depressive symptoms per 10% increase in UPF in the diet in the NutriNet-Santé cohort [131]. After adjusting for intakes of lipids (including fat), sodium, and carbohydrates and for healthy and Western dietary patterns, the risk of depressive symptoms per 10% increase in UPF in the diet was still 22% (1.16, 1.29) [131].




6.3. Adjustment for Fat And/or Sugar and/or Sodium


Some studies have adjusted for one or two components of fat and/or sugar and/or sodium intake, rather than all three components. One study adjusted for carbohydrate intake, rather than sugar intake [114]. These adjustments are reported in Supplementary Table S2. The significant associations between UPF intake and all-cause mortality, overweight or obesity, central obesity, T2DM, hypertension, gestational weight gain, neonatal anthropometrics and blood lipid profiles were unchanged following these dietary adjustments [103,108,113,114,120,123,135,136].




6.4. Adjustment for Other Dietary Components


Other measures used for dietary adjustment are provided in Supplementary Table S3. Other dietary adjustments include for fried foods, fruit and vegetables, UPF soft drinks, multivitamin use and excluding bacon, sausage and processed meats from ultra-processed food intake. These adjustments had no impact on the association between higher intakes of UPF and risk of all-cause mortality, cancer, overweight/obesity, increased total and visceral fat mass, increased BMI and FMI, NAFLD, weight and waist circumference gain, adverse blood lipid profiles, grip strength decline, incident hypertension and renal function decline [103,104,106,107,109,111,112,115,121,122,125,126,133,136,138].




6.5. Dietary Adjustments That Explain the Association between UPF Intake and Health-Related Outcomes


To date, only two studies have performed dietary adjustments that explain the association between higher UPF intakes and adverse health-related outcomes. In the PREDIMED-Plus study, each 10% increase in UPF in the diet was associated with a 5% (0.00, 0.09, p = 0.031) increase in android:gynoid fat ratio z-score during 12 months of follow-up [109]. Adjusting for repeated measures of sodium, saturated and trans fat, alcohol, fibre and glycaemic index, or adjusting for repeated measures of Mediterranean Diet adherence during the 12-month follow-up period resulted in a non-significant association between UPF intake and android:gynoid fat ratio z-score [109].



In the Moli-sani cohort, the highest vs. lowest quartile of UPF intake had a 36% (1.01, 1.83) higher risk of other cause mortality (any mortality, excluding CVD and cancer). However, after adjusting for Mediterranean diet score, this became non-significant (1.26 (0.94, 1.69)) [105]. As noted in Section 6.1, the increased risk of IHD/cerebrovascular mortality also became non-significant after adjusting for saturated fat, sugar, sodium and dietary cholesterol.




6.6. Adjustment for Total Energy Intake


An ultra-processed diet has been shown to increase energy intake in comparison with a minimally processed diet [49]. Energy intake may be a mediator of both nutritional aspects (high energy density and palatability), and of some ultra-processing aspects (a degraded food matrix influencing oro-sensory exposure and satiety) of UPFs. Adjustment for total daily energy intake is not only useful to control for measurement error in epidemiological dietary assessment to improve risk estimation of other dietary measures [142,143], but it can also provide information on the associated risk between UPF intake and adverse health outcomes, independent of energy intake [144].



Adjustment for energy intake can be achieved using several methods [145,146]. However, it has typically been performed by energy-adjusting the UPF independent variable, either via the residual method (regressing UPF intake onto total energy intake to produce residuals) or via the nutrient density method (usually as ‘energy intake from UPFs/total energy intake’, though ‘total weight of UPFs/total food weight’ has also been used to capture the non-nutritive aspects of UPFs) [146]. Total energy intake is then included as a covariate in the model [146]. Some studies instead use absolute UPF intake as the independent variable, and then include total energy intake in the model.



Table 5 presents the prospective cohort studies performing adjustments for total energy intake. Forty-seven studies have performed some form of energy adjustment across 131 models. 80 models demonstrate a significant association between energy-adjusted UPF intake and a health-related outcome. 6/6 models were significantly associated with all-cause mortality, 12/15 models were significantly associated with any CVD outcome, 3/3 models were significantly associated with T2DM, 15/17 models were significantly associated with adult weight gain/overweight/obesity, and 15/25 models with gestational or child anthropometrics. Twenty-one non-significant models with energy adjustment were from multiple models for child appetitive traits (eight; Vedovato et al. [99]), childhood anthropometrics and glucose profiles (six; Costa et al. [98]), child asthma and wheezing (four; Machado Azeredo et al. [101]) and childhood lipid profiles (three; Rauber et al. [95]). Four studies provided insufficient detail on energy adjustments [87,96,140,147].




6.7. Prospective Studies Reporting Mediation Analyses


Besides being included as a covariate within models, formal mediation analysis can be used to determine whether dietary components mediate the association between UPF intake and adverse health-related outcomes [149,150]. Few studies to date have performed mediation analyses between UPF intake, dietary components and health-related outcomes.



Bonaccio et al. examined the mediating role of nutrients and energy content on all-cause mortality, CVD mortality and IHD/cerebrovascular mortality [105]. All dietary factors combined (sugar, saturated fat, dietary cholesterol, dietary sodium and energy content) significantly accounted for 41.3% ((11.9%, 78.5%), p < 0.001) of IHD/cerebrovascular mortality risk, but did not account for all-cause mortality (12.8% (1.6%, 56.5%), p = 0.14) or CVD mortality (11.5% (1.5%, 53.3%), p = 0.15) risk. Sugar content alone accounted for 23.2% ((9.7%, 45.9%), p < 0.001), 18.0% ((7.2%, 38.4%), p = 0.003) and 36.3% ((13.8%, 67.0%), p < 0.001)) of the associated risk between UPF intake and all-cause mortality, CVD mortality and IHD/cerebrovascular mortality, respectively. Saturated fat or sodium content did not account for any of the associated risks.



Fiolet et al. performed mediation analyses for sodium, total lipids, saturated fat, monounsaturated fat, polyunsaturated fat, carbohydrate and for Western dietary pattern, with all mediation effects for the association between UPF intake and overall cancer being less than 2% (all p > 0.05) [126].



Koniecnzna et al. found that repeated measures of saturated fat, trans fat and fibre explained 11–30% of the associations between UPF intake and increases in measures of central and overall adiposity over 12 months of follow-up [109]. Repeated measures of sodium, total energy intake and glycaemic index did not mediate any of the associations.



Costa et al. identified that 58.2% (0.07 kg/m2 (0.05, 0.10)) of the association between UPF intake and the increase in FMI from age 6 to 11 in children was mediated by energy content, with the remaining 41.8% being either a direct effect of ultra-processing, or as a result of unmeasured variables [116].



Vedovato et al. showed that energy intake was a mediator between UPF intake at 4 years of age and the appetite traits, ‘satiety responsiveness’ and ‘food fussiness’, but not with ‘food responsiveness’, at age 7 [99].



Gomes et al. showed that the percentage of total energy derived from UPFs in the third trimester was associated with total energy intake in the third trimester, which was also associated with gestational weight gain in the third trimester [93].





7. Discussion


This review provides novel insights into the relative impact of nutrient content and dietary patterns vs. ultra-processing on obesity and adverse health-related outcomes. The analyses reported here from prospective cohort studies have been largely unexplored to date. Consistent across many studies, adjustment for fat, sugar and sodium intake, or adjustment for adherence to a range of healthy or unhealthy dietary patterns has a minimal impact on the adverse associations between UPF intake and a diverse range of health-related outcomes. These findings strongly point towards aspects of ultra-processing as being important factors that impact health, and question the ability to conclude that the adverse outcomes from UPFs can be solely attributed to their nutritional quality.



A meta-analysis of nationally representative samples demonstrates that diets high in UPF tend to contain greater intakes of energy, free sugars, total and saturated fat, and lower intakes of fibre, protein and some micronutrients [30]. The NOVA classification therefore captures important aspects of nutrient quality, despite this not being a core aspect of the UPF definition [28]. It is unsurprising therefore, that the detrimental associations between UPF intake and obesity, CVD and all-cause mortality have been largely attributed to the poor nutritional quality of high UPF diets [71]. If this were the case, then adjustment for aspects of dietary quality should explain the associations between UPFs and poor health outcomes, or at least, explain a significant proportion of the association. However, the majority of the models from prospective studies retain a significantly increased risk of poor health from UPF intake, and are also largely unaltered in magnitude, following dietary adjustment. The findings from this review are in alignment with the results from a metabolic ward cross-over study, the only randomised controlled trial comparing diets of differing levels processing [49]. Participants consumed ad libitum, minimally processed or ultra-processed diets, matched for energy and nutrient content, for two weeks each. The ultra-processed diet resulted in greater energy intake (+508 ± 106 kcal/day), leading to weight gain (+0.9 ± 0.3 kg). In contrast, the minimally processed diet resulted in weight loss (−0.9 ± 0.3 kg), despite diets being matched for energy and nutrient content [49].



The Mediterranean diet, considered to be one of the healthiest dietary patterns for reducing CVD risk [151], consists predominantly of whole grains, fruits, vegetables, beans, pulses and legumes, of which, their consumption is inversely associated with UPF intake [30]. Therefore, the impact of UPFs on health could just be that they displace more healthful foods, or that they overlap with pre-established unhealthy dietary patterns. However, adjustment for Mediterranean diet adherence, for the Western dietary pattern or for other dietary pattern indices, did not alter the majority of the significant associations between UPF intake and health-related outcomes, including the increased risk of weight gain or obesity.



High UPF diets are also characterised by the displacement of minimally processed foods, as defined by NOVA [30]. Few studies have performed dietary adjustment for other NOVA food groups. However, in those that have, adjustment for other NOVA food groups not only did not explain, but in fact, increased the risk associated with UPF intake and FMI gain from age 6 to 11 [116], and adjustment for unprocessed or minimally processed food intake did not alter the increased risk of T2DM [124].



Although limited at this stage, these adjustments would suggest that UPF intake has a direct effect on health-related outcomes, rather than simply displacing healthy foods intake. This may indicate the importance of considering the nature and extent of food processing as an important dimension of dietary pattern analysis.



Discussions over the relative importance of nutrient content vs. ultra-processing continue [24,81]. However, recent reports have not taken into account the dietary adjustments from prospective studies reported in this review [24,81,152]. The aspects of ultra-processing that lead to adverse health outcomes are poorly understood, and the findings from this review highlight the need for research into mechanisms of ultra-processing as being a priority, in order to determine the long-term potential for UPF reformulation, or need for elimination to address the growing obesity pandemic. On a case-by-case basis, choosing UPF reformulations over high fat, salt or sugar alternatives can be beneficial to reduce intakes of nutrients to limit, which are known to be associated with poor health [153]. However, given the high prevalence of UPFs within diets [30], if ultra-processing itself directly results in poor health, then scaling up the case-by-case reformulation approach to the whole diet still leaves an ultra-processed dietary pattern that displaces minimally processed foods, and thus will not sufficiently address current health risks. The nutritional quality of food is important, but is not the sole determinant of the healthiness of a diet [10]. The importance of dietary patterns, food groups and foods as a whole, rather than specific individual nutrients, has previously been highlighted [8,154]. Indeed, the diversity of chemicals and nutrients consumed in human diets is vast, yet current nutrient profiling methods only consider a fraction of the 26,000 or so biochemicals in food [155].



Current dietary policies vary across nations and health organisations. The public health implications regarding whether UPFs should be reformulated based on nutrient content or removed from the diet are important. The UK government and Cancer Research UK currently adopt a reformulation approach to high fat, salt or sugar foods, and do not consider the nature and extent of processing in their dietary recommendations [156,157,158]. However, advice to avoid UPFs is becoming increasingly more prevalent. The American Heart Association now recommends limiting UPF intake [12], and the World Health Organisation and UNICEF recognise the importance of UPF consumption for ending childhood obesity [159,160]. UPFs are also recognised by the Pan American Health Organisation as important for reducing health risk, as part of their nutrient profiling model [161]. Some national dietary guidelines now encourage limiting UPF intake including Brazil [162], Uruguay [163] and Israel [164]. France is also planning to reduce UPF consumption by 20% from 2018 to 2021 [165].



This review discusses the results from over 1,000,000 participants across more than 20 different prospective cohorts, covering many countries, demographic profiles and age groups. The studies in this review utilise dietary assessment methods including 24-hour dietary records and food frequency questionnaires, that are not designed specifically for the application of NOVA classification. Similar foods can be classed as ultra-processed (e.g., pre-packaged bread) or processed (e.g., artisanal bread), which may result in the misclassification of foods with the dietary assessment methods used. Furthermore, other important dietary aspects may have not been captured or suitably adjusted for. Most studies have adjusted for fat, sugar and sodium intake or for overall dietary patterns, which are important dietary factors for health, and proposed to be explanatory factors for the associations between UPF intake and health outcomes.




8. Conclusions


Experts for and against the NOVA classification have often focussed on nutrient quality as an important explanatory link between UPFs, obesity and adverse health-related outcomes. However, many of the prospective studies published to date have performed analyses adjusting for nutrient content and overall dietary patterns. These adjustments do not explain the association between UPFs, obesity and adverse health-related outcomes, with estimates remaining significant. These findings raise important questions regarding current policy and future research needs, suggesting that the nature and extent of processing is an important dietary dimension, and whether UPF reformulations can sufficiently address the growing transition towards high UPF diets and the associated risk of obesity and poor health.
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Table 1. Definition of NOVA classifications, from Monteiro et al., 2019 [28].
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	Group
	Definition
	Examples





	1. Unprocessed and minimally processed foods
	Unprocessed foods altered by processes such as the removal of inedible or unwanted parts, drying, crushing, grinding, fractioning, roasting, boiling, pasteurisation, refrigeration, freezing, placement in containers, vacuum packaging or non-alcoholic fermentation. Salt, sugar, oils or fats, or other food substances are not added. The primary aim is to extend the life of the food, enabling storage for longer use, and to make preparation easier or more diverse.
	Fresh, squeezed, chilled, frozen, or dried fruit, leafy and root vegetables, brown rice, white rice, corn cob, beans, lentils, chickpeas, potatoes, sweet potatoes, mushrooms, meat, poultry, fish, seafood, meat cuts, eggs, fresh or pasteurised milk or plain yoghurt, fresh or pasteurised fruit or vegetable juices (with no added sugar, sweeteners or flavours), grits, flakes or flour made from corn, wheat, oats, or cassava, nuts and other oily seeds (with no added salt or sugar), herbs and spices used in culinary preparations, such as thyme, oregano and pepper, tea, coffee, and water.



	2. Processed culinary ingredients
	Substances derived from unprocessed and minimally processed foods, or from nature. They are created by industrial processes including pressing, centrifuging, refining, extracting or mining, and used in the preparation, seasoning and cooking of group 1 foods.
	Oils and fats, sugar and salt.



	3. Processed foods
	Industrial products made by adding processed culinary ingredients found in group 2 to group 1 foods, using preservation methods such as canning and bottling. For breads and cheeses, non-alcoholic fermentation is used. Food processing in group 3 aims to increase the durability of group 1 foods and make them more enjoyable, by modifying or enhancing their sensory qualities.
	Canned or bottled vegetables and legumes in brine, salted or sugared nuts and seeds, salted, dried, cured, or smoked meats and fish, canned fish (with or without added preservatives), fruits in syrup (with or without added antioxidants), freshly made unpackaged breads and cheeses.



	4. Ultra-processed foods
	Formulations of ingredients, mostly of exclusive industrial use, resulting from a series of industrial processes, many requiring sophisticated equipment and technology. Processes enabling the manufacture of ultra-processed foods include the fractioning of whole foods into substances, chemical modifications of these substances, assembly of unmodified and modified food substances using industrial techniques such as extrusion, moulding and pre-frying, frequent application of additives whose function is to make the final product palatable or hyper-palatable (‘cosmetic additives’), and sophisticated packaging, usually with synthetic materials.
	Carbonated soft drinks, sweet or savoury packaged snacks, chocolate, confectionery, ice cream, mass-produced packaged breads and buns, margarines, biscuits, pastries, cakes, breakfast ‘cereals’, pre-prepared pies and pasta and pizza dishes, poultry or fish nuggets, sausages, burgers, hot dogs and other reconstituted meat products, powdered and packaged ‘instant’ soups, noodles and desserts.
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Table 2. Characteristics of prospective studies assessing the association between UPF intake and health-related outcomes whilst also reporting dietary adjustments.
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Author, Year

	
Cohort

	
Sample

	
Country

	
Sample Size

	
Outcome

	
Method of Analysis

	
Effect Estimate (95%CI)






	
Schnabel 2019 [102]

	
Nutri-Net Santé

	
Adults ≥ 45

	
France

	
44,551

	
All-cause mortality

	
HR per 10% increase in UPF

	
1.15 (1.04, 1.27) 1




	
Rico-Campa 2019 [103]

	
SUN

	
University graduates

	
Spain

	
19,899

	
All-cause mortality

	
HR 1st vs. 4th quartile

	
1.62 (1.13, 2.33) 2




	
Kim 2019 [104]

	
NHANES III

	
Adults ≥ 20

	
US

	
11,898

	
All-cause mortality

	
HR 1st vs. 4th quartile

	
1.31 (1.09, 1.58) 3




	

	

	

	

	
11,898

	
CVD mortality

	
HR 1st vs. 4th quartile

	
1.10 (0.74, 1.67) 3




	
Bonaccio 2021 [105]

	
Moli-sani

	
Adults

	
Italy

	
22,475

	
All-cause mortality

	
HR 1st vs. 4th quartile

	
1.32 (1.15, 1.53) 4




	

	

	

	
22,475

	
Other cause mortality (exc. CVD and cancer)

	
HR 1st vs. 4th quartile

	
1.36 (1.01, 1.83) 4




	

	

	

	
22,475

	
Cancer mortality

	
HR 1st vs. 4th quartile

	
1.00 (0.80, 1.26) 4




	

	

	

	
22,475

	
CVD mortality

	
HR 1st vs. 4th quartile

	
1.65 (1.29, 2.11) 4




	

	

	

	
22,475

	
IHD/cerebrovascular mortality

	
HR 1st vs. 4th quartile

	
1.63 (1.19, 2.25) 4




	
Beslay 2020 [106]

	
Nutri-Net Santé

	
Adults ≥ 18

	
France

	
110,260

	
BMI change (kg/m2)

	
Beta per 10% increase in UPF

	
0.02 (0.01, 0.02) 5




	

	

	

	

	
55,307

	
Overweight

	
HR per 10% increase in UPF

	
1.11 (1.08, 1.14) 5




	

	

	

	

	
71,871

	
Obesity

	
HR per 10% increase in UPF

	
1.09 (1.05, 1.13) 5




	
Mendonca 2016 [107]

	
SUN

	
Middle-aged University graduates

	
Spain

	
8451

	
Overweight/obesity

	
HR 1st vs. 4th quartile

	
1.26 (1.10, 1.35) 6




	
Li 2021 [108]

	
CHNS

	
Adults > 20

	
China

	
12,451

	
Overweight/obesity

	
OR none vs. ≥ 50g/day

	
1.85 (1.58, 2.17) 7




	

	

	

	

	
12,451

	
Central obesity

	
OR none vs. ≥ 50g/day

	
2.04 (1.79, 2.33) 7




	
Koniecnzna 2021 [109]

	
PREDIMED-Plus

	
Adults aged 55–75 with overweight/obesity and metabolic syndrome

	
Spain

	
1485

	
Total fat mass (z-score)

	
Beta per 10% increase in UPF

	
0.09 (0.06, 0.13) 8




	

	

	

	
1485

	
Visceral fat mass (z-score)

	
Beta per 10% increase in UPF

	
0.09 (0.05, 0.13) 8




	

	

	

	
1485

	
Android:gynoid fat ratio (z-score)

	
Beta per 10% increase in UPF

	
0.05 (0.00, 0.09) (p = 0.031) 8




	
Sandoval-Insausti 2020 [110]

	
Seniors-ENRICA-1

	
Older adults

	
Spain

	
652

	
Abdominal obesity

	
OR 1st vs. 3rd tertile

	
1.62 (1.04, 2.54) 9




	
Cordova 2021 [111]

	
EPIC

	
Adults aged 25–70

	
Multi-national (nine countries)

	
348,748

	
Weight gain (kg)

	
Beta per 1SD increase in UPF/day

	
0.12 (0.09, 0.15) 10




	

	

	

	

	
191,255

	
Overweight/obesity

	
RR per 1SD increase in UPF/day

	
1·05 (1·04, 1.06) 10




	

	

	

	

	
103,259

	
Obesity

	
RR per 1SD increase in UPF/day

	
1·05 (1.03, 1.07) 10




	
Canhada 2020 [112]

	
ELSA-Brazil

	
Civil servants aged 35–74

	
Brazil

	
11,827

	
Large weight gain (≥90th percentile: ≥1.68 kg/year)

	
RR 1st vs. 4th quartile

	
1.27 (1.07, 1.50) 11




	

	

	

	

	
11,827

	
Large WC gain (≥90th percentile: ≥2.42 cm/year)

	
RR 1st vs. 4th quartile

	
1.33 (1.12, 1.58) 11




	

	

	

	

	
4527

	
Incident overweight/obesity

	
RR 1st vs. 4th quartile

	
1.20 (1.03, 1.40) 11




	

	

	

	

	
4771

	
Incident obesity

	
RR 1st vs. 4th quartile

	
1.02 (0.85, 1.21) 11




	
Rohatgi 2017 [113]

	
Women’s Health Center and Obstetrics & Gynecology Clinic

	

	
MO, US

	
45

	
Gestational weight gain (kg)

	
Beta per 1% increase in UPF intake

	
1.3 (0.3, 2.4) 12




	

	

	

	
45

	
Neonate thigh skinfold thickness (mm)

	
Beta per 1% increase in UPF intake

	
0.20 (0.005, 0.40) 12




	

	

	

	
45

	
Neonate subscapular skinfold thickness (mm)

	
Beta per 1% increase in UPF intake

	
0.10 (0.02, 0.30) 12




	

	

	

	
45

	
Neonate body fat percentage (%)

	
Beta per 1% increase in UPF intake

	
0.60 (0.04, 1.20) 12




	
Leone 2021 [114]

	
SUN

	
Females

	
Spain

	
3730

	
Gestational diabetes

	
OR 1st vs. 3rd tertile

	
1.10 (0.74, 1.64) 13




	

	

	
Females < 30

	

	
2538

	
Gestational diabetes

	
OR 1st vs. 3rd tertile

	
0.89 (0.54, 1.46) 13




	

	

	
Females ≥ 30

	

	
1192

	
Gestational diabetes

	
OR 1st vs. 3rd tertile

	
2.05 (1.03, 4.07) 13




	
Chang 2021 [115]

	
ALSPAC

	
Children

	
Britain

	
9020

	
BMI (kg/m2)/year

	
Beta 1st vs. 5th quintile

	
0.06 (0.04, 0.08) 14




	

	

	

	

	
8078

	
Fat mass index (kg/m2)/year

	
Beta 1st vs. 5th quintile

	
0.03 (0.01, 0.05) 14




	

	

	

	

	
8078

	
Lean mass index (kg/m2)/year

	
Beta 1st vs. 5th quintile

	
0.004 (−0.007, 0.01) 14




	

	

	

	

	
8078

	
Body fat percentage (%)/year

	
Beta 1st vs. 5th quintile

	
0.004 (−0.05, 0.06) 14




	
Costa 2021 [116]

	
Pelotas-Brazil 2004 Birth Cohort

	
6–11-year-olds

	
Brazil

	
4231

	
Fat mass index (kg/m2)

	
Beta/100 g increase in UPF intake

	
0.09 (0.07, 0.10) 15




	
Srour 2019 [117]

	
Nutri-Net Santé

	
Adults ≥ 18

	
France

	
105,159

	
All CVD

	
HR per 10% increase in UPF

	
1.12 (1.05, 1.20) 16




	

	

	

	

	
105,159

	
Coronary heart disease

	
HR per 10% increase in UPF

	
1.13 (1.02, 1.24) 16




	

	

	

	

	
105,159

	
Cerebrovascular disease

	
HR per 10% increase in UPF

	
1.11 (1.01, 1.21) 16




	
Juul 2021 [118]

	
Framingham Offspring Cohort

	
Adults

	
US

	
3003

	
Overall CVD

	
HR per serving UPF/day

	
1.05 (1.02, 1.08) 17




	

	

	

	

	
3003

	
CVD mortality

	
HR per serving UPF/day

	
1.09 (1.02, 1.16) 17




	

	

	

	

	
3003

	
Incident hard CVD

	
HR per serving UPF/day

	
1.07 (1.03, 1.12) 17




	

	

	

	

	
3003

	
Hard coronary heart disease

	
HR per serving UPF/day

	
1.09 (1.04, 1.15) 17




	
Zhong 2021 [119]

	
Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

	
Adults aged 55–74 at baseline

	
US

	
91,891

	
CVD mortality

	
HR 1st vs. 5th quintile

	
1.50 (1.36, 1.64) 18




	

	

	

	
91,891

	
Heart disease mortality

	
HR 1st vs. 5th quintile

	
1.68 (1.50, 1.87) 18




	

	

	

	
91,891

	
Cerebrovascular disease mortality

	
HR 1st vs. 5th quintile

	
0.94 (0.76, 1.17) 18




	
Scaranni 2021 [120]

	
ELSA-Brasil

	
Civil servants aged 35–74 at baseline

	
Brazil

	
8754

	
Incident hypertension

	
OR 1st vs. 3rd tertile

	
1.20 (1.04, 1.40) 19




	

	

	

	
8754

	
Change in SBP

	
Beta 1st vs. 3rd tertile

	
−0.37 (−1.05, 0.30) 19




	

	

	

	
8754

	
Change in DBP

	
Beta 1st vs. 3rd tertile

	
0.19 (−0.28, 0.66) 19




	
Monge 2021 [121]

	
Mexican Teachers’ Cohort

	
Females aged ≥ 25 at baseline

	
Mexico

	
64,934

	
Incident hypertension

	
≤20% vs. >45% of energy from any UPF

	
0.99 (0.85, 1.15) 20




	

	

	
64,934

	
Incident hypertension

	
≤20% vs. >45% of energy from liquid UPF

	
1.33 (1.09, 1.63) 20




	

	

	
64,934

	
Incident hypertension

	
≤20% vs. >45% of energy from solid UPF

	
0.91 (0.82, 1.01) 20




	
Mendonca 2017 [122]

	
SUN

	
Middle-aged University graduates

	
Spain

	
14,790

	
Hypertension

	
HR 1st vs. 3rd tertile

	
1.23 (1.09, 1.38) 21




	
Llavero-Valero 2021 [123]

	
SUN

	
Middle-aged University graduates

	
Spain

	
20,060

	
T2DM

	
HR 1st vs. 3rd tertile

	
1.53 (1.06, 2.22) 22




	
Srour 2020 [124]

	
Nutri-Net Santé

	
Adults ≥ 18

	
France

	
104,707

	
T2DM

	
HR per 10% increase in UPF

	
1.15 (1.06, 1.25) 23




	
Zhang 2021 [125]

	
TCLSIH

	
Adults aged 18–90

	
China

	
16,168

	
NAFLD

	
HR 1st vs. 4th quartile

	
1.17 (1.07, 1.29) 24




	
Fiolet 2018 [126]

	
Nutri-Net Santé

	
Adults ≥ 18

	
France

	
104,980

	
All cancers

	
HR per 10% increase in UPF

	
1.12 (1.06, 1.18) 25




	

	

	

	

	
104,980

	
Breast cancer

	
HR per 10% increase in UPF

	
1.11 (1.02, 1.22) 25




	

	

	

	

	
104,980

	
Prostate cancer

	
HR per 10% increase in UPF

	
0.98 (0.83, 1.16) 25




	

	

	

	

	
104,980

	
Colorectal cancer

	
HR per 10% increase in UPF

	
1.13 (0.92, 1.38) 25




	
Vasseur 2021 [127]

	
Nutri-Net Santé

	
Adults ≥ 18

	
France

	
105,832

	
IBD

	
RR 1st vs. 3rd tertile

	
1.32 (0.75, 2.34) 26




	
Narula 2021 [128]

	
PURE

	
Adults aged 35–70

	
21 low, middle, and high income countries

	
116,087

	
IBD

	
HR <1 vs. ≥5 servings UPF/day

	
1.82 (1.22, 2.72) 27




	

	

	

	
116,087

	
Crohn’s disease

	
HR <1 vs. ≥5 servings UPF/day

	
4.50 (1.67, 12.13) 27




	

	

	

	
116,087

	
Ulcerative Colitis

	
HR <1 vs. ≥5 servings UPF/day

	
1.46 (0.93, 2.28) 27




	
Schnabel 2018 [129]

	
Nutri-Net Santé

	
Adults

	
France

	
33,343

	
Irritable bowel syndrome

	
OR 1st vs. 4th quartile

	
1.24 (1.12, 1.38) 28




	

	

	

	

	
33,343

	
Functional Constipation

	
OR 1st vs. 4th quartile

	
1.00 (0.87, 1.15) 28




	

	

	

	

	
33,343

	
Functional diarrhoea

	
OR 1st vs. 4th quartile

	
0.94 (0.71, 1.26) 28




	

	

	

	

	
33,343

	
Functional dyspepsia

	
OR 1st vs. 4th quartile

	
1.26 (1.07, 1.48) 28




	
Lo 2021 [130]

	
NHS, NHS II, HPFS

	
Adult health professionals

	
US

	
245,112

	
Crohn’s disease

	
HR 1st vs. 4th quartile

	
1.75 (1.29, 2.35) 29




	

	

	

	

	
245,112

	
Ulcerative Colitis

	
HR 1st vs. 4th quartile

	
1.25 (0.97, 1.62) 29




	
Adjibade 2019 [131]

	
Nutri-Net Santé

	
Adults aged 18–86

	
France

	
26,730

	
Depressive symptoms

	
HR per 10% increase in UPF

	
1.21 (1.15, 1.27) 30




	
Gómez-Donoso 2020 [132]

	
SUN

	
Middle-aged University graduates

	
Spain

	
14,907

	
Incident depression

	
HR 1st vs. 4th quartile

	
1.41 (1.15, 1.73) 31




	
Rey-Garcia 2021 [133]

	
Seniors-ENRICA-1

	
Adult ≥ 60

	
Spain

	
1312

	
Renal function

	
OR 1st vs. 3rd tertile

	
1.75 (1.16, 2.64) 32




	
Zhang 2021 [134]

	
TCLSIH

	
Adults ≥ 18

	
China

	
18,444

	
Hyperuricemia

	
HR 1st vs. 4th quartile

	
1.21 (1.10, 1.33) 33




	
Leffa 2020 [135]

	
Impact of the “Ten Steps for Healthy Feeding of Children Younger Than Two Years” in Health Centers

	
Children

	
Porto Alegre, Brazil

	
308

	
Total cholesterol at age 6

	
Beta per 10% increase in UPF intake at age 3

	
0.07 (0.00, 0.15) p = 0.044 34




	

	

	

	
308

	
LDL-cholesterol at age 6

	
Beta per 10% increase in UPF intake at age 3

	
0.03 (−0.02, 0.09) 34




	

	

	

	
308

	
HDL-cholesterol at age 6

	
Beta per 10% increase in UPF intake at age 3

	
0.01 (−0.01, 0.06) 34




	

	

	

	
308

	
TAG at age 6

	
Beta per 10% increase in UPF intake at age 3

	
0.03 (0.00, 0.07) p = 0.034 34




	
Donat-Vargas 2021 [136]

	
ENRICA

	
Adults > 60

	
Spain

	
895

	
Incident hypertriglyceridemia (≥150 mg/dL)

	
OR 1st vs. 3rd tertile

	
2.00 (1.04, 3.85) 35




	

	

	

	

	
878

	
Low HDL-cholesterol (<40 in men or <50 mg/dL in women)

	
OR 1st vs. 3rd tertile

	
2.04 (1.22, 3.41) 35




	

	

	

	

	
472

	
High LDL-cholesterol (>129 mg/dL)

	
OR 1st vs. 3rd tertile

	
0.95 (0.46, 1.97) 35




	

	

	

	

	
895

	
Δtriglycerides (mg/dL)

	
Beta 1st vs. 3rd tertile

	
6.11 (1.30, 10.91) 35




	

	

	

	

	
878

	
ΔHDL cholesterol (mg/dL)

	
Beta 1st vs. 3rd tertile

	
0.03 (−1.38, 1.44) 35




	

	

	

	

	
472

	
ΔLDL cholesterol (mg/dL)

	
Beta 1st vs. 3rd tertile

	
−4.52 (−9.40, 0.36) 35




	
Borge 2021 [137]

	
Norwegian Mother, Father and Child Cohort Study

	
Mother and child

	
Norway

	
46,976

	
ADHD diagnosis at 8 years

	
RR per 1 SD increase in UPF

	
1.00 (0.93, 1.08) 36




	

	

	

	
31,152

	
ADHD symptoms (absolute) at 8 years

	
Beta per 1 SD increase in UPF

	
0.38 (0.27, 0.49) 36 *




	

	

	

	
31,152

	
ADHD symptoms (relative %) at 8 years

	
Beta per 1 SD increase in UPF

	
4.5 (3.3, 4.9) 36 *




	
Zhang 2021 [138]

	
TCLSIH

	
Adults ≥ 40

	
China

	
5409

	
Annual change in grip strength (kg per year)

	
Beta per 10% increase in UPF

	
−0.2955 (−0.4992, −0.0919) 37




	

	

	

	

	
5409

	
Annual change in weight-adjusted grip strength (kg/kg per year)

	
Beta per 10% increase in UPF

	
−0.0043 (−0.0073, −0.0014) 37








Effect estimates are presented from adjusted models preceding the dietary adjustment, or where not performed, the adjusted model including dietary adjustment. OR, odds ratio; HR, hazard ratio; RR, relative risk; SD, standard deviation; ADHD, attention deficit hyperactivity disorder; CVD, cardiovascular disease; IHD, ischaemic heart disease; BMI, body mass index; T2DM, type 2 diabetes mellitus; UPF, ultra-processed food; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TAG, triacylglycerol; SUN, Seguimiento University of Navarra; NHANES III, Third National Health and Nutrition Examination Survey; CHNS, China Health and Nutrition Survey; Seniors-ENRICA 1, Seniors Study on Nutrition and Cardiovascular Risk in Spain; EPIC, European Prospective Investigation into Cancer and Nutrition; ELSA-Brazil, Brazilian Longitudinal Study of Adult Health; ALSPAC, Avon Longitudinal Study of Parents and Children; TCLSIH, Tianjin Chronic Low-grade Systemic Inflammation and Health; PURE, Prospective Urban Rural Epidemiology; NHS, Nurses’ Health Study 1986–2014); NHS II, Nurses’ Health Study II (1991–2017); HPFS, Health Professionals Follow-up Study; 1 Adjusted for sex, age, income level, education level, marital status, residence, BMI, physical activity level, smoking status, energy intake, alcohol intake, season of food records, first-degree family history of cancer or cardiovascular diseases and number of food records. 2 Adjusted for age, sex, marital status, physical activity, smoking status, snacking, special diet at baseline, BMI, total energy intake, alcohol consumption, family history of CVD, diabetes or hypertension at baseline, self-reported hypercholesterolaemia, baseline CVD, cancer or depression, education level and lifelong smoking stratified by recruitment period, deciles of age, sedentary index (sum of hours each day spent watching television, using a computer and driving) and television viewing. 3 Adjusted for age, sex, race/ethnicity, total energy intake, poverty level, education level, smoking status, physical activity and alcohol intake. 4 Adjusted for sex, age, energy intake, educational level, housing tenure, smoking, BMI, leisure-time physical activity, history of cancer, CVD, diabetes, hypertension and hyperlipidaemia and residence. 5 Adjusted for age, sex, marital status, educational level, physical activity, smoking status, alcohol consumption, energy intake and number of dietary records (overweight and obesity outcomes further adjusted for baseline BMI). 6 Adjusted for age, sex, marital status, educational status, physical activity, television watching, siesta sleep, smoking status, snacking between meals, following a special diet at baseline and baseline BMI. 7 Adjusted for age, sex and energy intake. 8 Adjusted for age, sex, study arm, follow-up time, educational level, marital status, smoking habits, type 2 diabetes prevalence, height and repeated measures of physical activity and sedentary behaviour. 9 Adjusted for age, sex, educational level, marital status, smoking, ex-drinker status, physical activity in the household and at leisure time, number of medications consumed per day and number of chronic diseases diagnosed by a doctor (chronic obstructive pulmonary disease/asthma, coronary heart disease, stroke, heart failure, osteoarthritis or depression). 10 Adjusted for age, sex, baseline BMI, educational level, physical activity, baseline alcohol intake, baseline smoking status and plausibility of dietary energy reporting. Overweight and obesity outcomes further adjusted for country/centre, follow-up time in years, smoking status at follow-up (instead of baseline smoking status) and for the modified relative Mediterranean diet score. 11 Adjusted for age, sex, colour/race, centre, income, school achievement, smoking and physical activity. Additionally for incident overweight/obesity and weight gain: baseline BMI. Additionally for waist gain: waist circumference at baseline. 12 Adjusted for maternal age, race, socioeconomic status, weight status, average daily energy intake, time spent in moderate physical activity and fat intake. 13 Adjusted for age, BMI, education, smoking status, physical activity, family history of diabetes, recruitment year, time between recruitment and the first pregnancy or gestational diabetes, number of pregnancies during follow-up, parity, multiple pregnancies, time spent watching TV, hypertension, following a nutritional therapy and energy intake. 14 Adjusted for age, baseline UPF, age*baseline UPF interaction term, child sex, race, birth weight, physical activity, quintiles of Index of Multiple Deprivation, the mother’s prepregnancy BMI, marital status, highest educational attainment, socioeconomic status and the child’s baseline total energy intake. 15 Adjusted for skin colour, maternal age and schooling, birthweight and sex, screen time and energy intake/expenditure ratio. 16 Adjusted for age, sex, energy intake, number of 24-h dietary records, smoking status, educational level, physical activity, BMI, alcohol intake and family history of CVD. 17 Adjusted for age, sex, education, smoking status, alcohol intake and physical activity. 18 Adjusted for age, sex, race, educational level, marital status, study centre, aspirin use, history of hypertension or diabetes, smoking status, alcohol consumption, BMI, physical activity and energy intake. 19 Adjusted for age, sex, colour or race, education, time since baseline and SBP/DBP/hypertension. 20 Adjusted for age, indigenous, internet access, insurance, family history of hypertension, menopausal status, smoking status and physical activity. 21 Adjusted for age, sex, physical activity, hours of TV watching, baseline BMI, smoking status, use of analgesics, following a special diet at baseline, family history of hypertension, hypercholesterolaemia and alcohol consumption. 22 Adjusted for age, sex, BMI, educational status, family history of diabetes, smoking status, snacking between meals, active and sedentary lifestyle score and following a special diet at baseline. 23 Adjusted for age, sex, educational level, baseline BMI, physical activity, smoking status, alcohol intake, number of 24-h dietary records, energy intake, Food Standards Agency nutrient profiling system dietary index score and family history of T2DM. 24 Adjusted for age, sex and BMI. 25 Adjusted for age, sex, energy intake without alcohol, number of 24-h dietary records, smoking status, educational level, physical activity, height, BMI, alcohol intake and family history of cancers (and for breast cancer outcome, additionally adjusted for menopausal status, hormonal treatment for menopause, oral contraception, and number of children). 26 Adjusted for age and sex. 27 Adjusted for age, sex, geographical region, education, alcohol intake, smoking status, BMI, total energy intake and location. 28 Adjusted for age, sex, income level, education level, marital status, residence, BMI, physical activity, smoking status, energy intake, season of food records and time between food record and functional gastrointestinal disorders questionnaire. 29 Adjusted for age, cohort and calendar year. 30 Adjusted for age, sex, BMI, marital status, educational level, occupational categories, household income per consumption unit, residential area, number of 24-h dietary records, inclusion month, energy intake without alcohol, alcohol intake, smoking status and physical activity. 31 Adjusted for sex, age and year of entrance to the cohort. 32 Adjusted for sex, age and total energy intake. 33 Adjusted for age, sex, BMI, smoking status, alcohol consumption status, education levels, employment status, household income, physical activity, depression symptoms, family history of disease (including cardiovascular disease, hypertension, hyperlipidaemia and diabetes), hypertension, hyperlipidaemia, diabetes and metabolic syndrome. 34 Adjusted for sex, group status in the early phase (intervention and control), family income, pre-pregnancy BMI, child birth weight and BMI z-scores at 3 years. 35 Adjusted for age and sex. 36 Crude model. 37 Adjusted for baseline age, sex and BMI. * 95% credible intervals.
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Table 3. Prospective studies adjusting for fat, added sugar/carbohydrate and sodium content.






Table 3. Prospective studies adjusting for fat, added sugar/carbohydrate and sodium content.












	Author, Year
	Outcome
	Method of Analysis
	Diet Adjustment
	Effect Estimate (95%CI)





	Rico-Campa 2019 [103]
	All-cause mortality
	HR 1st vs. 4th quartile
	SFA, sodium, added sugar and TFA
	1.69 (1.12, 2.56)



	Bonaccio 2021 [105]
	All-cause mortality
	HR 1st vs. 4th quartile
	SFA, sodium, sugar, cholesterol and energy intake
	1.28 (1.09, 1.49)



	
	CVD mortality
	HR 1st vs. 4th quartile
	SFA, sodium, sugar, cholesterol and energy intake
	1.56 (1.19, 2.03)



	
	IHD/cerebrovascular mortality
	HR 1st vs. 4th quartile
	SFA, sodium, sugar, cholesterol and energy intake
	1.33 (0.94, 1.90)



	Beslay 2020 [106]
	BMI change (kg/m2)
	Beta per 10% increase in UPF
	SFA, sodium, sugar and fibre
	0.02 (0.01, 0.02)



	
	Overweight
	HR per 10% increase in UPF
	SFA, sodium, sugar and fibre
	1.10 (1.08, 1.13)



	
	Obesity
	HR per 10% increase in UPF
	SFA, sodium, sugar and fibre
	1.10 (1.06, 1.14)



	Koniecnzna 2021 [109]
	Total fat mass (z-score)
	Beta per 10% increase in UPF
	SFA, sodium, glycaemic index, TFA, alcohol and fibre
	0.06 (0.03, 0.09)



	
	Visceral fat mass (z-score)
	Beta per 10% increase in UPF
	SFA, sodium, glycaemic index, TFA, alcohol and fibre
	0.06 (0.01, 0.10)



	
	Android:gynoid fat ratio (z-score)
	Beta per 10% increase in UPF
	SFA, sodium, glycaemic index, TFA, alcohol and fibre
	0.02 (−0.02, 0.07)



	Srour 2019 [117]
	All CVD
	HR per 10% increase in UPF
	SFA, sodium and sugar
	1.13 (1.05, 1.20)



	
	Coronary heart disease
	HR per 10% increase in UPF
	SFA, sodium and sugar
	1.14 (1.03, 1.26)



	
	Cerebrovascular disease
	HR per 10% increase in UPF
	SFA, sodium and sugar
	1.12 (1.02, 1.22)



	Zhong 2021 [119]
	CVD mortality
	HR 1st vs. 5th quintile
	SFA, sodium and added sugar
	1.48 (1.34, 1.63)



	
	Heart disease mortality
	HR 1st vs. 5th quintile
	SFA, sodium and added sugar
	1.65 (1.47, 1.85)



	
	Cerebrovascular disease mortality
	HR 1st vs. 5th quintile
	SFA, sodium and added sugar
	0.93 (0.74, 1.17)



	Srour 2020 [124]
	T2DM
	HR per 10% increase in UPF
	SFA, sodium, sugar and fibre
	1.19 (1.09, 1.30)



	Fiolet 2018 [126]
	All cancers
	HR per 10% increase in UPF
	Lipids, sodium and carbohydrates
	1.12 (1.07, 1.18)



	
	Breast cancer
	HR per 10% increase in UPF
	Lipids, sodium and carbohydrates
	1.11 (1.01, 1.21)



	
	Prostate cancer
	HR per 10% increase in UPF
	Lipids, sodium and carbohydrates
	0.98 (0.83, 1.16)



	
	Colorectal cancer
	HR per 10% increase in UPF
	Lipids, sodium and carbohydrates
	1.16 (0.95, 1.42)



	Chang 2021 [115]
	BMI (kg/m2)/year
	Beta 1st vs. 5th quintile
	SFA, sodium, sugar and fibre
	0.07 (0.04, 0.08)



	
	Fat mass index (kg/m2)/year
	Beta 1st vs. 5th quintile
	SFA, sodium, sugar and fibre
	0.03 (0.01, 0.05)



	
	Lean mass index (kg/m2)/year
	Beta 1st vs. 5th quintile
	SFA, sodium, sugar and fibre
	0.005 (−0.007, 0.010)



	
	Body fat percentage (%)/year
	Beta 1st vs. 5th quintile
	SFA, sodium, sugar and fibre
	0.002 (−0.05, 0.05)







SFA, saturated fatty acids; TFA, trans fatty acids; HR, hazard ratio; CVD, cardiovascular disease; IHD, ischemic heart disease; BMI, body mass index; T2DM, type 2 diabetes mellitus.
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Table 4. Prospective studies adjusting for dietary pattern.
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Author, Year

	
Outcome

	
Method of Analysis

	
Diet Adjustment

	
Effect Estimate (95%CI)






	
Schnabel 2019 [102]

	
All-cause mortality

	
HR per 10% increase in UPF

	
French dietary guidelines

	
1.14 (1.04, 1.27)




	

	
All-cause mortality

	
HR per 10% increase in UPF

	
French dietary guidelines and Western dietary pattern

	
1.19 (1.05, 1.35)




	
Rico-Campa 2019 [103]

	
All-cause mortality

	
HR 1st vs. 4th quartile

	
Mediterranean dietary pattern

	
1.58 (1.10, 2.28)




	
Kim 2019 [104]

	
All-cause mortality

	
P-trend

	
Dietary quality score

	
p-trend only 0.001 1




	

	
CVD mortality

	
P-trend

	
Dietary quality score

	
p-trend only 0.540 1




	
Bonaccio 2021 [105]

	
All-cause mortality

	
HR 1st vs. 4th quartile

	
Mediterranean dietary pattern

	
1.26 (1.09, 1.46)




	
Other cause mortality (exc. CVD and cancer)

	
HR 1st vs. 4th quartile

	
Mediterranean dietary pattern

	
1.26 (0.94, 1.69)




	

	
CVD mortality

	
HR 1st vs. 4th quartile

	
Mediterranean dietary pattern

	
1.58 (1.23, 2.03)




	

	
IHD/cerebrovascular mortality

	
HR 1st vs. 4th quartile

	
Mediterranean dietary pattern

	
1.52 (1.10, 2.09)




	

	
Cancer mortality

	
HR 1st vs. 4th quartile

	
Mediterranean dietary pattern

	
0.97 (0.77, 1.22)




	
Beslay 2020 [106]

	
BMI change (kg/m2)

	
Beta per 10% increase in UPF

	
Healthy and Western dietary patterns

	
0.02 (0.01, 0.02)




	
Overweight

	
HR per 10% increase in UPF

	
Healthy and Western dietary patterns

	
1.10 (1.07, 1.13)




	

	
Obesity

	
HR per 10% increase in UPF

	
Healthy and Western dietary patterns

	
1.11 (1.07, 1.15)




	
Li 2021 [108]

	
Overweight/obesity

	
OR none vs. ≥50 g/day

	
Traditional and modern dietary patterns

	
1.45 (1.21, 1.74) 2




	

	
Central obesity

	
OR none vs. ≥50 g/day

	
Traditional and modern dietary patterns

	
1.50 (1.29, 1.74) 2




	
Koniecnzna 2021 [109]

	
Total fat mass (z-score)

	
Beta per 10% increase in UPF

	
Mediterranean dietary pattern adherence

	
0.06 (0.02, 0.09)




	
Visceral fat mass (z-score)

	
Beta per 10% increase in UPF

	
Mediterranean dietary pattern adherence

	
0.06 (0.01, 0.10)




	

	
Android:gynoid fat ratio (z-score)

	
Beta per 10% increase in UPF

	
Mediterranean dietary pattern adherence

	
0.02 (−0.02, 0.06)




	
Sandoval-Insausti 2020 [110]

	
Abdominal obesity

	
OR 1st vs. 3rd tertile

	
Mediterranean dietary pattern, fibre and very long chain omega-3 fatty acid intake

	
1.61 (1.01, 2.56)




	
Cordova 2021 [111]

	
Weight gain (kg)

	
Beta per 1SD increase in UPF/day

	
Mediterranean dietary pattern

	
0.118 (0.085, 0.151)




	

	
Overweight/obesity

	
RR per 1SD increase in UPF/day

	
Mediterranean dietary pattern

	
1.05 (1.04, 1.06)




	

	
Obesity

	
RR per 1SD increase in UPF/day

	
Mediterranean dietary pattern

	
1.05 (1.03, 1.07)




	
Leone 2021 [114]

	
Gestational diabetes pooled

	
OR 1st vs. 3rd tertile

	
Mediterranean dietary pattern

	
1.10 [0.74, 1.65)




	

	
Gestational diabetes < 30

	
OR 1st vs. 3rd tertile

	
Mediterranean dietary pattern

	
0.89 [0.53, 1.47)




	

	
Gestational diabetes ≥ 30

	
OR 1st vs. 3rd tertile

	
Mediterranean dietary pattern

	
2.06 (1.05, 4.06)




	
Costa 2021 [116]

	
Fat mass index (kg/m2)

	
Beta/100g daily increase in UPF intake

	
Unprocessed or minimally processed foods, processed culinary ingredients and processed foods intake

	
0.14 (0.13, 0.15)




	
Srour 2019 [117]

	
All CVD

	
HR per 10% increase in UPF

	
Healthy dietary pattern

	
1.11 (1.03, 1.19)




	

	
Coronary heart disease

	
HR per 10% increase in UPF

	
Healthy dietary pattern

	
1.11 (1.00, 1.23) p = 0.04




	

	
Cerebrovascular disease

	
HR per 10% increase in UPF

	
Healthy dietary pattern

	
1.10 (1.00, 1.20) p = 0.04




	
Juul 2021 [118]

	
Overall CVD

	
HR per serving UPF/day

	
Dietary Guidelines Adherence Index (DGAI) 2010

	
1.04 (1.01, 1.07)




	

	
CVD mortality

	
HR per serving UPF/day

	
Dietary Guidelines Adherence Index (DGAI) 2010

	
1.09 (1.02, 1.16)




	

	
Incident hard CVD

	
HR per serving UPF/day

	
Dietary Guidelines Adherence Index (DGAI) 2010

	
1.06 (1.02, 1.11)




	

	
Hard coronary heart disease

	
HR per serving UPF/day

	
Dietary Guidelines Adherence Index (DGAI) 2010

	
1.09 (1.03, 1.15)




	
Zhong 2021 [119]

	
CVD mortality

	
HR 1st vs. 5th quintile

	
Healthy Eating Index (HEI) 2005

	
1.48 (1.35, 1.63)




	

	
Heart disease mortality

	
HR 1st vs. 5th quintile

	
Healthy Eating Index (HEI) 2005

	
1.67 (1.49, 1.86)




	

	
Cerebrovascular disease mortality

	
HR 1st vs. 5th quintile

	
Healthy Eating Index (HEI) 2005

	
0.94 (0.75, 1.16)




	
Llavero-Valero 2021 [123]

	
T2DM

	
HR 1st vs. 3rd tertile

	
Mediterranean dietary pattern

	
1.50 (1.02, 2.21)




	
Srour 2020 [124]

	
T2DM

	
HR per 10% increase in UPF

	
Healthy and Western dietary patterns

	
1.13 (1.04, 1.24)




	
Zhang 2021 [125]

	
NAFLD

	
HR 1st vs. 4th quartile

	
Healthy diet score

	
1.19 (1.08, 1.31) 3




	
Fiolet 2018 [126]

	
All cancers

	
HR per 10% increase in UPF

	
Western dietary pattern

	
1.12 (1.06, 1.18)




	

	
Breast cancer

	
HR per 10% increase in UPF

	
Western dietary pattern

	
1.11 (1.02, 1.22)




	

	
Prostate cancer

	
HR per 10% increase in UPF

	
Western dietary pattern

	
0.98 (0.83, 1.15)




	

	
Colorectal cancer

	
HR per 10% increase in UPF

	
Western dietary pattern

	
1.13 (0.92, 1.38)




	
Vasseur 2021 [127]

	
IBD

	
RR 1st vs. 3rd tertile

	
Healthy dietary pattern

	
1.44 (0.70, 2.94) 4




	
Narula 2021 [128]

	
IBD

	
HR <1 vs. ≥5 servings UPF/day

	
Alternate Healthy Eating Index (AHEI) 2010

	
1.92 (1.28, 2.90)




	

	
Crohn’s disease

	
HR <1 vs. ≥5 servings UPF/day

	
Alternate Healthy Eating Index (AHEI) 2010

	
4.90 (1.78, 13.45)




	

	
Ulcerative Colitis

	
HR <1 vs. ≥5 servings UPF/day

	
Alternate Healthy Eating Index (AHEI) 2010

	
1.52 (0.96, 2.41)




	
Lo 2021 [130]

	
Crohn’s disease

	
HR 1st vs. 4th quartile

	
Alternate Healthy Eating Index (AHEI) 2010

	
1.70 (1.23, 2.35) 5




	

	
Ulcerative Colitis

	
HR 1st vs. 4th quartile

	
Alternate Healthy Eating Index (AHEI) 2010

	
1.20 (0.91, 1.58) 5




	
Schnabel 2018 [129]

	
Irritable bowel syndrome

	
OR 1st vs. 4th quartile

	
French dietary guidelines

	
1.25 (1.12, 1.39)




	

	
Functional Constipation

	
OR 1st vs. 4th quartile

	
French dietary guidelines

	
0.98 (0.85, 1.12)




	

	
Functional diarrhoea

	
OR 1st vs. 4th quartile

	
French dietary guidelines

	
0.92 (0.69, 1.24)




	

	
Functional dyspepsia

	
OR 1st vs. 4th quartile

	
French dietary guidelines

	
1.25 (1.05, 1.47)




	
Gómez-Donoso 2020 [132]

	
Incident depression

	
HR 1st vs. 4th quartile

	
Mediterranean dietary pattern

	
1.33 (1.07, 1.64) 6




	
Zhang 2021 [134]

	
Hyperuricemia

	
HR 1st vs. 4th quartile

	
Sweet, animal and healthy dietary patterns

	
1.17 (1.06, 1.30) 7




	
Donat-Vargas 2021 [136]

	
Incident hypertriglyceridemia (≥150 mg/dL)

	
OR 1st vs. 3rd tertile

	
Unprocessed or minimally processed food intake

	
2.66 (1.20, 5.90) 8




	

	
Low HDL-cholesterol (<40 in men or <50 mg/dL in women)

	
OR 1st vs. 3rd tertile

	
Unprocessed or minimally processed food intake

	
2.23 (1.22, 4.05) 8




	

	
High LDL-cholesterol (>129 mg/dL)

	
OR 1st vs. 3rd tertile

	
Unprocessed or minimally processed food intake

	
1.03 (0.43, 2.47) 8




	

	
Δtriglycerides (mg/dL)

	
Beta 1st vs. 3rd tertile

	
Unprocessed or minimally processed food intake

	
6.87 (1.48, 12.27) 8




	

	
ΔHDL cholesterol (mg/dL)

	
Beta 1st vs. 3rd tertile

	
Unprocessed or minimally processed food intake

	
0.13 (−1.46, 1.71) 8




	

	
ΔLDL cholesterol (mg/dL)

	
Beta 1st vs. 3rd tertile

	
Unprocessed or minimally processed food intake

	
−2.03 (−7.86, 3.80) 8




	
Borge 2021 [137]

	
ADHD diagnosis at 8 years

	
RR per 1 SD increase in UPF

	
Child diet quality score at 3 years

	
1.07 (0.99, 1.18) 9




	

	
ADHD symptoms (absolute) at 8 years

	
Beta per 1 SD increase in UPF

	
Child diet quality score at 3 years

	
0.25 (0.13, 0.38) 9,*




	

	
ADHD symptoms (relative %) at 8 years

	
Beta per 1 SD increase in UPF

	
Child diet quality score at 3 years

	
3.0 (1.5, 4.5) 9,*




	
Zhang 2021 [138]

	
Change in grip strength (kg/year)

	
Beta per 10% increase in UPF

	
Healthy diet score

	
−0.3207 (−0.5281, −0.1133) 10




	

	
Change in weight-adjusted grip strength (kg/kg/year)

	
Beta per 10% increase in UPF

	
Healthy diet score

	
−0.0046 (−0.0076, −0.0016) 10








OR, odds ratio; HR, hazard ratio; RR, relative risk; ADHD, attention deficit hyperactivity disorder; CVD, cardiovascular disease; IHD, ischemic heart disease; BMI, body mass index; T2DM, type 2 diabetes mellitus; IBD, inflammatory bowel disease; NAFLD, non-alcoholic fatty liver disease. 1 Further adjusted for body mass index, hypertension status, total cholesterol, and estimated glomerular filtration rate. 2 Further adjusted for fat intake, income, education, urbanisation, alcohol, smoking and physical activity. 3 Further adjusted for total energy intake, smoking status, alcohol drinking status, educational level, occupation, monthly household income, physical activity, family history of disease (including cardiovascular disease, hypertension, hyperlipidaemia and diabetes) and depressive symptoms. 4 Further adjusted for income level, education level, marital status, residence, BMI, physical activity, smoking status, hormonal contraception, number of 24-h dietary records and energy intake. 5 Further adjusted for race, family history of IBD, smoking, BMI, physical activity, total energy intake, regular NSAIDs use, oral contraceptives use, and menopausal hormone therapy. 6 Further adjusted for baseline BMI, total energy intake, physical activity, smoking status, marital status, living alone, employment status, working hours per week, health-related career, years of education and baseline self-perception of competitiveness, anxiety and dependence levels. 7 Further adjusted for energy intake. 8 Further adjusted for fibre intake, total energy intake, educational level, marital status, smoking status, BMI, physical activity, alcohol consumption, number of medications and number of chronic conditions. 9 Further adjusted for maternal pre-pregnancy BMI, maternal education, smoking and alcohol intake during pregnancy, maternal symptoms of depression and ADHD, maternal age, parity, child sex and childbirth quarter. 10 Further adjusted for smoking status, alcohol drinking status, education level, employment, monthly household income, physical activity, family history of disease (including CVD, hypertension, hyperlipidaemia and diabetes), depressive symptoms, hypertension, hyperlipidaemia, diabetes, total energy intake, dietary supplement use, total protein intake and milk intake. * 95% credible intervals.
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Table 5. Prospective cohort studies adjusting for total energy intake.
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	Author, Year
	Outcome
	Method of Analysis
	Energy Adjustment
	Effect





	Schnabel 2019 [102]
	All-cause mortality
	HR per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	1.15 (1.04, 1.27) 1



	Rico-Campa 2019 [103]
	All-cause mortality
	HR 1st vs. 4th quartile
	Energy-adjusted UPF + adjusted for TEI
	1.62 (1.13, 2.33) 2



	
	Cardiovascular deaths
	HR 1st vs. 4th quartile
	Energy-adjusted UPF + adjusted for TEI
	2.16 (0.92, 5.06) 2



	
	Cancer deaths
	HR 1st vs. 4th quartile
	Energy-adjusted UPF + adjusted for TEI
	1.22 (0.70, 2.12) 2



	Blanco-Rojo 2019 [91]
	All-cause mortality
	HR 1st vs. 4th quartile
	UPF as % TEI
	1.44 (1.01, 2.07) 3



	Kim 2019 [104]
	All-cause mortality
	HR 1st vs. 4th quartile
	UPF servings/day + adjusted for TEI
	1.31 (1.09, 1.58) 4



	
	CVD mortality
	HR 1st vs. 4th quartile
	UPF servings/day + adjusted for TEI
	1.10 (0.74, 1.67) 4



	Romero Ferreiro 2021 [89]
	All-cause mortality
	HR per 10% increase in UPF
	UPF as % TEI + adjusted for TEI
	1.16 (1.06, 1.26) 5



	Bonaccio 2021 [105]
	All-cause mortality
	HR 1st vs. 4th quartile
	UPF as % weight + adjusted for TEI and energy content of UPFs
	1.35 (1.15, 1.58) 6



	
	CVD mortality
	HR 1st vs. 4th quartile
	UPF as % weight + adjusted for TEI and energy content of UPFs
	1.66 (1.28, 2.16) 6



	
	IHD/cerebrovascular mortality
	HR 1st vs. 4th quartile
	UPF as % weight + adjusted for TEI and energy content of UPFs
	1.48 (1.05, 2.09) 6



	
	Cancer mortality
	HR 1st vs. 4th quartile
	UPF as % weight + adjusted for TEI
	1.00 (0.80, 1.26) 6



	
	Other cause mortality
	HR 1st vs. 4th quartile
	UPF as % weight + adjusted for TEI
	1.36 (1.01, 1.83) 6



	Beslay 2020 [106]
	BMI change (kg/m2)
	Beta per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	0.02 (0.01, 0.02) 7



	
	Overweight
	HR per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	1.11 (1.08, 1.14) 7



	
	Obesity
	HR per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	1.09 (1.05, 1.13) 7



	Mendonça 2016 [107]
	Overweight/obesity
	HR 1st vs. 4th quartile
	UPF servings/day + adjusted for TEI
	1.27 (1.09, 1.49) 8



	Li 2021 [108]
	Overweight/obesity
	OR none vs. ≥50 g/day
	Absolute UPF g/day + adjusted for TEI
	1.85 (1.58, 2.17) 9



	
	Central obesity
	OR none vs. ≥50 g/day
	Absolute UPF g/day + adjusted for TEI
	2.04 (1.79, 2.33) 9



	Koniecnzna 2021 [109]
	Total fat mass (z-score)
	Beta per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	0.09 (0.06, 0.12) 10



	
	Visceral fat mass (z-score)
	Beta per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	0.09 (0.04, 0.13) 10



	
	Android:Gynoid fat ratio (z-score)
	Beta per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	0.04 (0.00, 0.08) p = 0.055 10



	Sandoval-Insausti 2020 [110]
	Abdominal obesity
	OR 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	2.55 (1.04, 6.27) 11



	Cordova 2021 [111]
	Weight gain (kg)
	Beta per 1SD increase in UPF/day
	Energy-adjusted UPF
	0.118 (0.085, 0.151) 12



	
	Overweight/obesity
	RR per 1SD increase in UPF/day
	Energy-adjusted UPF
	1·05 (1.04, 1.06) 12



	
	Obesity
	RR per 1SD increase in UPF/day
	Energy-adjusted UPF
	1·05 (1.03, 1.07) 12



	Canhada 2020 [112]
	Large weight gain (≥90th percentile: ≥1.68 kg/year)
	RR 1st vs. 4th quartile
	UPF as % TEI + adjusted for TEI
	1.27 (1.07, 1.51) 13



	
	Large WC gain (≥90th percentile: ≥2.42 cm/year)
	RR 1st vs. 4th quartile
	UPF as % TEI + adjusted for TEI
	1.36 (1.14, 1.61) 13



	
	Incident overweight/obesity
	RR 1st vs. 4th quartile
	UPF as % TEI + adjusted for TEI
	1.22 (1.04, 1.42) 13



	
	Incident obesity
	RR 1st vs. 4th quartile
	UPF as % TEI + adjusted for TEI
	1.02 (0.85, 1.21) 13



	Rohatgi 2017 [113]
	Gestational weight gain (kg)
	Beta per 1% increase in UPF intake
	UPF as % TEI + adjusted for TEI
	1.3 (0.3, 2.4) 14



	
	Neonate thigh skinfold thickness (mm)
	Beta per 1% increase in UPF intake
	UPF as % TEI + adjusted for TEI
	0.20 (0.005, 0.40) 14



	
	Neonate subscapular skinfold thickness (mm)
	Beta per 1% increase in UPF intake
	UPF as % TEI + adjusted for TEI
	0.10 (0.02, 0.30) 14



	
	Neonate body fat percentage (%)
	Beta per 1% increase in UPF intake
	UPF as % TEI + adjusted for TEI
	0.60 (0.04, 1.20) 14



	Gomes 2021 [93]
	Gestational weight gain 3rd trimester (kg)
	Beta per 1% increase in UPF intake during 3rd trimester
	UPF as % TEI
	4.17 (0.55, 7.79) 15



	
	Gestational weight gain 2nd trimester (kg)
	Beta per 1% increase in UPF intake in 2nd trimester
	UPF as % TEI
	−1.50 (−5.08, 2.08) 15



	Leone 2021 [114]
	Gestational diabetes pooled
	OR 1st vs. 3rd tertile
	Energy-adjusted UPF + adjusted for TEI
	1.10 (0.74, 1.64) 16



	
	Gestational diabetes <30
	OR 1st vs. 3rd tertile
	Energy-adjusted UPF + adjusted for TEI
	0.89 (0.54, 1.46) 16



	
	Gestational diabetes ≥30
	OR 1st vs. 3rd tertile
	Energy-adjusted UPF + adjusted for TEI
	2.05 (1.03, 4.07) 16



	Chang 2021 [115]
	BMI (kg/m2)/year
	Beta 1st vs. 5th quintile
	UPF as % weight + adjusted for child’s TEI
	0.06 (0.04, 0.08) 17



	
	Fat mass index (kg/m2)/year
	Beta 1st vs. 5th quintile
	UPF as % weight + adjusted for child’s TEI
	0.03 (0.01, 0.05) 17



	
	Lean mass index (kg/m2)/year
	Beta 1st vs. 5th quintile
	UPF as % weight + adjusted for child’s TEI
	0.004 (−0.007, 0.01) 17



	
	Body fat percentage (%)/year
	Beta 1st vs. 5th quintile
	UPF as % weight + adjusted for child’s TEI
	0.004 (−0.05, 0.06) 17



	
	Weight (kg/year)
	Beta 1st vs. 5th quintile
	UPF as % weight + adjusted for child’s TEI
	0.20 (0.11, 0.28) 17



	
	Waist circumference (cm/year)
	Beta 1st vs. 5th quintile
	UPF as % weight + adjusted for child’s TEI
	0.17 (0.11, 0.22) 17



	
	BMI z-score
	Beta 1st vs. 5th quintile
	UPF as % weight + adjusted for child’s TEI
	0.01 (0.003, 0.01) 17



	
	Fat mass (kg/year)
	Beta 1st vs. 5th quintile
	UPF as % weight + adjusted for child’s TEI
	0.15 (0.08, 0.21) 17



	
	Lean mass (kg/year)
	Beta 1st vs. 5th quintile
	UPF as % weight + adjusted for child’s TEI
	-0.04 (-0.11, 0.02) 17



	Costa 2021 [116]
	Fat mass index (kg/m2)
	Beta/100 g increase in UPF intake
	Absolute UPF g/day + adjusted for energy intake/expenditure ratio + TEI
	0.05 (0.04, 0.06) 18



	Vedovato 2021 [99]
	BMI z-score age 10
	Beta per 1 kcal/100 kcal/d increase in energy from UPF at age 4
	UPF as % TEI at age 4
	0.028 (0.006, 0.051) 19



	
	BMI z-score age 10
	Beta per 1 kcal/100 kcal/d increase in energy from UPF at age 7
	UPF as % TEI at age 7
	0.014 (–0.007, 0.036) 19



	
	Enjoyment of food at age 7
	Beta per 1 kcal/100 kcal/d increase in energy from UPF at age 4
	UPF as % TEI at age 4
	–0.002 (–0.021, 0.016) 19



	
	Food responsiveness at age 7
	Beta per 1 kcal/100 kcal/d increase in energy from UPF at age 4
	UPF as % TEI at age 4
	0.017 (–0.001, 0.035) 19



	
	Emotional overeating at age 7
	Beta per 1 kcal/100 kcal/d increase in energy from UPF at age 4
	UPF as % TEI at age 4
	0.010 (–0.006, 0.026) 19



	
	Emotional undereating at age 7
	Beta per 1 kcal/100 kcal/d increase in energy from UPF at age 4
	UPF as % TEI at age 4
	0.007 (–0.012, 0.027) 19



	
	Satiety Responsiveness at age 7
	Beta per 1 kcal/100 kcal/d increase in energy from UPF at age 4
	UPF as % TEI at age 4
	0.013 (–0.004, 0.029) 19



	
	Slowness in eating at age 7
	Beta per 1 kcal/100 kcal/d increase in energy from UPF at age 4
	UPF as % TEI at age 4
	–0.015 (–0.035, 0.006) 19



	
	Food Fussiness at age 7
	Beta per 1 kcal/100 kcal/d increase in energy from UPF at age 4
	UPF as % TEI at age 4
	0.026 (0.007, 0.045) 19



	
	Desire to Drink at age 7
	Beta per 1 kcal/100 kcal/d increase in energy from UPF at age 4
	UPF as % TEI at age 4
	0.018 (–0.003, 0.039) 19



	Costa 2019 [98]
	△BMI age 4 to 8
	Beta per 10% increase in UPF intake
	UPF as % TEI at age 4
	0.00 (–0.02, 0.01) 20



	
	△WC age 4 to 8
	Beta per 10% increase in UPF intake
	UPF as % TEI at age 4
	0.07 (0.01, 0.13) 20



	
	△WHR age 4 to 8
	Beta per 10% increase in UPF intake
	UPF as % TEI at age 4
	0.00 (0.00, 0.00) 20



	
	△Sum skinfolds age 4 to 8
	Beta per 10% increase in UPF intake
	UPF as % TEI at age 4
	0.05 (−0.04, 0.15) 20



	
	Glucose (mmol/L)
	Beta per 10% increase in UPF intake
	UPF as % TEI at age 4
	0.00 (−0.01, 0.00) 20



	
	Insulin (uU/mL)
	Beta per 10% increase in UPF intake
	UPF as % TEI at age 4
	0.00 (−0.00, 0.01) 20



	
	HOMA-IR
	Beta per 10% increase in UPF intake
	UPF as % TEI at age 4
	0.00 (−0.01, 0.01) 20



	Srour 2019 [117]
	All CVD
	HR per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	1.12 (1.05, 1.20) 21



	
	Coronary heart disease
	HR per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	1.13 (1.02, 1.24) 21



	
	Cerebrovascular disease
	HR per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	1.11 (1.01, 1.21) 21



	Du 2021 [86]
	Incident CAD
	HR 1st vs. 4th quartile
	Energy-adjusted UPF + adjusted for TEI
	1.21 (1.06, 1.37) 22



	Juul 2021 [118]
	Overall CVD
	HR per serving UPF/day
	Energy-adjusted UPF + adjusted for TEI
	1.05 (1.02, 1.08) 23



	
	CVD mortality
	HR per serving UPF/day
	Energy-adjusted UPF + adjusted for TEI
	1.09 (1.02, 1.16) 23



	
	Incident hard CVD
	HR per serving UPF/day
	Energy-adjusted UPF + adjusted for TEI
	1.07 (1.03, 1.12) 23



	
	Hard coronary heart disease
	HR per serving UPF/day
	Energy-adjusted UPF + adjusted for TEI
	1.10 (1.04, 1.15) 23



	Zhong 2021 [119]
	CVD mortality
	HR 1st vs. 5th quartile
	Energy-adjusted UPF + adjusted for TEI
	1.50 (1.36, 1.64) 24



	
	Heart disease mortality
	HR 1st vs. 5th quartile
	Energy-adjusted UPF + adjusted for TEI
	1.68 (1.50, 1.87) 24



	
	Cerebrovascular disease mortality
	HR 1st vs. 5th quartile
	Energy-adjusted UPF + adjusted for TEI
	0.94 (0.76, 1.17) 24



	Scaranni 2021 [120]
	Incident hypertension
	OR 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	1.23 (1.06, 1.44) 25



	
	Change in SBP
	Beta 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	–0.54 (–1.23, 0.15) 25



	
	Change in DBP
	Beta 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	0.08 (−0.39, 0.56) 25



	Mendonça 2017 [122]
	Hypertension
	HR 1st vs. 3rd tertile
	Energy-adjusted UPF + adjusted for TEI
	1.21 (1.06, 1.37) 26



	Rezende-Alves 2021 [148]
	Hypertension
	RR 1st vs. 5th quartile
	UPF as % TEI
	1.35 (1.01, 1.82) 27



	Monge 2021 [121]
	Incident hypertension
	≤20% vs. >45% of energy from any UPF
	UPF as % TEI + adjusted for TEI
	0.98 (0.84, 1.14) 28



	
	Incident hypertension
	≤20% vs. >45% of energy from liquid UPF
	UPF as % TEI + adjusted for TEI
	1.34 (1.10, 1.65) 28



	
	Incident hypertension
	≤20% vs. >45% of energy from solid UPF
	UPF as % TEI + adjusted for TEI
	0.91 (0.82, 1.01) 28



	Llavero-Valero 2021 [123]
	T2DM
	HR 1st vs. 3rd tertile
	Energy-adjusted UPF + adjusted for TEI
	1.52 (1.05, 2.22) 29



	Srour 2020 [124]
	T2DM
	HR per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	1.15 (1.06, 1.25) 30



	Levy 2021 [88]
	T2DM
	HR per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	1.20 (1.12, 1.29) 31



	Zhang 2021 [125]
	NAFLD
	HR 1st vs. 4th quartile
	UPF g/1000kcal + adjusted for TEI
	1.19 (1.08, 1.31) 32



	Fiolet 2018 [126]
	All cancers
	HR per 10% increase in UPF
	UPF as % TEI + adjusted for TEI (exc. Alcohol)
	1.12 (1.06, 1.18) 33



	
	Breast cancer
	HR per 10% increase in UPF
	UPF as % TEI + adjusted for TEI (exc. Alcohol)
	1.11 (1.02, 1.22) 33



	
	Prostate cancer
	HR per 10% increase in UPF
	UPF as % TEI + adjusted for TEI (exc. Alcohol)
	0.98 (0.83, 1.16) 33



	
	Colorectal cancer
	HR per 10% increase in UPF
	UPF as % TEI + adjusted for TEI (exc. Alcohol)
	1.13 (0.92, 1.38) 33



	Vasseur 2021 [127]
	IBD
	RR 1st vs. 3rd tertile
	UPF as % weight + adjusted for TEI
	1.44 (0.70, 2.94) 34



	Narula 2021 [128]
	IBD
	HR <1 vs. ≥5 servings UPF/day
	UPF servings/day + adjusted for TEI
	1.82 (1.22, 2.72) 35



	
	Crohn’s disease
	HR <1 vs. ≥5 servings UPF/day
	UPF servings/day + adjusted for TEI
	4.50 (1.67, 12.13) 35



	
	Ulcerative Colitis
	HR <1 vs. ≥5 servings UPF/day
	UPF servings/day + adjusted for TEI
	1.46 (0.93, 2.28) 35



	Schnabel 2018 [129]
	Irritable bowel syndrome
	OR 1st vs. 4th quartile
	UPF as % weight + adjusted for TEI
	1.24 (1.12, 1.38) 36



	
	Functional Constipation
	OR 1st vs. 4th quartile
	UPF as % weight + adjusted for TEI
	1.00 (0.87, 1.15) 36



	
	Functional diarrhoea
	OR 1st vs. 4th quartile
	UPF as % weight + adjusted for TEI
	0.94 (0.71, 1.26) 36



	
	Functional dyspepsia
	OR 1st vs. 4th quartile
	UPF as % weight + adjusted for TEI
	1.26 (1.07, 1.48) 36



	Lo 2021 [130]
	Crohn’s disease
	HR 1st vs. 4th quartile
	UPF as % TEI + adjusted for TEI
	1.70 (1.23, 2.35) 37



	
	Ulcerative Colitis
	HR 1st vs. 4th quartile
	UPF as % TEI + adjusted for TEI
	1.20 (0.91, 1.58) 37



	Adjibade 2019 [131]
	Depressive symptoms
	per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	1.21 (1.15, 1.27) 38



	Gómez-Donoso 2020 [132]
	Incident depression
	HR 1st vs. 4th quartile
	Energy-adjusted UPF + adjusted for TEI
	1.33 (1.07, 1.64) 39



	Rey-Garcia 2021 [133]
	Renal function
	OR 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	1.75 (1.16, 2.64) 40



	Zhang 2021 [134]
	Hyperuricemia
	HR 1st vs. 4th quartile
	UPF servings/day + adjusted for TEI
	1.17 (1.06, 1.30) 41



	Leffa 2020 [135]
	Total cholesterol at age 6
	Beta per 10% increase in UPF intake at age 3
	UPF as % TEI + adjusted for TEI
	0.07 (0.00, 0.14) p = 0.046 42



	
	LDL-cholesterol at age 6
	Beta per 10% increase in UPF intake at age 3
	UPF as % TEI + adjusted for TEI
	0.03 (–0.03, 0.09) 42



	
	HDL-cholesterol at age 6
	Beta per 10% increase in UPF intake at age 3
	UPF as % TEI + adjusted for TEI
	0.01 (–0.02, 0.05) 42



	
	TAG at age 6
	Beta per 10% increase in UPF intake at age 3
	UPF as % TEI + adjusted for TEI
	0.04 (0.01, 0.07) p = 0.024 42



	Rauber 2015 [95]
	ΔTotal cholesterol from 3–4 to 7–8
	Beta per 1% increase in energy from UPF
	UPF as % TEI + adjusted for TEI at age 7–8
	0.430 (0.008, 0.853) 43



	
	ΔLDL cholesterol from 3–4 to 7–8
	Beta per 1% increase in energy from UPF
	UPF as % TEI + adjusted for TEI at age 7–8
	0.369 (0.005, 0.733) 43



	
	ΔnHDL cholesterol from 3–4 to 7–8
	Beta per 1% increase in energy from UPF
	UPF as % TEI + adjusted for TEI at age 7–8
	0.319 (−0.059, 0.697) 43



	
	ΔTriglycerides from 3–4 to 7–8
	Beta per 1% increase in energy from UPF
	UPF as % TEI + adjusted for TEI at age 7–8
	−0.465 (−0.955, 0.025) 43



	
	ΔHDL cholesterol from 3–4 to 7–8
	Beta per 1% increase in energy from UPF
	UPF as % TEI + adjusted for TEI at age 7–8
	0.125 (−0.026, 0.277) 43



	Donat-Vargas 2021 [136]
	Incident hypertriglyceridemia (≥150 mg/dL)
	OR 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	2.21 (1.09, 4.49) 44



	
	Low HDL-cholesterol (<40 in men or <50 mg/dL in women)
	OR 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	2.04 (1.18, 3.53) 44



	
	High LDL-cholesterol (>129 mg/dL)
	OR 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	1.13 (0.52, 2.46) 44



	
	Δtriglycerides (mg/dL)
	Beta 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	6.23 (1.26, 11.21) 44



	
	ΔHDL cholesterol (mg/dL)
	Beta 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	0.02 (−1.45, 1.49) 44



	
	ΔLDL cholesterol (mg/dL)
	Beta 1st vs. 3rd tertile
	UPF as % TEI + adjusted for TEI
	−3.43 (−8.60, 1.74) 44



	Machado Azeredo 2020 [101]
	Wheeze at age 11
	OR 1st vs. 5th quintile of UPF at age 6
	UPF as % TEI + adjusted for TEI and TEI:EEI
	0.78 (0.51, 1.19) 45



	
	Asthma at age 11
	OR 1st vs. 5th quintile of UPF at age 6
	UPF as % TEI + adjusted for TEI and TEI:EEI
	0.83 (0.59, 1.17) 45



	
	Mild/moderate asthma at age 11
	OR 1st vs. 5th quintile of UPF at age 6
	UPF as % TEI + adjusted for TEI and TEI:EEI
	0.63 (0.34, 1.17) 45



	
	Severe Asthma at age 11
	OR 1st vs. 5th quintile of UPF at age 6
	UPF as % TEI + adjusted for TEI and TEI:EEI
	0.94 (0.54, 1.65) 45



	Borge 2021 [137]
	ADHD diagnosis at 8 years
	RR per 1 SD increase in UPF
	UPF as % TEI
	1.07 (0.99, 1.18) 46



	
	ADHD symptoms (absolute) at 8 years
	Beta per 1 SD increase in UPF
	UPF as % TEI
	0.25 (0.13, 0.38) 46,*



	
	ADHD symptoms (relative) at 8 years
	Beta per 1 SD increase in UPF
	UPF as % TEI
	3.0 (1.5, 4.5) 46,*



	Zhang 2021 [138]
	Change in grip strength (kg/year)
	Beta per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	−0.3207 (−0.5281, −0.1133) 47



	
	Change in weight-adjusted grip strength (kg/kg/year)
	Beta per 10% increase in UPF
	UPF as % weight + adjusted for TEI
	−0.0046 (−0.0076, −0.0016) 47







Energy-adjusted UPF via the residual method. TEI, total energy intake; TEI:EEI, energy intake:expenditure ratio; OR, odds ratio, HR, hazard ratio; RR, relative risk; ADHD, attention deficit hyperactivity disorder; CVD, cardiovascular disease; IHD, ischemic heart disease; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; BMI, body mass index; T2DM, type 2 diabetes mellitus; IBD, inflammatory bowel disease; NAFLD, non-alcoholic fatty liver disease; UPF, ultra-processed food; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL, low-density lipoprotein; HDL, high-density lipoprotein; nHDL, non-high-density lipoprotein; TAG, triacylglycerol; WC, waist circumference; WHR, waist-to-hip ratio. 1 Adjusted for sex, age, income level, education level, marital status, residence, BMI, physical activity level, smoking status, energy intake, alcohol intake, season of food records, first-degree family history of cancer or cardiovascular diseases and number of food records. 2 Adjusted for age, sex, marital status, physical activity, smoking status, snacking, special diet at baseline, BMI, total energy intake, alcohol consumption, family history of CVD, diabetes or hypertension at baseline, self-reported hypercholesterolaemia, baseline CVD, cancer or depression, education level and lifelong smoking stratified by recruitment period, deciles of age, sedentary index (sum of hours each day spent watching television, using a computer and driving) and television viewing. 3 Adjusted for age, sex, education level, living alone, smoking status, former drinker, physical activity, time watching television, time devoted to other sedentary activities, number of medications per day and specific chronic conditions diagnosed by a physician (chronic respiratory disease, coronary heart disease, stroke, heart failure, osteoarthritis, cancer and depression). 4 Adjusted for age, sex, race/ethnicity, total energy intake, poverty level, education level, smoking status, physical activity and alcohol intake. 5 Adjusted for age, sex, BMI, physical activity, alcohol intake, smoking status and total energy intake. 6 Adjusted for sex, age, energy intake, educational level, housing tenure, smoking, BMI, leisure-time physical activity, history of cancer, CVD, diabetes, hypertension and hyperlipidaemia and residence. 7 Adjusted for age, sex, marital status, educational level, physical activity, smoking status, alcohol consumption, energy intake and number of dietary records (overweight and obesity outcomes further adjusted for baseline BMI). 8 Adjusted for age, sex, marital status, educational status, physical activity, energy intake, television watching, siesta sleep, smoking status, snacking between meals, following a special diet at baseline, baseline BMI and consumption of fruit and vegetables. 9 Adjusted for age, sex and energy intake. 10 Adjusted for age, sex, study arm, follow-up time, educational level, marital status, smoking habits, type 2 diabetes prevalence, height and repeated measures of total energy intake, physical activity and sedentary behaviour. 11 Adjusted for age, sex, educational level, marital status, smoking, ex-drinker status, physical activity in the household and at leisure time, number of medications consumed per day, number of chronic diseases diagnosed by a doctor (chronic obstructive pulmonary disease/asthma, coronary heart disease, stroke, heart failure, osteoarthritis or depression) and total energy intake, Mediterranean dietary pattern, fibre and very long chain omega-3 fatty acid intake. 12 Adjusted for age, sex, baseline BMI, educational level, physical activity, baseline alcohol intake, baseline smoking status and plausibility of dietary energy reporting and for the modified relative Mediterranean diet score. Overweight and obesity outcomes further adjusted for country/centre, follow-up time in years and smoking status at follow-up (instead of baseline smoking status). 13 Adjusted for age, sex, colour/race, centre, income, school achievement, smoking, physical activity and energy intake. Additionally for incident overweight/obesity and weight gain: baseline BMI. Additionally for waist gain: waist circumference at baseline. 14 Adjusted for maternal age, race, socioeconomic status, weight status, average daily energy intake, time spent in moderate physical activity and fat intake. 15 Adjusted for cohort and potential confounding variables, with p < 0·25. 16 Adjusted for age, BMI, education, smoking status, physical activity, family history of diabetes, recruitment year, time between recruitment and the first pregnancy or gestational diabetes, number of pregnancies during follow-up, parity, multiple pregnancies, time spent watching TV, hypertension, following a nutritional therapy, and energy intake. 17 Adjusted for age, baseline UPF, age*baseline UPF interaction term, child sex, race, birth weight, physical activity, quintiles of Index of Multiple Deprivation, the mother’s prepregnancy BMI, marital status, highest educational attainment, socioeconomic status and the child’s baseline total energy intake. 18 Adjusted for skin colour, maternal age and schooling, birthweight and sex, screen time, total energy intake and energy intake/expenditure ratio. 19 Adjusted for maternal age, maternal education and BMI before pregnancy, exclusive breast-feeding for the first 6 months, child physical exercise and daily screen time. For appetitive behaviours, additionally parental concerns, and for BMI, additionally child BMI z-score at 4 years old. 20 Adjusted for sex, group status in the early phase (intervention and control), pre-pregnancy BMI, birth weight, breastfeeding, family income, maternal schooling and total screen duration. 21 Adjusted for age, sex, energy intake, number of 24-h dietary records, smoking status, educational level, physical activity, BMI, alcohol intake, and family history of CVD. 22 Adjusted for age, sex, race, centre and total energy intake. 23 Adjusted for age, sex, education, smoking status, alcohol intake, total energy intake and physical activity. 24 Adjusted for age, sex, race, educational level, marital status, study centre, aspirin use, history of hypertension or diabetes, smoking status, alcohol consumption, BMI, physical activity and energy intake. 25 Adjusted for age, sex, colour or race, education, time since baseline, SBP/DBP/hypertension, physical activity, smoking, alcohol consumption, sodium intake and total energy intake. 26 Adjusted for age, sex, physical activity, hours of TV watching, baseline BMI, smoking status, use of analgesics, following a special diet at baseline, family history of hypertension, hypercholesterolemia, alcohol consumption, total energy intake, olive oil intake and consumption of fruits and vegetables. 27 Adjusted for age, marital status, skin colour, per capita income, physical activity, smoking, obesity, family history of hypertension and previous diagnosis of T2DM, hypercholesterolaemia and hypertriglyceridaemia. 28 Adjusted for age, indigenous, internet access, insurance, family history of hypertension, menopausal status, smoking status, physical activity, total energy intake and multivitamin intake. 29 Adjusted for age, sex, BMI, educational status, family history of diabetes, smoking status, snacking between meals, active and sedentary lifestyle score, following a special diet at baseline and total energy intake. 30 Adjusted for age, sex, educational level, baseline BMI, physical activity, smoking status, alcohol intake, number of 24-h dietary records, total energy intake, Food Standards Agency nutrient profiling system dietary index score, and family history of T2DM. 31 Adjusted for age, sex, ethnicity, family history of T2DM, Index of Multiple Deprivation, physical activity level, current smoking status and total energy intake. 32 Adjusted for age, sex, BMI, healthy diet score, total energy intake, smoking status, alcohol drinking status, educational level, occupation, monthly household income, physical activity, family history of disease (including cardiovascular disease, hypertension, hyperlipidaemia and diabetes) and depressive symptoms. 33 Adjusted for age, sex, total energy intake without alcohol, number of 24-h dietary records, smoking status, educational level, physical activity, height, BMI, alcohol intake, family history of cancers (and for breast cancer outcome, additionally adjusted for menopausal status, hormonal treatment for menopause, oral contraception and number of children). 34 Adjusted for age, sex, income level, education level, marital status, residence, BMI, physical activity, smoking status, hormonal contraception, number of 24-h dietary records, healthy dietary pattern and total energy intake. 35 Adjusted for age, sex, geographical region, education, alcohol intake, smoking status, BMI, total energy intake, and location. 36 Adjusted for age, sex, income level, education level, marital status, residence, BMI, physical activity, smoking status, total energy intake, season of food records and time between food record and functional gastrointestinal disorders questionnaire. 37 Adjusted for age, cohort, calendar year, AHEI-2010, race, family history of IBD, smoking, BMI, physical activity, total energy intake, regular NSAIDs use, oral contraceptives use and menopausal hormone therapy. 38 Adjusted for age, sex, BMI, marital status, educational level, occupational categories, household income per consumption unit, residential area, number of 24-h dietary records, inclusion month, total energy intake without alcohol, alcohol intake, smoking status and physical activity. 39 Adjusted for age, sex, year of entrance to the cohort, Mediterranean diet, baseline BMI, total energy intake, physical activity, smoking status, marital status, living alone, employment status, working hours per week, health-related career, years of education and baseline self-perception of competitiveness, anxiety and dependence levels. 40 Adjusted for age, sex and total energy intake. 41 Adjusted for age, sex, BMI, smoking status, alcohol consumption status, education levels, employment status, household income, physical activity, depression symptoms, family history of disease (including cardiovascular disease, hypertension, hyperlipidaemia and diabetes), hypertension, hyperlipidaemia, diabetes, metabolic syndrome, total energy intake and dietary patterns (sweet, animal and healthy patterns). 42 Adjusted for sex, group status in the early phase (intervention and control), family income, pre-pregnancy BMI, childbirth weight, BMI z-scores at 3 years, total energy and total fat intake at 3 years. 43 Adjusted for sex, group, birth weight, family income, maternal schooling, BMI-for-age z-scores and total energy intake at 7–8 years. 44 Adjusted for age, sex, fibre intake, total energy intake, educational level, marital status, smoking status, BMI, physical activity, alcohol consumption, number of medications and number of chronic conditions. 45 Adjusted for TEI and TEI:EEI. 46 Adjusted for child diet quality score using Diet Quality Index at 3 years, maternal pre-pregnancy BMI, maternal education, smoking and alcohol intake during pregnancy, maternal symptoms of depression and ADHD, maternal age, parity, child sex and child birth quarter. 47 Adjusted for baseline age, sex, BMI, smoking status, alcohol drinking status, education level, employment, monthly household income, physical activity, family history of disease (including CVD, hypertension, hyperlipidaemia, and diabetes), depressive symptoms, hypertension, hyperlipidaemia, diabetes, total energy intake, healthy diet score, dietary supplement use, total protein intake and milk intake. * 95% credible intervals.
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