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Abstract: Although Janus kinase inhibitors (JAKi) could reduce patient-reported pain in rheumatoid
arthritis (RA), their mechanism remains unclear. Therefore, we examined lipid metabolites change
in JAKi-treated patients and evaluate their association with pain reduction. We used 1H-NMR-
based lipid/metabolomics to determine serum levels of lipid metabolites at baseline and week 24
of treatment. Serum levels of significant lipid metabolites were replicated by ELISA in 24 JAKi-
treated and 12 tocilizumab-treated patients. Pain was evaluated with patients’ assessment on a 0–100
mm VAS, and disease activity assessed using DAS28. JAKi or tocilizumab therapy significantly
reduced disease activity. Acceptable pain (VAS pain ≤20) at week 24 was observed in 66.7% of
JAKi-treated patients, and pain decrement was greater than tocilizumab-treated patients (∆VAS
pain 70.0 vs. 52.5, p = 0.0595). Levels of omega-3 fatty acids and docosahexaenoic acid (DHA)
were increased in JAKi-treated patients (median 0.55 mmol/L versus 0.71 mmol/L, p = 0.0005;
0.29 mmol/L versus 0.35 mmol/L, p = 0.0004; respectively), which were not observed in tocilizumab-
treated patients. ELISA results showed increased DHA levels in JAKi-treated patients with acceptable
pain (44.30 µg/mL versus 45.61 µg/mL, p = 0.028). A significant association of pain decrement with
DHA change, not with DAS28 change, was seen in JAKi-treated patients. The pain reduction effect of
JAKi probably links to increased levels of omega-3 fatty acids and DHA.

Keywords: omega-3 fatty acids; docosahexaenoic acid (DHA); analgesic effect; rheumatoid arthritis;
Janus kinase inhibitors

1. Introduction

Rheumatoid arthritis (RA) is characterized by inflammation and hyperplasia of syn-
ovia, cartilage degradation, and bone erosions [1,2]. Pain, a dominant component of the
patient-reported outcome, can significantly burden RA patients’ quality of life. There-
fore, reduction of RA-related pain is one major need of patients [3,4]. Pain associated
with RA is multifactorial and complex [5–10], and the mechanisms include peripheral
joint inflammation, noninflammatory nociceptive stimuli, peripheral/central sensitization,
and JAK/STAT pathway [5–10]. Although the current biologics could effectively control
RA-related inflammation, as reflected in the recent management recommendations [11],
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nearly one-third of patients reported unacceptable pain after 21 months of combination
therapy [12]. Furthermore, Rifbjerg-Madsen et al. demonstrated that more than 50% of the
Danish arthritis patients reported persistent pain despite inflammation control [13]. These
observations indicate insufficient effects of the current therapeutic strategies, including
biologics, on noninflammatory nociceptive pain in RA patients.

Janus kinase inhibitors (JAKi) exert their therapeutic effects by blocking JAK/STAT-
mediated signaling implicated in RA pathogenesis. The JAKi tofacitinib (a JAK1/JAK3
inhibitor) and baricitinib (a JAK1/JAK2 inhibitor) are effective in RA treatment [14–16].
Given the increasingly acknowledged implication of the JAK/STAT pathway in the mod-
ulation of pain and nociceptive response [9,10], JAKi have an additional beneficial effect
of pain reduction in RA patients. Several clinical trials have revealed that tofacitinib ad-
ditionally produced sustained pain reduction in RA [17–19]. Similarly, the RA-BEAM
Trial demonstrated that baricitinib therapy provided greater pain reduction than adali-
mumab and placebo groups [20]. Among RA patients with low disease activity, the average
improvements in pain scores were significantly greater in baricitinib-treated patients com-
pared with placebo group [21]. With a matching-adjusted indirect comparison, Fautrel et al.
revealed greater pain reduction after baricitinib monotherapy compared with tocilizumab
(TCZ) or adalimumab monotherapy, while no significant difference in pain decrement be-
tween baricitinib and tofacitinib [22]. These findings suggest that JAKi, either tofacitinib or
baricitinib, could additionally reduce RA-associated pain, and the underlying mechanism
is worth further exploration.

Lipid metabolomics, relatively recent research, could be employed to characterize
lipid metabolites and investigate their biological roles in lipid metabolism [23]. 1H nuclear
magnetic resonance (NMR)-based lipidomics has been used for diagnosis or therapeutic
response follow-up [24]. Souto-Carneiro et al. revealed a distinct lipidomic signature
in seronegative RA using the 1H NMR-based lipidomics [25]. Among the lipid metabo-
lites, omega-3 polyunsaturated fatty acids (PUFAs) possess anti-inflammatory and anal-
gesic properties [26], and docosahexaenoic acid (DHA) is the precursor of potent anti-
inflammatory mediators such as resolvins and protectins [27]. These lipid mediators could
attenuate inflammatory pain through central and peripheral actions [28]. Many studies,
including a systemic review and meta-analysis, revealed that omega-3 PUFAs and DHA
might reduce more pain in RA patients, either compared with baseline or placebo [29,30].
Therefore, we speculate a possible association of these lipid metabolites with pain reduction
in JAKi-treated patients.

In this prospective pilot study, we used 1H NMR-based lipid/metabolomics to inves-
tigate the changes in serum levels of omega-3 PUFAs and DHA in RA patients treated with
JAKi or TCZ and utilized ELISA to perform a replication study on the significant lipid
metabolites. Since a meta-analysis revealed similar lipid profile changes in patients treated
with JAKi or TCZ [31], we enrolled TCZ as the control medication. Besides, we examined
the correlation between the changes of lipid metabolites levels and the decrement of pain
scores in RA patients treated with JAKi or TCZ.

2. Materials and Methods
2.1. Patients and Study Design

In this prospective study, we randomly enrolled 36 active RA patients who fulfilled
the 2010 classification criteria of the American College of Rheumatology/European League
Against Rheumatism collaborative initiative [32] and were available for examination of
lipid metabolites before and after six months’ JAKi or TCZ therapy. Disease activity was
assessed using the 28-joint disease activity score (DAS28) [33], with active status defined as
a DAS28 > 3.2. Thirty-six biologic-naïve, active RA patients who had received conventional
synthetic disease-modifying antirheumatic drugs (csDMARDs) started JAKi (tofacitinib or
baricitinib, n = 24) or IL-6R inhibitor (TCZ, n = 12) therapy according to the guidelines [34].
Patients assessed the pain on a 0-100 mm visual analogue scale (VAS) at baseline and
week 24 of JAKi or TCZ treatment. The Institutional Review Board approved this study
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(CMUH109-REC3-161), with each participant’s written consent obtained according to the
Declaration of Helsinki.

2.2. The Major Outcome for Pain

The major outcome for pain is the proportion of patients reporting pain scores equal
to or less than 20 (VAS pain ≤ 20 mm) at week 24, so-called “acceptable pain” [12]. Pain
scores ≤ 20 mm threshold represent a threshold when human satisfaction with health is
not negatively influenced by pain [35]. In contrast, “unacceptable pain” is defined as the
VAS pain scores more than 20 mm despite inflammation control.

2.3. Blood Sample Preparation and Lipid Profiles Measurement

Overnight-fasted venous blood samples were obtained in the morning and stored at
−80 ◦C until use. Plasma levels of total cholesterol, triglyceride, high-density lipoprotein
cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) were measured using
enzymatic methods with a chemistry analyzer AU5800 (Beckman Coulter, Brea, California,
USA) according to the manufacturer’s instructions.

2.4. Determination of Serum Lipid Metabolites by 1H-NMR Lipid/Metabolomics

A serum sample was analyzed using the 1H-NMR lipid/metabolomics (Nightingale
Health, Helsinki, Finland) [23,24], with 100µl serum and phosphate buffer (prepared with
5.5 mM sodium 3-trimethylsilyl (2,2,3,3-d4) propionate, 0.075 molarity Na2HPO4·7H2O,
5 mL NaN3 (4%) adjusted to pH 7.4 with 1 M HCl) mixed in an Eppendorf tube. The
complete sample was transferred to a 3 mm NMR tube (Bruker Match system) and mea-
sured at 310 K in Bruker Avance III NMR spectrometers operating at 600.13 MHz equipped
with a maximum gradient strength of 53 G/cm. Each sample was equilibrated at 310 K
for 5 min before data acquisition. Each data set was automatically processed using a line
broadening of 1Hz, with the NOESY data aligned to the alanine signal at 1.49 ppm. The
whole lipid/metabolites was list in Supplemental Table S1.

2.5. Quantification and Replication of the Significant Lipid Metabolites Using ELISA

Among the changes in lipid metabolites analyzed by lipid/metabolomics, serum
levels of omega-3 fatty acids and DHA were significantly increased in JAKi-treated patients.
We quantified serum DHA levels with the available commercial ELISA kit (MyBioSource,
San Diego, CA, USA) following the manufacturer’s instruction. The coefficient of variation
(CV%) for the internal standards was less than 10%.

2.6. Statistical Analysis

The results were presented as the mean ± standard deviation (SD) or the median
(interquartile range, IQR). The nonparametric Mann–Whitney U test was used for between-
group comparisons of numerical variables. Wilcoxon signed-rank test was employed to
compare serum levels of lipid metabolites during follow-up in patients after a six-month
therapy. The correlation coefficient was calculated using the nonparametric Spearman’s
rank correlation test. A two-sided p-value < 0.05 was considered statistically significant.

3. Results
3.1. Demographic Data and Clinical Characteristics of RA Patients

As illustrated in Table 1, JAKi or TCZ therapy significantly decreased disease activity
(DAS28) assessed at week 24. We observed nonsignificant higher proportion of patients
reporting “acceptable pain,” pain scores (VAS ≤ 20 mm), at week 24 in JAKi-treated patients
compared with TCZ-treated patients (66.7% versus 50.0%, Figure 1A). The pain decrement
was also greater in JAKi-treated patients than in those treated with TCZ (∆VAS pain 70.0
vs. 52.5, p = 0.0595, Figure 1B). As revealed in Table 1, there were no significant differences
in demographic data, clinical characteristics, the proportion of positivity for rheumatoid
factor or anticitrullinated peptide antibody, disease activity at week 24, the change of lipid
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profiles, the proportion of concomitant medications or comorbidities between JAKi-treated
and TCZ-treated patients.

Table 1. Demographic, clinical characteristics, and laboratory data in rheumatoid arthritis (RA) patients treated with Janus
kinase inhibitors (JAKi) or tocilizumab (TCZ) a.

JAKi-Treated
Patients (n = 24)

TCZ-Treated
Patients (n = 12)

Age at entry, years 60.5 (55.5–65.3) 59.0 (50.3–64.0)

Age at disease onset, years 53.0 (48.0–59.3) 51.0 (44.0–56.5)

Disease duration, years 5.0 (4.0–6.5) 7.0 (4.8–8.5)
Proportion of women 18 (75.0%) 10 (83.3%)

BMI, kg/m2 23.6 (21.1–25.8) 22.7 (21.1–25.7)
RF positivity, at baseline 15 (62.5%) 8 (66.7%)

ACPA positivity, at baseline 15 (62.5%) 9 (75.0%)
DAS28 at baseline 6.77 (6.23–7.13) 7.04 (5.98–7.36)
DAS28 at week 24 3.12 (3.05–3.40) ** 3.14 (3.08–3.30) **

Change of DAS28 (∆DAS28) 3.37 (3.12–3.98) 3.64 (2.94–4.10)
Tender joint count at baseline 15 (10–22) 15 (12–19)
Tender joint count at week 24 2 (2–3) ** 4 (3–9) **
Swollen joint count at baseline 10 (5–12) 9 (7–14)
Swollen joint count at week 24 2 (1–3) ** 2 (2–5) **

Pain scores at baseline b 87.5 (85.0–90.9) 80.0 (80.0–85.0)
Pain scores at week 24 b 17.5 (15.0–45.0) ** 32.5 (15.0–46.3) **
Change of pain scores

(∆pain scores) 70.0 (36.9–75.0) 52.5 (33.8–70.0)

ESR, mm/1st h, at baseline 32 (23–49) 37 (23–46)
ESR, mm/1st h, at week 24 16 (11–24) ** 8 (4–10) *

Change of ESR (∆ESR), mm/1st h 21 (7–30) 30 (18–38)
CRP, mg/dL, at baseline 1.79 (0.98–2.75) 1.61 (0.78–3.93)
CRP, mg/dL, at week 24 0.17 (0.06–0.57) ** 0.02 (0.02–0.08) *

Change of CRP (∆CRP), mg/dL 1.14 (0.46–2.53) 1.59 (0.76–3.65)
WBC (×103/mm3) at baseline 7.6 (6.5–9.9) 5.8 (4.9–7.8)
WBC (×103/mm3) at week 24 6.4 (5.4–8.4) * 5.0 (4.6–5.8)

Neutrophil (%) at baseline 72.6 (60.3–74.9) 60.2 (51.5–70.4)
Neutrophil (%) at week 24 62.8 (58.8–65.9) 47.5 (41.3–53.1) *

Lymphocyte (%) at baseline 19.0 (15.5–21.5) 26.7 (19.2–31.5)
Lymphocyte (%) at week 24 26.7 (24.3–28.6) 34.3 (32.7–38.1)

TC, mg/dL, at baseline 179.5 (161.8–208.8) 206.0 (181.5–221.5)
TC, mg/dL, at week 24 193.0 (175.0–213.5) 212.0 (183.3–230.3)

HDL-C, mg/dL, at baseline 56.5 (52.2–67.0) 58.7 (46.6–70.7)
HDL-C, mg/dL, at week 24 60.4 (51.6–71.0) 56.1 (48.5–62.9)

TG, mg/dL, at baseline 79.0 (51.8–127.5) 81.5 (69.8–123.3)
TG, mg/dL, at week 24 83.0 (59.5–131.0) 113.0 (82.0–148.0)

LDL-C, mg/dL, at baseline 104.5 (88.9–123.6) 123.7 (103.1–137.3)
LDL-C, mg/dL, at week 24 103.6 (97.6–113.3) 131.6 (106.2–142.2)
Concomitant corticosteroids 10 (41.7%) 6 (50.0%)
Concomitant methotrexate 15 (62.5%) 8 (66.7%)

Hypertension 6 (25.0%) 4 (33.3%)
Diabetes mellitus 2 (8.3%) 0 (0.0%)

Ever smoking 3 (12.5%) 1 (8.3%)
a Data are presented as median (interquartile range, IQR) or number (%). b Pain scores based on patient’s assessment using the 100 mm visual analogue
scales. BMI: body mass index; RF: rheumatoid factor; ACPA: anti-citrullinated peptide antibodies; DAS28: disease activity score for 28-joints; ESR:
erythrocyte sedimentation rate; CRP: C-reactive protein; WBC: white blood cells; TC: total cholesterol; HDL-C: high-density lipoprotein cholesterol; TG:
triglyceride; LDL-C: low-density lipoprotein cholesterol. * p < 0.01, ** p < 0.001, vs. before treatment (at baseline), as determined by Wilcoxon signed
rank test.
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Figure 1. (A) Proportion of acceptable pain and unacceptable pain and (B) comparison of pain decrement
in JAKi-treated and TCZ-treated patients. A Fisher’s exact test was used for between-group comparison
of the proportion of acceptable pain. Data in (B) are presented as box-plot diagrams, with the box
encompassing the 25th percentile (lower bar) to the 75th percentile (upper bar). The horizontal line
within the box indicates median value respectively for each group. The p-value was determined by the
Mann–Whitney U test. JAKi: Janus kinase inhibitors; TCZ: tocilizumab.

3.2. Change in Serum Levels of Omega-3 PUFAs and DHA Determined the 1H NMR-Bsed
Lipid/Metabolomics in Patients Treated with 6-Month JAKi or TCZ

Using 1H-NMR technology, we analyzed the changes of serum levels of lipid metabo-
lites in JAKi-treated and TCZ-treated patients at baseline and at week 24. As illustrated in
Supplemental Table S2, a significant change of 13 markers of 18 analyzed fatty acids was
observed in JAKi-treated patients, while not found in TCZ-treated patients. As shown in
the volcano plots with the presentation of the fold change and p-value (Figure 2A,B), the
most obvious changes were DHA, omega-3, omega-3%, and DHA% in JAKi-treated patients,
but no significant change in TCZ-treated patients. Based on these findings, we focus on the
four significant markers for the subsequent comparison. As shown in Figure 2C,D, omega–
3 PUFAs levels and the ratio of omega–3 PUFAs to total fatty acids were significantly
increased in JAKi-treated patients compared with baseline levels (median 0.55 mmol/L,
IQR 0.47–0.67 mmol/L vs. 0.71 mmol/L, IQR 0.56–0.89 mmol/L, p = 0.0005; and 4.13%,
IQR 3.75–5.03% vs. 4.92%, IQR 4.28–6.09%, p = 0.0056; respectively). JAKi-treated patients
also had significantly increased levels of DHA and ratio of DHA to total fatty acids com-
pared with baseline levels (median 0.29 mmol/L, IQR 0.27–0.34 mmol/L vs. 0.35 mmol/L,
IQR 0.30–0.42 mmol/L, p = 0.0004; and 2.31%, IQR 2.02–2.59% vs. 2.51%, IQR 2.31–2.96%,
p = 0.0139; respectively) (Figure 2E,F). However, the changes of omega-3 PUFAs or DHA
levels, as well as the ratio of omega-3 PUFAs or DHA to total fatty acids, were all nonsignif-
icant in TCZ-treated patients (Figure 2).

For JAKi-treated patients, we also revealed significantly increased levels of omega-3
PUFAs and DHA in those who reported “acceptable pain” after the treatment (median
0.54 mmol/L, IQR 0.46–0.56 mmol/L vs. 0.71 mmol/L, IQR 0.56–0.77 mmol/L, p = 0.0034;
median 0.28 mmol/L, IQR 0.27–0.30 mmol/L vs. 0.35 mmol/L, IQR 0.30–0.38 mmol/L,
p = 0.0061), but a nonsignificant change was observed in those reporting “unacceptable
pain” after treatment (Figure 3A,C). However, there nonsignificant change observed in
TCZ-treated patients (Figure 3B,D).
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Figure 2. The change in serum levels of lipid metabolites determined by the 1H NMR-based lipid/metabolomics in patients
treated for six months with JAKi or TCZ. The volcano plot of fatty acids levels changes in (A) JAKi-treated or (B) TCZ-treated
patients. The comparison of serum levels of (C) omega-3 level, (D) omega-3%, (E) DHA level, and (F) DHA% before and
after treatment with JAKi or TCZ. Rx.: treatment. Data in Figure 2C–F are presented as box-plot diagrams, with the box
encompassing the 25th percentile (lower bar) to the 75th percentile (upper bar). The horizontal line within the box indicates
median value respectively for each group. * p < 0.05, ** p < 0.005, *** p < 0.001, was determined by the Wilcoxon signed rank
test. JAKi: Janus kinase inhibitors; TCZ: tocilizumab; PUFAs: polyunsaturated fatty acids; DHA: docosahexaenoic acid; ns:
no significance.
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Figure 3. Change of serum levels of omega-3 PUFAs and DHA in JAKi-treated and TCZ-treated patients with acceptable
pain or unacceptable pain assessed at week 24. The comparison of serum levels of omega-3 determined by NMR-based
lipid/metabolomics in (A) JAKi-treated or (B) TCZ-treated patients with acceptable pain or unacceptable pain assessed
at week 24. The comparison of serum levels of DHA determined by NMR-based lipid/metabolomics in (C) JAKi-treated
or (D) TCZ-treated patients with acceptable pain or unacceptable pain assessed at week 24. The comparison of serum
DHA levels determined by ELISA in (E) JAKi-treated and (F) TCZ-treated patients with acceptable pain or unacceptable
pain assessed at week 24. Data are presented as box-plot diagrams, with the box encompassing the 25th percentile (lower
bar) to the 75th percentile (upper bar). The horizontal line within the box indicates median value respectively for each
group. * p < 0.05, ** p < 0.005, was determined by the Wilcoxon signed rank test. NMR-based: 1H-nuclear magnetic
resonance-based lipid/metabolomics; JAKi: Janus kinase inhibitors; TCZ: tocilizumab; PUFAs: polyunsaturated fatty acids;
DHA: docosahexaenoic acid; ns: no significance.
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3.3. Change of Serum DHA Levels Determined by ELISA in Patients Treated with Six Months’
JAKi or TCZ

Based on the 1H NMR-based lipid/metabolomics results, we performed a replica-
tion study using another assay, ELISA, for determining a pure compound DHA. Our
results showed a trend of positive correlation between baseline DHA levels from the
NMR-based assay and those from ELISA-based assay (r = 0.327, p = 0.096) in RA patients.
As shown in Figure 3E, significantly increased DHA levels (median 44.30 µg/mL, IQR
38.77–48.10 µg/mL vs. 45.61 µg/mL, IQR 42.52–47.61 µg/mL, p = 0.028) were observed in
JAKi–treated patients who reported “acceptable pain” after the treatment, while decreased
DHA levels in those with “unacceptable pain” despite a low disease activity (median 59.90
µg/mL,
IQR 57.17–61.58 µg/mL vs. 39.39 µg/mL, IQR 36.39–40.73 µg/mL, p = 0.0078). In TCZ-
treated patients, the change of DHA levels in “acceptable pain” patients was nonsignif-
icant, in contrast to decreased DHA levels in “unacceptable pain” patients (Figure 3F,
median 70.21 µg/mL, IQR 66.63–78.13 µg/mL vs. 47.75 µg/mL, IQR 42.97–50.45 µg/mL,
p = 0.0313).

3.4. Correlation between the Change of DHA Levels and the Decrement of Pain Score or DAS28
Score in JAKi-Treated Patients

There was an inverse correlation between serum DHA levels and patients’ reporting
pain scores after six months’ treatment with JAKi (r = −0.810, p <0.001, Figure 4A), but a
nonsignificant correlation in TCZ-treated patients (Figure 4B). In addition, a significant
correlation was observed between the decrement of pain score and the change of DHA
levels in JAKi-treated patients (r = −0.5699, p = 0.0036, Figure 4C) or TCZ-treated patients
(r = −0.9468, p <0.0001, Figure 4D). However, there was no significant correlation between
pain decrement and the change of disease activity (DAS28 scores) in JAKi-treated patients
(Figure 4E) and TCZ-treated patients (Figure 4F). There was no significant correlation
between the decrement of ESR and the change of omega-3 FA levels in JAKi-treated
or TCZ-treated patients (r = 0.049, p = 0.848 or r = −0.367, p = 0.336, respectively), or
between the decrement of CRP and the change of omega-3 FA levels in JAKi-treated or
TCZ-treated patients (r = 0.115, p = 0.651 or r = 0.217, p = 0.581, respectively). There was
also no significant correlation between the decrement of ESR and the change of DHA levels
in JAKi-treated or TCZ-treated patients (r = −0.241, p = 0.256 or r = −0.245, p = 0.439,
respectively), or between the decrement of CRP and the change of DHA levels in JAKi-
treated or TCZ-treated patients (r = 0.018, p = 0.934 or r = 0.329, p = 0.297, respectively).

Figure 4. Cont.
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Figure 4. The correlation between DHA levels and pain scores after treatment or between pain decrement and the change
of DHA levels or DAS28 scores. The correlation between serum DHA levels and pain scores assessed at week 24 in (A)
JAKi-treated or (B) TCZ-treated patients. The correlation between the decrement of pain scores and the change of DHA
levels in (C) JAKi-treated or (D) TCZ-treated patients. The correlation between the decrement of pain scores and the
decrement of disease activity (DAS28 scores) in (E) JAKi-treated or (F) TCZ-treated patients. The correlation coefficient
(R-value) was calculated using the nonparametric Spearman’s rank correlation test. JAK: Janus kinase inhibitors; TCZ:
tocilizumab; DAS28: disease activity score for 28-joints.

3.5. Linear Regression Analysis for Pain Decrement after JAKi Treatment

Using a linear regression analysis with pain decrement as the dependent variable, only
the change in DHA levels and gender reached the set p-value (Table 2). The multivariate
regression analysis revealed the change in DHA levels was significantly associated with
the pain decrement.

Table 2. Linear regression analysis for pain decrement after JAKi treatment.

Univariate Regression Analysis

B 95% CI p Value

Change in DHA −1.284 −1.581 −0.988 <0.0001

Change in ESR 0.383 −0.066 0.831 0.0904

Change in CRP 0.867 −1.366 3.099 0.4285

Change in DAS28 5.215 −3.994 14.425 0.2528
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Table 2. Cont.

Univariate Regression Analysis

B 95% CI p Value

Age at entry −0.319 −1.066 0.429 0.3862

Gender 20.139 3.506 36.772 0.0199

Multiple Regression Analysis

B 95% CI p value

Change in DHA −1.148 −1.532 −0.765 <0.0001

Change in ESR 0.057 −0.295 0.409 0.7362

Change in CRP 0.399 −0.928 1.726 0.5327

Change in DAS28 −0.413 −7.358 6.532 0.9013

Age at entry −0.101 −0.505 0.303 0.6046

Gender 8.250 −2.538 19.038 0.1245

4. Discussion

JAKi are known to have an additional pain reduction effect in RA patients, but the
mechanism has not been fully elucidated. Similar to the results from a matching-adjusted
indirect comparison study [22], the pain decrement at week 24 is greater in our JAKi-treated
patients than in those treated with TCZ. Given that omega-3 PUFAs and DHA also showed
a beneficial effect of pain reduction [26,30], we examined the changes of their serum
levels in RA treated with JAKi or TCZ. Using the 1H NMR-based lipid/metabolomics, we
revealed for the first time that serum levels of omega-3 PUFAs and DHA were significantly
increased in patients treated with JAKi. The replicative ELISA results also showed increased
DHA levels in JAKi-treated patients who reported acceptable pain (VAS pain ≤ 20), while
decreased DHA levels in those reporting unacceptable pain. Besides, we revealed a
significant correlation between the change of DHA levels and pain decrement in JAKi-
treated patients. Regarding TCZ-treated patients, there was no significant change in DHA
levels in those reporting acceptable pain, and the serum omega-3 PUFAs or DHA levels
did not show significant changes even in patients with low disease activity or remission.
Given that omega-3 PUFAs and DHA attenuate nociceptive pain through central and
peripheral action [26–28], the additional pain reduction effect of JAKi may be linked to
these lipid metabolites.

Although both JAKi and TCZ induced rapid normalization of inflammatory markers
in our RA patients, the use of JAKi caused greater pain reduction than TCZ treatment,
indicating that JAKi therapy enhanced pain relief beyond inflammation control. Many
other studies, including matching-adjusted indirect comparison, also showed that JAKi
could additionally provide pain relief, which was not seen in other biologics such as
TCZ [20–22]. Like IL-6 signaling, which is integral to the pain mediated by sensory
neurons, and interferon (IFN)-γ, which may potentiate neuropathic pain [36–38], multiple
type I and II cytokines regulated by the JAK/STAT pathway have also been implicated in
pain modulation in RA [9,10,39,40]. Thus, JAKi may provide better pain relief by inhibiting
the JAK/STAT pathway and the related multiple cytokines, including IL-6 and IFN-γ.
However, the mechanism underlying JAKi-related pain relief has yet been fully explored.

Regarding the anti-inflammatory and analgesic properties of omega-3 PUFAs and
DHA [26–28], several previous studies, including a systemic review and meta-analysis, re-
vealed that both lipid metabolites could significantly reduce pain in RA patients compared
with baseline or placebo [29,30]. Therefore, omega-3 PUFAs or DHA dietary supplements
might reduce pain and inflammation in RA [29,30,41,42]. In the first half of our study
where we aimed to explore the association between pain reduction and the changes in lipid
metabolites, the 1H NMR-based lipid/metabolomics results showed significantly increased
omega-3 PUFAs and DHA levels in patients treated with JAKi, which was not found in TCZ-
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treated patients. Similarly, the omega-3 PUFAs and DHA levels were significantly increased
in patients with acceptable pain after 24-week JAKi treatment, which was also not observed
in TCZ-treated patients. Furthermore, we replicated NMR-based lipidomics results of DHA
by using ELISA, and similarly revealed increased DHA levels in JAKi-treated patients who
reported acceptable pain, in contrast to decreased DHA levels in those with unacceptable
pain. Our results support the finding of previous studies that the dietary supplements
of omega-3 PUFAs or DHA may reduce pain and inflammation in RA [29,30,41,42]. The
different effects of JAKi and TCZ on omega-3 PUFAs and DHA may be related to their
disparate mechanisms of action, different pharmacokinetics, and pharmacodynamics.

In the present study, we revealed an inverse correlation between serum DHA levels
and patients’ reporting pain scores after six months’ JAKi treatment with inflammation
control. Furthermore, an inverse correlation between the pain decrement and DHA levels
increment was observed in JAKi-treated patients. Using a multivariate regression analysis,
only the change of DHA levels could predict the pain reduction in patients after six months’
JAKi treatment. It suggests that JAKi-related pain relief may be at least partly linked to
the increased DHA levels. Interestingly, there was no significant correlation between the
pain decrement and the change of disease activity (DAS28 scores) in our JAKi-treated
patients, showing a discrepancy between the degree of RA inflammation and the severity
of perceived pain. Given that omega-3 PUFAs and DHA can attenuate nociceptive pain
through central and peripheral actions [26–28], the pain reduction effect associated with
JAKi therapy may be partly related to elevated lipid metabolites levels rather than simply
inflammatory control. These observations resonate with a review article focusing on
noninflammatory pain control in rheumatic patients [43].

Despite the novel findings in the present study, there were still some limitations. First,
this study is a pilot study enrolling a small number of biologic-naïve patients, which may
reduce the statistical power. Out of ethical concerns, the enrolled RA patients were allowed
to use corticosteroids or methotrexate, which may affect lipid metabolism. Nevertheless, we
revealed that JAKi therapy might promote pain relief through increasing omega-3 PUFAs
and DHA levels, although a large prospective study should be conducted to confirm
our findings.

5. Conclusions

We used NMR-based lipidomics and ELISA assays to provide biochemical evidence
for the possible mechanism underlying the pain reduction effect of JAKi in RA patients: the
increased omega-3 fatty acids and DHA levels. Dietary supplements of omega-3 PUFAs
and DHA may have beneficial effect on pain reduction despite inflammation control in RA.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13093050/s1, Table S1: The whole li-pid/metabolomics based on 1H-NMR analysis;
Table S2: The fatty acids-related markers deter-mined by 1H-NMR-based lipid/metabolomics and
their fold change in rheumatoid arthritis pa-tients treated with Janus kinase inhibitors (JAKi) or
tocilizumab (TCZ).
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