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Abstract: Throughout the 20th and 21st centuries, the incidence of non-communicable diseases
(NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and
physical activity patterns, along with genetic conditions, are the main factors that modulate the
metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic
associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this
group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of
these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their
prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this
article reviews the current understanding about NCDs and their related risk factors, with a focus on
obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and
highlighting the currently available and emerging therapeutic strategies, especially pharmacological
interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2
virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019
(COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.

Keywords: NCDs; obesity; diabetes; MAFLD; cardiovascular diseases; metabolism

1. Introduction

Non-communicable diseases (NCDs), also known as chronic diseases, are not directly
transmissible from one person to another, and are the combination of genetic, physiologi-
cal, environmental, and behavioral factors. The main NCDs are diabetes, cardiovascular
diseases, cancers, and chronic respiratory diseases. The first three are associated with
metabolic changes that increase the risk of suffering them. These changes are hypertension,
overweight/obesity, hyperglycemia, and hyperlipidemia (WHO). The importance of these
diseases was highlighted in the report of the World Health Organization (WHO) [1], in
which it was reported that over 50% of the 57 million deaths worldwide, in 2016, occurred
from diabetes (1.6 million people), cancer (9 million), and cardiovascular diseases (17.9 mil-
lion) [2], posing a significant global health challenge. As well as genetics, unhealthy habits
such as smoking, harmful use of alcohol, physical inactivity, and a calorie-rich diet are
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determinants for developing metabolism-related diseases; such behavioral factors lead to
metabolic disorders such as hypertension, hyperglycemia, hyperlipidemia, and obesity,
which comprise the major NCDs risk factors [3]. Furthermore, over the past two decades,
the understanding of the association between metabolic disorders and metabolic associ-
ated fatty liver disease (MAFLD)—a less commonly discussed NCD—has placed it as an
emerging risk factor for diabetes, cancer, and cardiovascular diseases (CVDs) [4].

In view of NCDs’ global threat, the WHO has adopted priority targets to reduce
NCDs mortality and risk factor prevalence until 2025 [1]. However, the global prevalence
of risk factors is still concerning. In 2015, one in four men and one in five women had
hypertension, corresponding to 22% of the adults aged 18 years and over [5]. In recent
decades, hypertension prevalence in high-income countries has declined; on the other
hand, many low- and middle-income countries had stable or increasing levels. The contrast
among income groups was slight regarding blood glucose levels in 2014. Most countries
had between 7% and 9% of the population with hyperglycemia—except for the Eastern
Mediterranean Region, which showed the highest levels (14%) [6]. Globally, the adult
obesity prevalence in 2016 was 13% (650 million people); it is almost three times higher than
in 1975 [5]. Although adult obesity rates distinguish between low- (7% of the population)
and high-income countries (25%), the numbers keep rising in all income groups [2]. The
prevalence of childhood obesity has also increased at higher rates in recent decades. From
1975 to 2016, the number of obese children and adolescents worldwide increased approxi-
mately eight-fold, reaching 124 million in 2016 [5]. Among obese and diabetic individuals,
about 70–80% have MAFLD; this is the leading chronic liver disease worldwide, with a
prevalence of 20–30%, affecting 1.8 billion people [7].

Countries’ ability to deal with NCDs proved to be even more critical during the coron-
avirus disease 2019 (COVID-19) pandemic, since the association between NCDs and COVID-
19 severity have been reported. Hypertension, ischemic heart disease, type 2 diabetes (T2D),
and cancer were among the most prevalent NCDs in Italian COVID-19 victims [8]. This
association has also been observed in Spain, China, and the USA [9–11]. Additionally, a
Chinese study showed that severe patients and non-survivors were overweight or obese,
suggesting an association between body mass index (BMI) and COVID-19 severity [12]. In
this scenario, given COVID-19′s restrictive measures, economic instability, and health crisis,
NCDs’ prevention and management became even more challenging [13].

Following the multifactorial nature of metabolism-related diseases, their prevention and
treatment consist of multidisciplinary strategies to tackle the physiological and metabolic
impairments. Lifestyle interventions are the primary recommendations; however, some cases
also require surgical or pharmacotherapeutic approaches [14]. Although some NCD medicines
are well established—such as metformin and insulin for diabetes [15] and antihypertensive
agents to control some CVDs [16]—so far, no agent has been approved for MAFLD [17].
Furthermore, the discovery of additional metabolic mechanisms of NCDs pathogenesis
stimulates the search for new metabolic modulators. Since pharmacotherapy’s efficacy and
safety rely on the agent’s mechanism of action, drug design and development are constantly
advancing. In addition to traditional combination therapies, this field advances towards the
evaluation of multitarget ligands and emerging therapeutic strategies [18].

Considering the global relevance of NCDs and the constant research progress, this
article reviews the current understanding about NCDs and their related risk factors, with
a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about
their pathophysiology and highlighting available and emerging therapeutic strategies. In
addition, we briefly discuss the relationship between these conditions and their related risk
factors and COVID-19. A better understanding of this critical health issue and potential
therapeutic approaches can help mitigate NCDs’ global impact.
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2. Obesity

Obesity is a multifactorial and preventable disease, defined as an excessive accumula-
tion of body fat [19]. In recent decades, obesity has been a major global health issue, with a
considerable impact on morbidity, mortality, and healthcare expenditure [20,21]. This issue
has increased rapidly, reaching epidemic proportions. About 39% of the world’s adult
population is overweight and, among this, 13% was obese in 2016. In 2017, more than
4 million deaths worldwide were due to obesity and its associated comorbidities [1]. This
epidemic includes childhood obesity, that has also raised dramatically in recent years [5].
Thus, it increases the risk of early-onset chronic consequences, such as elevated blood
pressure, CVDs occurrence, and impaired glucose metabolism, that usually evolves to
T2D [22–24]. Moreover, childhood obesity increases the risk of obesity in adults more than
five-fold compared to non-obese children [25]. In addition, morbidity and mortality are
also elevated later in life [26].

Obesity is essentially a long-term imbalance between energy consumption and expendi-
ture, which creates an oversupply of energy, resulting in excess fat storage. The complexity of
this pathogenesis relies on its multiple causes, such as environmental, sociocultural, physi-
ological, genetic, epigenetic, and various other factors that act together to contribute to the
origin, as well as the persistence, of this condition. In the last century, the world’s social and
economic changes favored a positive energy balance. The industrialization process allows the
population to increase the consumption of energy-rich and often highly-palatable foods, but
poor in nutrients [20]. At the same time, this process of urbanization decreases the levels of
daily physical activity and increases a sedentary lifestyle [27,28].

Beyond the global factors, our individual socioeconomic and cultural environment also
affects the obesity incidence. Together with abundant tasty food and low physical activity,
contemporary elements, such as medications with weight gain side effects, reduced sleep
time, endocrine disruptors, and epigenetic effects are components that favor the obesity
epidemic [29]. Hereditary factors also play a role in this condition. In this sphere, genetics,
family history, and ethnic/racial variants can increase the susceptibility to obesity. The
variability of population predisposition is predicted to range from 40% to 70% due to
genetic differences [30,31]. There are more than 100 genes identified as obesity-related at
different contribution scales. The fat mass and obesity-associated (FTO) gene is known to
predispose obesity through an effect on BMI [32,33]. Another harmful variant would be
defective leptin receptor or leptin production and abnormalities in the proopiomelanocortin
(POMC) gene [34,35].

Genes work together with the environment in a complex network that combines
metabolic processes and body weight adjustment to regulate energy balance [36,37]. Feed-
ing behavior is regulated by neurons that are excited or suppressed by neuropeptide
hormones that act as signals for food intake and energy expenditure. Among them, ghrelin
is an orexigenic hormone secreted in the gastrointestinal (GI) tract in a fasted state, involv-
ing hunger perceptions [38]. Moreover, hunger is associated with food palatability, such as
visual, olfactory, emotional eating, and increased reward-responses to food stimuli [39].

In short-term energy regulation, nutrient-derived signals from GI tract adjust ap-
petite through amino acids, gut-brain peptides, and various neurotransmitters. Food
intake induces a reduction in circulating ghrelin levels while increasing secretion of the
anorectic hormones cholecystokinin (CCK), peptide YY3-36 (PYY), glucagon-like peptide-1
(GLP-1), and oxyntomodulin [40]. Long-term energy balance involves several central and
peripheral mechanisms that act in a finely tuned regulation network to maintain metabolic
homeostasis. Insulin and leptin secretion signal feedback information in response to food
intake, regulating, in addition the appetite, the thermogenesis process, fat deposition, and
cognitive processes involved in food consumption [36,39].

Excess adiposity causes alterations in whole-body homeostasis, leading to functional
impairments in various metabolic functions [41] and considerably increases the risk of
metabolic diseases. The pathophysiology of obesity culminates in distinct homeostatic
mechanisms that hinder weight loss and benefit further weight gain. The storage of
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energy excess leads to an increase in the number (hyperplasia) and size (hypertrophy)
of the adipocytes, as well as the ectopic distribution of lipid deposits in regions, such as
blood vessels, visceral fat, cardiac fat, and muscles, in a process called dyslipidemia [42].
The enlargement of fat cells increases the number of pro-inflammatory factors, including
leptin, interleukin-6 (IL-6), monocyte chemotactic protein 1 (MCP-1), and lipid metabolism
metabolites, such as lactate and free fatty acids (FFA). Simultaneously, they lessen the
release of adiponectin, an adipokine related to insulin sensitivity, and interleukin-10 (IL-10),
an anti-inflammatory cytokine [43]. Together, adipocyte products can affect the brain and
peripheral nervous system, modifying metabolism, and inflammatory processes.

Hypertrophic adipocytes work together with the microbiome to increase the inflamma-
tory environment [44]. The gut microbiota is an essential environmental factor in energy
balance, acting directly in food digestion to increase energy absorption. This process produces
metabolites, such as lipopolysaccharides (LPS), short-chain fatty acids (FAs), and secondary
bile acids, which act as signaling molecules, modulating hunger, nutrient absorption, gut
motility, and energy balance [44]. In obesity, microbiota imbalance induced by high energy
dense diet increase microbial products, such as LPS, that activate innate immunity, contribut-
ing to low-grade inflammation via increased expression of inflammatory mediators (e.g., TLR
family, NOD-like receptor family and cytokines) and macrophage infiltration [45].

Increased circulating FFA and adipokines cause peripheral-tissue and nervous system
dysfunction. Leptin is one of the multiple factors excessively secreted by hypertrophic fat
cells. This adipokine acts directly on lipid accumulation by inhibiting hunger, signaling
the cessation of adipocyte fat storage [46]. Plasma leptin levels are positively correlated
with adiposity. With an abundance of food, secretion of leptin suppresses energy intake,
while stimulating energy expenditure. However, in obesity, a prolonged increase in plasma
leptin levels leads to decreased detection of the peripheral energy status, which culminates
in ineffective satiety detection despite high energy storage and leptin levels [46,47]. This
damaged mechanism leads to gradual weight gains due to a continuous positive energy
balance, feeding the continuous cycle of hunger.

Excessive food intake, lipotoxicity, and elevated lipid accumulation induce the ex-
pression of cytokines and activation of cells involved in innate immunity [48]. As obesity
progresses, adipose tissue macrophage infiltration increases in number and changes the
gene expression profile to a greater inflammatory environment [49,50]. The increased
inflammatory response includes proinflammatory M1 macrophages shift, NK cells activa-
tion, interferon γ (INF-γ) and chemokines production, accumulation of CD8+ T-cells and
TH1-polarized lymphocytes [50–52].

Metabolic inflammation caused by circulating FFA also induces alterations in insulin
release. Obesity and overweight are the main predictors to T2D development, a metabolic
disease that relies on defective insulin signaling. Insulin sensitivity, as well as insulin
secretion, can be reduced by obesity influence. The chronic abundance of energy maintains
constantly high levels of plasma glucose, which lessen the β-cells response to incretins,
decreasing insulin sensitivity and leading to insulin resistance (IR), a process that is also
mediated by tumor necrosis factor α (TNFα), IL-1β, extracellular signal-regulated protein
kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinases (JNKs) signaling [53–55]. At the
same time, factors such as lipotoxicity, incretin resistance and glucotoxicity decrease β-cell
mass, which, in turn, decreases insulin secretion. This impaired insulin signaling and
lipotoxicity are also crucial factors to the development of MAFLD [56].

Many other diseases are also associated with obesity. The dyslipidemia process
can induce CVDs, such as hypertension, myocardial infarction, and stroke [57,58]. The
mechanical stress caused by over-weight leads to musculoskeletal disorders, such as
osteoarthritis, as well as sleep apnea [59,60]. Increased levels of tumorigenic molecules,
such as insulin-like growth factor 1 (IGF-1), are associated with several types of cancer,
e.g., mammary, ovarian, prostate, gastrointestinal, liver, and renal cancer [61,62]. However,
some obese patients do not have associated risk factors, a phenomenon described as
‘healthy obese’ [63]. Obesity is also a major cause of Alzheimer’s disease [64,65], decreased
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life expectancy [66,67], reduced quality of life, lower productivity, social disadvantages, and
early retirement [67,68]. Furthermore, obesity is closely related to some mental illnesses,
such as clinical depression [69], anxiety [70], and other brain disorders [71,72].

2.1. Management of Obesity

Obesity management demands a multidisciplinary approach with individualized
programs. The development of a management strategy may consider the factors that
contribute to obesity, as well as the overweight degree, the pre-existence of one or more
associated diseases, and individual limitations. Currently, interventions are mainly based
on controlling food intake and energy expenditure with changes in dietary and physical
activity. The goal of treatment is the initial loss of at least 5% of the patient’s total weight.
The greater the initial weight loss leads to better and faster health recovery. However, in
some cases, behavioral changes alone are not enough, so pharmacotherapeutic or surgical
interventions can also be part of the treatment [73].

2.1.1. Lifestyle Interventions

Comprehensive lifestyle intervention is the cornerstone of obesity management, and
adjunctive treatment may be required for individuals with more compromised health, or
for those who do not achieve the required weight loss [74]. Assisted behavioral changes
help patients to understand and monitor their feeding behavior, creating a more conscious
lifestyle [75]. However, despite the essential role of these programs in initial lifestyle
changes, they fail in long-term attendance. The initial recommendations alone are not
enough for re-education, without psychological assistance and adequate physical training,
initial adherence to lifestyle changes is often abandoned, thus weight regain is frequent
after the end of re-education programs [76].

The so-called “westernization” of lifestyle in recent decades facilitates the increase
in drivers of obesity. Technologies are progressively evolving to make our lives more
comfortable, as a result, the general population tends to be less active, increasing the odds of
consuming more than expending. Automations and computer-based work are the majority
of occupations, thus lowering the daily expenditure. This Western lifestyle also contributes
to an increase in convenience foods (e.g., frozen, canned, and pre-cooked), greater fast-
food availability, more effective food marketing, and larger food portions, which also
corresponds with consumption of fewer home cooked meals. These factors contribute to
an obesogenic environment that leads to rising levels of obesity worldwide [77,78].

Dietary interventions are essential for weight loss. Different dietary approaches with
caloric restriction provide this effect, maintaining a negative energy balance. Usually, the
guidelines recommend a 30% restriction on daily energy consumption, which is equivalent
to 300 to 500 Kcal per day, added to an improvement in the nutritional quality of foods [79].
The choice of the calorie-restrict diet should be individualized according to the patient’s
condition (i.e., gender, age, physical activity status) and preferences, in order to maximize
program adherence [80].

Typically, different diets have variations in macronutrient composition; however, these
differences do not imply a more effective approach. The key to effective weight loss is the
long-term patient adherence to the diet, so it is important that diet choice can be matched
to individual preferences [81].

Several dietary strategies can be used to induce weight loss by prioritizing one of
several healthy dietary patterns. However, many of them are not nutritionally advisable
or not properly considered healthy. Among those considered nutritionally recommended
are dietary approach to stop hypertension (DASH), metabolic syndrome reduction in
navarra (RESMENA), and Mediterranean diets, combined with low-fat (Fat: 10%–19%)
and low-carbohydrate (Carbohydrate: 20%) content. These diets are commonly prescribed
for weight loss and are equally effective with patient commitment [82].
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DASH is an eating plan with positive effects on weight control and the cardiovascular
system [83]. In this diet, the priority should be a high intake of fruits, vegetables, whole
grains, and nuts. Fat-free and low-fat dairy products, as well as fish, poultry, and some
legumes, such as beans, are also included. Vegetable oils are allowed, but tropical oils (such
as coconut and palm oils), sugar-sweetened, refined sugar, and foods rich in saturated fats
should be restricted [80].

The Mediterranean diet also emphasizes plant-based foods, such as fruits and vegeta-
bles, whole grains, legumes, and nuts. However, it also includes high intake of olive oil,
moderate intake of fish and poultry, red wine in moderation, and low intake of red meat
and sweets [80]. It is a very popular diet due to its role in lowering the risk of developing
obesity, T2D, and CVDs. This diet also has positive effects during pregnancy, with a lower
risk of fetal deficiency and promoting fetal development [84].

The RESMENA diet is a variant of the Mediterranean diet that reduces calorie in-
take by 30% and requires 30% of energy intake from protein. This diet also emphasizes
consumption of anti-oxidant-rich fruits and vegetables and higher meal frequency (seven
meals a day) [85]. In addition to weight loss, this diet reduces android fat mass (a region
associated with hepatic steatosis) and waist circumference. Moreover, several biochemical
parameters are improved, such as reduced transaminase levels, and maintenance of uric
acid and serum glucose, indicating this diet as a good treatment option for obesity [85–87].

Intermittent fasting (IF) is another strategy that can induce weight loss. This eating
plan has various arrangements within the premise of carrying out periods with little or
no food consumption, interspersed with normal food intake on a recurrent basis [88].
During the ‘feeding window’, calorie intake is low and balanced, while during the ‘fasting
window’, individuals ingest non-caloric drinks, such as water, coffee, and teas without
any kind of sugar. [89]. In the most common IF, time-restricted feeding (TRF), the daily
caloric intake must be consumed within a defined time window, followed by a fasting
window that can range from 12 to 24 h [90]. Other protocols include fasting for up to 24 h
twice a week and eating without restriction in the remaining days [91]; and alternate-day
fasting (ADF), with no food restriction on eating days and no caloric intake on fasting
days [91]. In addition to weight loss promoted by the caloric reduction that occurs naturally
in IF, it promotes a metabolic shift that positively affects lipid and glucose metabolism,
also improving diabetes, cardiovascular system (e.g., stroke), cancers, and neurological
disorders, such as Alzheimer’s disease and Parkinson’s disease [88].

Another critical aspect is the inclusion of physical activity in the patient’s routine [92],
which offers several benefits in addition to weight loss. Enhanced metabolic rates contribute
to lowering the risk of CVDs and T2D. Additionally, the increase in muscle tissue improves
bone health and joint stabilization. Moreover, physical activity promotes endorphin release
and can contribute to overcome depression [93,94].

The initial recommendation is at least 150 min of moderate exercise or 75 min of vigor-
ous physical activity per week [95]. Both aerobic and resistance training are recommended
for weight loss. Although aerobic training improves cardiovascular function, resistance
training promotes strength and muscle growth, which in turn increases the basal metabolic
rate and, therefore, daily energy expenditure. The combination of both types of training
demonstrated greater improvement in physical function and reduction in frailty compared
to the isolated interventions [96].

Together, physical activity combined with dietary modification can promote opti-
mal outcomes in overweight and obese patients when considering lifestyle interventions;
however, in some cases, a pharmacological approach should be included [97].
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2.1.2. Pharmacotherapy

According to the Endocrine Society guidelines [70,73,76], weight loss drugs should
be considered in cases of BMI >30 or BMI from 27 to 29 with at least one comorbidity.
Still, pharmacotherapy should be prescribed as adjunctive therapy and does not exclude
dietetic and physical activity improvements [98]. Obesity pharmacotherapy treatment
reinforces dietary intervention that results in caloric deficit. Weight-loss medications act
by decreasing appetite, helping to resist binge eating or decreasing caloric absorption.
Appetite suppressants may act on leptin or anorexigenic pathways. The combination of
these strategies improves the efficiency of initial lifestyle changes, as well as maintenance
of lost weight.

Currently, there is no single optimal medication to treat the whole spectrum of obesity.
The effectiveness of a particular medication is proven with the loss of at least 5% of total
weight occurring after three months of treatment. Other efficiency criteria are the improve-
ment in current comorbidities, prevention of new associated diseases, and maintenance of
weight loss [74,76,98]. Still, weight loss must be realistic and aim for long-term adherence.
In most cases, 5%–10% of total weight loss in six months is achievable and sustainable over
the long term.

Orlistat is the only anti-obesity medication that acts directly on the GI tract, inhibiting
long-chain FAs absorption by blocking pancreatic lipase action. It is a naturally occur-
ring lipstatin derivative that acts by binding to and inhibiting pancreatic and gastric
lipases. Inactivated enzymes are unable to hydrolyze the triglycerides (TG) of dietary fat
to absorbable FFA, thus decreasing dietary fat absorption by 30% of the recommended
therapeutic dose [73,99]. Orlistat side effects include GI problems, such as abdominal pain,
fecal urgency, flatulence, and oily stool. However, these symptoms can be ameliorated by
following a low-fat diet with no more than 30% of total calories from fat and with the addi-
tion of a fiber supplement. As Orlistat reduces the absorption of fat-soluble vitamins (A, D,
E, and K), multivitamin supplementation is also recommended to guarantee adequate
nutritional balance [99].

Phentermine is the most frequently prescribed anti-obesity drug. It is an adrenergic
agonist that acts on the central nervous system (CNS) and increases norepinephrine release,
reducing appetite, and increasing the basal metabolic rate [99,100]. Phentermine causes
mild increase in heart rate and blood pressure. Therefore, its monotherapy is only approved
for short-term use (three months) and in younger patients without coronary disease or
hypertension history. However, this medication is contraindicated for patients suffering
from insomnia and anxiety disorders [101,102].

Topiramate is a gamma-aminobutyric acid (GABA) receptor modulator initially ap-
proved for seizures and migraine treatment. Topiramate administration in epilepsy treat-
ment promoted significant weight loss, persuading the interest in this drug for obesity
treatment [103]. The mechanism of action of Topiramate on weight loss is not yet totally
understood; however, it is known as an appetite suppressant and satiety enhancer, acting
as a neurostabilizer and enhancing thermogenesis [104].

The association of phentermine/topiramate extended-release was the first combina-
tion drug approved by the US Food and Drug Administration (FDA) in 2012 for long-term
obesity treatment [105,106]. The combination of these two drugs induces additive and
dose-dependent weight loss by targeting different pathways at the same time, being, there-
fore, more effective than monotherapy with these medications. Weight loss induced by
phentermine/topiramate extended-release use is associated with improvement in various
comorbid risk factors, such as improved glycemic control, lower blood pressure and TGs,
and increased high-density lipoprotein (HDL)-cholesterol, reducing also T2D progression,
even in the reduced use of complementary medications [106]. This medication should
not be prescribed to individuals with CVD or a history of anxiety or insomnia due to the
phentermine component.
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A naltrexone/bupropion combination controls appetite and improves energy utiliza-
tion [107,108]. Naltrexone is an opioid antagonist prescribed for alcohol and opioid depen-
dence [109,110]. Bupropion inhibits serotonin, dopamine, and norepinephrine reabsorption,
which regulates central reward pathways triggered by food stimuli. Its monotherapy is ap-
proved as an antidepressant and smoking cessation treatment [111]. Collectively, they activate
POMC neurons, promoting the release of alpha melanocyte-stimulating hormone (α-MSH), a
neuropeptide involved in body energy regulation. At the same time, naltrexone is also important
in antagonizing an inhibitory feedback loop that limits anorectic ability of bupropion [112,113].

Liraglutide is a glucagon-like peptide 1 (GLP-1) receptor agonist, which acts directly
on satiety signals, delaying gastric emptying, leading to reduced food intake. This is the
only anti-obesity drug administered in the form of subcutaneous injection. The peptide
binds to the GLP-1 receptor augmenting insulin secretion. Insulin release increases glucose
uptake, lowering the glucose plasma level. Liraglutide also retards gastric emptying
and decreases appetite [114,115]. Simultaneous use of liraglutide with insulin/insulin
secretagogues may increase the hypoglycemic risk. Liraglutide mechanism of action does
not involve neurotransmitters, therefore, it is indicated for patients who are also taking
psychiatric medications [114,115].

2.1.3. Bariatric Surgery

Due to the high associated risks, bariatric surgery is recommended only in severe obe-
sity, when BMI >40 or BMI >35 and there is at least one associated disease [116]. Currently,
there are various types of intervention that result in different weight loss degrees. Each
approach has different levels of associated benefits and risks that must be considered in
conjunction with individual comorbidities and the patient’s history [117]. The three major
surgical interventions used are: (I) Laparoscopic adjustable gastric band (LAGB)—the least
invasive of the procedures, a band is placed around the stomach in a way that decreases in
size; (II) Roux-en-Y gastric bypass (RYGB)—the removal of a large part of the stomach and
the remaining portion is connected to the intestine, reducing the space available for food;
(III) Laparoscopic sleeve gastrectomy (LSG), in which a large part of the stomach is also
removed, but maintains the natural connection with the intestine [116,117].

2.1.4. New Drugs and Strategies

Recent discoveries in the modulation of the complex system that underlies energy
homeostasis and obesity pathways unveils new perspectives in obesity drug discovery.
Leptin is a central target in energy homeostasis that acts as a nutrient sensor, interrupting
hunger signals. Obese patients are usually leptin-resistant and have higher levels of
leptin, so manipulating leptin signaling to induce its sensitivity is one of the strategies
currently explored [118]. Metreleptin is a recombinant human leptin analogue used in
lipodystrophic disorders treatment, lowering hepatic steatosis and improving insulin
sensitivity, hyperglycemia, and hypertriglyceridemia [119,120]. Its use in obesity treatment
has been considered to help normalize decreased leptin levels caused by weight loss [121].

Another class of leptin signal modulation is the use of leptin sensitizers. Pramlintide
is a synthetic amylin analogue that acts on short-term satiety signaling, delaying gastric
emptying, thus reducing food intake [122]. Davalintide is another amylin mimetic peptide
that has a greater affinity to amylin, calcitonin and calcitonin gene-related peptide receptors,
which causes enhanced pharmacological actions on satiety signals [123].

Semaglutide is a novel GLP-1 agonist with an extended half-life that allows subcu-
taneous administration once a week. This peptide also has increased affinity for GLP-1
receptor and demonstrates superior efficacy in weight loss when compared to liraglu-
tide [124,125]. Oral GLP-1 agonists are being tested as alternatives to injectable agents. In
addition to the semaglutide in oral form [126], TTP-054 and ZYOGI have demonstrated
promising results in effective weight loss with minimal side effects [127].
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ZP4165 is a gastric inhibitory peptide analogue that acts by inducing insulin release
and decreases hemoglobin A1c (HbA1c) levels in animal studies. Its action also involves
the GLP-1 pathway, enhancing GLP-1 induced weight loss, suggesting that administration
in combination with GLP-1 analogues may be a promising treatment for obesity [128].
Another mechanism studied to control the GLP-1 pathway is the use of dual agonists,
such as the oxyntomodulin, a peptide co-secreted with GLP1 L-cells, in response to nu-
tritional stimuli. Oxyntomodulin is a glucagon receptor (GcgR)/GLP-1 receptor agonist
that has been demonstrated to suppress appetite and increase energy expenditure, thereby
decreasing food intake [129]. Nonetheless, it has only short-term effects, which leads to
studies with synthetic dual agonists with increased half-life, such as MEDI0382 [130], and
tirzepatide [131]. A triple agonist for GLP-1, glucagon and GIP receptors, the triagonist
1706 is also in trial phase, demonstrating effectiveness in weight loss [132].

Cannabinoid receptor type 1 (CB1) neutral antagonists stimulate anorexigenic signal-
ing, leading to weight loss by reducing food intake [133]. AM-6545 is a novel peripheral
CB1 antagonist that has limited penetration in CNS and has demonstrated promising effects
on weight loss, without the central side effects of the formerly commercialized CB1 antago-
nist rimonabant. AM-6545 presented high affinity and selectivity for the CB1 receptor, with
dose-dependent reduction in food intake and food-reinforced behavior [134,135].

Cetilistat is a novel lipase inhibitor, similar to orlistat. Cetilistat treatment has demon-
strated significant weight loss and improvement in glycemic control and lipid profiles,
with a lower potential for GI side effects, such as diarrhea, flatulence, and oily spotting
attributed to orlistat [136].

The utilization of vaccines to prevent or treat is a novel therapeutic approach to
obesity management. Anti-obesity vaccines use the immune response logic to restrain
appetite-stimulating hormones and decrease nutrient absorption. Ghrelin, an orexigenic
hormone secreted by stomach cells, is one of these anti-obesity strategies. Anti-ghrelin
vaccine lessens food intake and orexigenic signals while increasing energy expenditure in
pigs. However, in human clinical trials, this vaccine did not show an additional weight loss,
even with a strong antibody response to ghrelin [137]. Another anti-obesity vaccine under
development is the anti-somatostatin, which promises to remove the inhibitory effects of
somatostatin on growth hormone (GH) and IGF-1 secretion, thus inhibiting the increase in
adiposity associated with low levels of these hormones [138,139]. Adenovirus 36 (ad36),
known to enhance the obesity risk in humans by causing inflammation and adiposity, is a
possible target for prophylactic anti-obesity vaccination [140,141].

The discovery of the brite adipocyte type unveils it as a promising therapeutic target
for obesity treatment. Induction of brown-like white adipose tissue adipocytes (beige
cells) can counteract obesity-induced metabolic processes and increase weight loss through
high levels of thermogenic gene expression [142,143]. Cold exposure is a promising non-
pharmacological approach to shift the thermogenic program in beige adipocytes by activat-
ing β adrenergic receptor (ADRB) expression [144]. Among dietary compounds, capsaicin,
found in red pepper, is the most studied browning activator [145,146]; however, several
nutritional components are now known to play a role in browning induction. Together with
capsaicin, cucumin [147], and n-3 Polyunsaturated fatty acids (PUFAs), particularly the
eicosapentaenoic acid (EPA), found in fish oil, also activate beige cells by activating ADRB3.
EPA [148], green tea catechins [149], and resveratrol [150] also function as epigenetic mod-
ulators, inducing activation of peroxisome proliferator-activated receptor γ (PPARy) and
PRDM16 transcription factors. Resveratrol, EPA, curcumin, berberine [151], and all-trans
retinoic acid [148] act directly in mitochondrial biogenesis by activating AMP-activated
protein kinase (AMPK) pathway. Pharmacological activators of beige cells under stud-
ies include β3-adrenergic receptor agonist [152], PPARy and PPARα activators [153–155],
PGC-1α stabilizer [156], and metformin as an AMPK activator [157,158].

The different obesity treatments existing or under study are summarized in Table 1.
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Table 1. Pharmacological treatments for obesity. The compounds are divided into class, mechanism of action, drugs
examples, current state of application, and its side effects.

Class Mecanism of Action Drugs Current State Side Effects Reference

Lipase inhibitors

Inhibit long-chain FAs
absorption Orlistat Commercial

Abdominal pain
Fecal urgency

Flatulence
Oil stool

[73,99]

Induce weight loss
Improve glycemic control

Improve lipid profile
Cetilistat Under studies

Diarrhea
Flatulence

Oily spotting
[136]

Adrenergic agonists Increase norepinephrine
release in CNS Phentermine Commercial Increase heart rate

and blood pressure [99–102]

GABA receptor
modulators

Neuroestabilizer
Enhance thermogenesis Topiramate Commercial

Alteration of taste
GI upset
Nausea

[103,104]

POMC neurons
activators

Induce α-MSH release Naltrexone/Bupropion Commercial Nausea [107–113]
Delay gastric emptying
Enhance insulin secretin Liraglutide * Commercial Transient nausea

Vomiting [114,115]

GLP-1 receptor
agonists

Reduce blood glucose levels
Induce weight loss

Semaglutide
TTP-054
ZYOGI

Commercial
Nausea

Vomiting
Diarrhea

[124–127]

Induce insulin release
Decrease HbA1c levels ZP4165 Under studies Unknown [128]

Leptin analogues Lower hepatic steatosis
Improve insulin sensitivity Metreleptin Commercial Nausea [119–121]

Amylin analogues Delay gastric emptying Pramlintide *
Davalintide * Commercial Nausea [122,123]

Glucagon and GLP-1
receptors agonists

Supresses appetite
Increase energy expenditure Oxyntomodulin Under studies Unknown [129]

GLP-1, glucagon and
GIP receptors agonists Induce weight loss Triagonist 1706 Under studies Unknown [132]

CB1 antagonists Stimulate anorexigenic
signaling AM-6545 Under studies Unknown [134,135]

Vaccines
Restrain appetite-stimulating

hormones
Decrease nutrient absorption

Anti-ghrelin
Anti-somastatin

Anti-ad36
Under studies Unknown [137–141]

Induction of beige-cells

Increase thermogenic gene
expression

Epigenetic modulators
Activation of AMPK pathway

Capsaicin
Curcumin

PUFAs
Under studies Unknown [152–158]

* Similar compounds for more than one NCD.

2.1.5. COVID-19 and Obesity

The recent pandemic of coronavirus disease, COVID-19, has been worsened by high
levels of obesity and overweight in the world. The pathophysiological changes present
in obesity, such as impaired immunity, chronic inflammation, and high blood pressure
increase the risk of hospitalization in 113% and mortality by 48% in young individuals [159].

In obesity, abdominal fat compresses the diaphragm, restricting the airflow and
decreasing lung capacity. Obstructive sleep apnea and other breathing disorders are
common in obese individuals, which predisposes to hypoventilation-associated pneumonia,
pulmonary hypertension, and cardiac stress. The large body mass also causes difficulties in
intubation and mask ventilation [160].

Hormone and nutrient imbalance that are typical of obesity can impair adaptive and
immune responses. Hyperglycemia can impair immune response, producing oxidants
and glycation molecules [161]. Insulin and leptin signaling are crucial for T-cell activation,
therefore, impairment of these pathways can lead to T-cell dysfunction [162,163]. Addi-
tionally, the chronic low-grade inflammation caused by constant high levels of leptin and
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other proinflammatory cytokines can decrease the immunity period covered by vaccines,
as occurred with influenza vaccination.

3. Diabetes Mellitus

Diabetes mellitus is characterized by chronic hyperglycemia that impairs food
metabolism. Causes of prolonged high levels of plasma glucose may be immune-mediated
(type 1 diabetes), insulin resistance (type 2 diabetes), gestational diabetes, or others (neona-
tal, insipidus, brittle, LADA). Increased blood glucose leads to the classic diabetes symp-
toms: frequent urination (polyuria), increased thirst (polydipsia), and increased hunger
(polyphagia), and can lead to the development of micro and macrovascular complications,
resulting in nerves, heart, kidney, skin, and retina diseases [164]. Diabetes is a major global
health issue. In 2019, about 463 million adults (from 20 to 79 years old) were living with
diabetes and this number could increase to 700 million by 2045, causing 4.2 million deaths
worldwide and being considered the fastest growing global health emergency [165].

Under normal metabolic conditions, food ingestion triggers insulin secretion by pan-
creatic β-cells, which induces glucose uptake in peripheral tissues and suppresses endoge-
nous glucose production. Insulin acts directly on skeletal muscle, liver, and adipocytes
via specific signaling pathways to induce various processes involved in glucose home-
ostasis [166]. In muscle, insulin improves glucose utilization by increasing the glucose
transporter, GLUT4, and storage, promoting glycogen synthesis [167]. In the liver, the
hormone activates glycogen synthesis and regulates lipogenic and gluconeogenic gene
expression programs [168]. In adipocytes, it stimulates glucose uptake and lipogenesis,
while decreasing lipolysis [169]. All of these integrated processes work simultaneously to
keep blood glucose levels constant. To maintain the homeostasis, the blood glucose level
must be sustained within a small interval despite the oscillations in supply and demand
that occur in fasting/feeding cycles. Failures in insulin signaling block glucose uptake,
leading to a prolonged hyperglycemic state [166].

Diabetes is characterized by β-cell failure, which can be auto-immune due to β-cell
destruction, or by a progressive impairment of β-cells function that leads to insufficient
insulin secretion. If insulin secretion is insufficient to regulate glucose uptake in peripheral
tissues, β-cells need to increase the amount of secreted insulin in order to lower plasma
glucose, a process called IR. The stress caused by constant overproduction of insulin can
lead to β-cell failure followed by cell death [170].

3.1. Type 1 Diabetes Mellitus

In type 1 diabetes mellitus (T1D), insulin deficiency results from loss of pancreatic β-
cells due to autoimmune-mediated destruction. This pathogenesis is a continuum disease
that initiates with an early asymptomatic stage with auto-antibodies detection, this stage
occurs years before the development of symptoms. Gradually, a decline in β-cell mass
and dysglycemia that evolves to symptomatic T1D, which presents typical symptoms
of hyperglycemia, such as weight loss, hyperphagia, and polyuria [171]. T1D is one of
the most common metabolic diseases occurring in childhood, with more than 1.1 million
children and adolescents affected in 2019 [165].

T1D is determined by genetic susceptibility, ineffective immune system, and environ-
mental factors. A genome-wide association study and meta-analysis found 40 genetic loci
associated with this disease [172]. Particularly, the HLA region on chromosome 6 has been
identified as a T1D predisposition locus. This region provides half the susceptibility that
leads to T1D risk; however, most loci associated with disease development are thought to
involve immune responses, supporting the idea that genetic influences involve mechanisms
that contribute to aberrant immune responsiveness [173].

The T1D autoimmune process begins with the activation of CD4+ T-lymphocytes,
responsible for the secretion of IFNγ, macrophages and antigen presenting cells (APCs),
such as dendritic cells (DCs). These cells generate antibodies to β-cell, which lead to chronic
immunological responses, such as the secretion of cytokines (e.g., TNFα and IL-1) and
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activation of lymphocytes and NK cells. These activated cells work together to destroy
pancreatic β-cells, inducing structural changes that suppress their ability to release insulin,
leading to the development of T1D (127). This process produces various specific pancreatic
islet auto-antibodies that are involved in the further development of the disease, including
(I) islet cell autoantibodies (ICA), (II) glutamic acid decarboxylase auto-antibodies (GADA),
(III) insulinoma associated 2 auto-antibodies (IA-2A), (IV) insulin auto-antibodies (IAA),
and (V) recently described zinc transporter auto-antibodies (ZnT8A). These molecules are
extremely important, mainly for patients with a non-canonical T1D phenotype, and are
used to predict and confirm autoimmunity [174].

There is also the involvement of environmental factors in T1D development, such as
viral infections, timing of the food introduction and gestational events. The contribution
of exposure to these events on the development of T1D is believed to be small, but a
combination of events can trigger the onset of a first β-cell auto-antibody [175].

3.2. Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2D), also known as non-insulin dependent diabetes mellitus,
is the most common form of diabetes, accounting for about 90% of all diabetes cases
worldwide, according to the International Diabetes Federation [165]. This type of diabetes
is characterized as an endocrine and metabolic disorder that associates environmental
factors, such as energy-dense ‘Western’ nutrition, sedentary lifestyle, stress, aging, and
obesity, with genetic factors, resulting in β-cell dysfunction and IR [176]. Although the
genetic factor plays a significant role, the major cases of T2D are potentially preventable
with a healthy diet and active lifestyle [177].

Prior to achieving the hyperglycemia that characterizes T2D, individuals manifest a
stage of prediabetes. At this stage, the individual may present high fasting glucose levels,
impaired glucose tolerance, and increased glycated HbA1c levels. Other biomarkers are
high blood concentrations of proinflammatory cytokines, such as IL-6 and TNFα [178], gut
microbiota profiles [179], and decreased sex hormone-binding globulin [180]. Prediabetes
can be reversed through behavioral management, such as diet and sedentary lifestyle
improvement. Increasing intake of whole grains and green leafy vegetables and lowering
intake of highly processed and sugar-sweetened foods, and alcohol, combined with regular
physical activity, can decrease the disease conversion to diabetes [177].

The causes, symptoms, and progression of this disease can vary substantially among
individuals, but the main mechanism is the progressively impaired insulin secretion
by pancreatic β-cells. IR decreases the efficiency of tissue glucose uptake by multiple
abnormalities. The main tissues affected by IR are liver, muscle, and adipose tissue.
However, this deficiency also affects pancreatic β-cells [181], intestinal metabolism [182],
kidney [183], brain [184], and vasculature [185].

In the liver, additionally to IR, deficiency in insulin production and excessive pro-
duction of glucagon (hyperglucagonemia) increase glucagon sensitivity and delivery of
metabolic substrates, such as FAs, lactate, and glycerol. This leads to an increase in
gluconeogenesis, despite the presence of fasting hyperinsulinemia and causes impaired
suppression of insulin-responsive hepatic glucose production [186]. In muscle, IR affects
glucose transport and phosphorylation, mitochondrial activity, glycogen synthesis, and
pyruvate dehydrogenase complex activity [187]. The elevated glucose caused by dysfunc-
tional uptake and gluconeogenesis lead to glucotoxicity in these tissues.

In adipose tissue, IR impairs the suppression of lipolysis and the release of FFA that
normally occurs in high levels of insulin. Defective insulin signaling leads to glucose
intolerance and triggers the efflux of FFA into circulation, thereby inducing a proinflamma-
tory state [188]. Altered lipid metabolism can activate toll-like receptors (TLRs), affecting
inflammation. In T2D, adipose tissue presents a high rate of macrophage infiltration
and increased levels of proinflammatory cytokines and adipokines, such as leptin. These
proinflammatory cytokines and high FFA levels can activate downstream kinases, such as
TNF, IκB kinase-β (IKKβ), JUN amino-terminal kinase 1 (JNK1), and p38 MAPK, which
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induce phosphorylation on serine residues of the insulin receptor substrate (IRS) proteins.
Moreover, these kinases may enhance the production of protein suppressors of cytokine
signaling (SOCS) that block IRS action [189]. On the other hand, increased levels of IL-6 can
stimulate hepatic gluconeogenesis, also inducing IR. Macrophage infiltration into adipose
tissue increases proinflammatory M1 macrophages and T helper cells, while decreasing M2
macrophages and regulatory T cells, stimulating lipolysis itself [190].

T2D is associated with increased morbidity and mortality due to the development of
complications that affect several organs. The life span of diabetic individuals is shortened by an
average of 6 years, and the loss in life expectancy can reach 12 years in young onset development
of T2D [191]. Diseases associated with T2D are divided in two categories: (I) macrovascular
complications, such as CVD, that encompass coronary heart disease, peripheral vascular dis-
ease and cerebrovascular disease, which is a major motive of death and disability [192]; and
(II) microvascular complications, due to severity and duration of hyperglycemia [193]. This
includes retinopathy, neuropathy, and chronic kidney disease, which accounts for about 10%
of deaths among diabetics [194]. The molecular mechanisms that contribute to the macro and
microvascular complications are the same: reactive oxygen species (ROS) activate several proin-
flammatory pathways resulting in epigenetic changes. Thus, the expression of proinflammatory
genes continues even after the normalization of glycemia [195].

3.3. Gestational Diabetes Mellitus

Gestational diabetes mellitus (GDM) occurs with the spontaneous development of
hyperglycemia during pregnancy. Advanced maternal age, family history, poor eating
habits, and obesity are the main risk factors for the development of this disease, which
affects about 14% of pregnancies worldwide [165]. As pregnancy demands more energy, in
early stages, there is an increase in insulin sensitivity, allowing greater glucose uptake in the
adipose tissue. However, as pregnancy progresses, local and placental hormones such as
estrogen, progesterone, leptin, cortisol, placental lactogen, and placental growth hormone,
promote a state of IR [196]. GDM increases the risk of preterm birth and preeclampsia
in children, which can result in overgrowth, since there is an increase in the placental
transport of glucose, amino acids and FAs, stimulating the production of insulin and IGF-1.
Moreover, this abnormal insulin production can cause pancreatic β-cell dysfunction and IR,
even prenatally [197]. Usually, GDM resolves at the end of the gestation period. However,
it can have lasting consequences, such as increased risk of development of T2D, a CVD in
the mother and predisposition to obesity and T2D in children.

3.4. Maturity Onset Diabetes of the Young

This type of diabetes belongs to the subgroup defined as early diagnosis, typically
before age of 25, and is not insulin dependent. It is characterized as an autosomal dom-
inant disease with heterozygous mutations in various transcription factors that act in
the development and maturation of pancreatic β-cells [198]. Despite its genetic origin,
maturity onset diabetes of the young (MODY) is a heterogeneous disease, with different
medical conditions and treatments associated with each subtype. To date, 14 different
genetic mutations have been reported to be related to MODY, each of them corresponds to
a MODY subtype. The six major MODY-causing genes encodes hepatocyte nuclear factor
4α (HNF4α), HNF1α, glucokinase (GCK), pancreatic and duodenal homeobox 1 (PDX1),
HNF1β, and neurogenic differentiation 1 (NEUROD1) [199]. Due to its heterogeneity, early
diagnosis based on next-generation sequencing has been essential to set individualized
treatments, preventing long-term diabetes complications [200].
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3.5. Other Types of Diabetes

There are several other types of diabetes, which occur less frequently in the population.
Diabetes insipidus is characterized by the excretion of large volumes of dilute urine due to
vasopressin deficiency, arginine vasopressin (AVP) resistance, or excessive water intake. It
is mainly caused by a decrease in AVP secretion or action, which may be partial or complete,
which can be acquired, or a genetic defect in the neurohypophysis [201]. Brittle diabetes
occurs in a small group of patients with T1D, mainly women, with severe glycemic insta-
bility, poor metabolic control, and a compromised quality of life due to very common acute
complications, hospital recoveries, and appearance of chronic problems [202]. Diabetes can
also be developed due to diseases of the exocrine pancreas, such as acute pancreatitis [203]
or cystic fibrosis [204]. Some hormones, such as GH, glucagon, and catecholamines, can
antagonize insulin action. This mechanism can be exacerbated in tumors that produce
excess of these hormones, inducing IR. In this case, diabetes may disappear or ameliorates
with tumor removal [205]. Drug- or chemical-induced diabetes can arise over the use of
compounds toxic to β-cells (160). In addition, certain infections, such as congenital rubella
and cytomegalovirus, are also associated with autoimmune destruction of β-cells [206].

3.6. Management of Diabetes Mellitus

In diabetes, glycemic control is achieved by administration of antidiabetic medications
that reverse the effects of its pathophysiological damaged insulin signaling. There are
different classes of antidiabetic treatments and their choice varies according to several
factors, such as the nature of diabetes, age, and the progression of the disease. Effective
treatment requires multiple actions to circumvent the various pathophysiological defects.
The strategy must be based on all the known pathogenic abnormalities and many individ-
ual factors called “ABCDE” of diabetes, that are: body weight, complications, duration,
education and expense, and etiology [164]. Early diagnosis and implementation of thera-
peutic strategies are the most efficient to prevent progression of diabetes mellitus. Due to
the lipotoxicity caused by obesity and physical inactivity, lifestyle interventions are a part
of all intervention strategies, with or without drug treatment, depending on the factors
mentioned above [207].

3.6.1. Dual Therapies

Insulin

Insulin has been widely used in patients with diabetes. Therapy is based on the
patient’s weight and typical doses range from 0.4 to 1.0 units/kg/day, depending on
the glycemia (always self-monitored), meal size, and tissue glucose demand. There are
several types of insulin, which are categorized from fast-acting to long-acting, from insulin
analogues to human insulins, primarily based on how it works and how quickly it acts [208].
Long-acting insulin analogues are thought to result in fewer hypoglycemic episodes and
are given 1–3 times a day according to the patient’s pharmacokinetic properties to control
glucose levels between meals and fasting. Postprandial insulin treatments comprise fast-
acting analogues or regular short-acting insulin, which are given before each meal and each
time a correction of high blood glucose is required, occurring mainly 3 times a day [209].

Insulin can be administered by two routes: injection or infusion. The injection can
be done with syringes, which are injected into the fat layer just under the skin, or with
insulin pens, which can be reusable or disposable. As an infusion, it can occur via a vein
in the hospital, with constant supervision by specialists, or via insulin pumps, which
are computerized devices programmed to transport insulin under the skin, considered
more durable [208]. In T2D, insulin therapy is usually used after failure of other treat-
ment strategies to control blood glucose and requires larger doses than T1D treatment.
Insulin therapy is often combined with other antidiabetic drugs, and the most common
combinations are with metformin or thiazolidinediones (TZD), but the combination with
GLP-1, sodium/glucose co-transporter 2 (SGLT2) are also effective in lowering HbA1c
blood levels [210].
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Metformin

The most commonly prescribed antidiabetic drug is metformin, a biguanide that
lowers hyperglycemia by reducing hepatic glucose production, which leads to decreased
HbA1c and fasting plasma glucose. The mechanism of action of metformin is still unclear,
but it is known to be related to mitochondrial dysfunction by inhibiting mitochondrial
glycerophosphate dehydrogenase, mitochondrial complex I, and activation of AMPK, and
has no effect on pancreatic β-cells function. Metformin is usually combined with other
drugs that increase insulin secretion, such as sulfonylureas. Metformin alone does not
improve muscle insulin sensitivity, and HbA1c progressively increases after the initial
decrease [164,211]. Other examples of biguanides are phenformin and buformin.

SGLT2 Inhibitors

SGLT2 is responsible for about 90% of glucose reabsorption. SGLT2 inhibitors, such as
canagliflozin, dapagliflozin, and empagliflozin, are used to lower glucose blood levels by
preventing renal reabsorption of glucose, thereby increasing its excretion. This increased
glucose excretion via glycosuria reduces blood glucose, which ameliorates glucotoxicity,
improving β-cell function, and increasing insulin sensitivity [212,213].

Targeting GLP-1

GLP-1 is a peptide produced by the GI system in response to food intake and stimulates
glucose-dependent insulin secretion while inhibiting glucagon secretion. However, the
GLP-1 half-life lasts only a few minutes. It can be targeted to the diabetes treatment
in two different forms: (I) targeting the GLP-1 receptor itself, with an incretin mimetic
with an extended half-life; or (II) targeting dipeptidyl peptidase 4 (DPP4) enzyme that
acts by inactivating GLP-1. DPP4 inhibitors, such as sitagliptin, vildagliptin, saxagliptin,
linagliptin, and alogliptin, can prolong the half-life of GLP-1, thus improving the glycemic
control in T2D [214]. GLP-1 receptor agonists, such as exenatide, liraglutide, lixisenatide,
and dulaglutide, promote insulin secretion from pancreatic β-cells, inhibiting inappropriate
glucagon secretion by pancreatic α-cells, delaying gastric emptying and controlling appetite.
Moreover, this molecule can reduce pancreatic β-cell apoptosis, stimulate their proliferation
and improve their survival rate, with a concomitant reduction in body weight, which is a
positive effect, since diabetes is directly related to obesity [215].

3.6.2. T1D Therapies

Cyclosporin

To circumvent the autoimmune destruction of pancreatic β-cells, treatment with the
immunosuppressive agent cyclosporin was the first immunotherapy tried. Cyclosporin is a
calcineurin inhibitor that acts directly on T cells and was first tested in the 1980s in patients
on insulin therapy for less than 2 months after diagnosis. A successful remission rate of
diabetes throughout the treatment was observed; however when it was stopped, the disease
progressed and resulted in the destruction of the residual β-cell mass, since the treatment
could not be prolonged due to its effects, such as nephrotoxicity and an increased risk of
cancer [216]. These results instigated researchers to investigate therapies that promote
immune-tolerance, rather than immunosuppression, as well as short-term strategies to
re-educate of these patient’s immune systems. Since then, various therapies have been
tested, targeting T-cells, β-cells, antigen specific, among others, but many unanswered
questions remain, especially regarding the mechanisms behind the development of this
autoimmune disease [217].

Pramlintide

Pramlintide is administered adjunct with insulin treatment, which consists of injectable
and oral glucose lowering drugs. Its active compound in the pramlintide acetate (SYMLIN)
injection, is an amylin analogue and the first non-insulin T1D treatment. It reduces postpran-
dial glucose concentrations, improves overall glycemic control and promotes a significant
weight reduction [217]. Amylin is a 37 amino acid neurohormone co-secreted with insulin by
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pancreatic β-cells after a meal and its levels are reduced in T1D, and pramlintide is a synthetic
analogue of amylin that was approved in April 2004 by the FDA [218].

Surgical Interventions

In some cases, pancreatic transplantation is an option for the patient with T1D. The
procedure consists of a surgical operation with the normal pancreas of a decreased person
inserted into the patient. After this procedure, the new pancreas produces insulin and this
hormone therapy is not necessary anymore, but a special care is necessary with rejection of
the new organ, being required the use of anti-rejection drugs or immunosuppressants for
the rest of life. In addition to this, there is also pancreatic islet transplantation, being called
allotransplantation, which consists of the purification and transfer of islets from a dead donor
to the patient, resulting in the reestablishment of insulin secretion and is performed in patients
with uncontrollable T1D levels [208]. However, both transplants carry the risk of sensitization
against the same autoimmune antigen that led to prior β-cells collapse [219].

3.6.3. T2D Therapies

Sulfonylureas and Glinides

Sulfonylureas are oral hypoglycemic medications that lower glucose levels in the blood
plasma by increasing insulin secretion. The high insulin level overcomes IR and lowers
the HbA1c levels in the blood. However, as with metformin action, sulfonylureas had no
long-term effect on blood glucose and HbA1c levels increased progressively after the initial
decline. They trigger insulin release by directly binding and closing the ATP-sensitive K+-
channels of β-cell plasma membrane, which provokes membrane depolarization, opening
the voltage-sensitive Ca2+ channels, leading to the release of mature insulin granules.
Despite their wide use in diabetes treatment, sulfonylureas are known to be associated
with hypoglycemia, weight gain, increased risk of cardiovascular events and may even
accelerate β-cells failure [220]. Another class of anti-diabetics that have similar mechanisms
of action are the glinides. Drugs such as repaglinide and nateglinide are short-action insulin
secretagogues, which are highly effective in lowering HbA1c blood levels. However, due
to the short-term action, they require administration before each meal [221].

Thiazolidinediones (TZDs)

TZDs, such as pioglitazone and rosiglitazone, are insulin-sensitizing drugs that enhance
insulin sensitivity in skeletal and cardiac muscle, liver, and adipocytes. Their mechanism of
action occurs through activation of PPARγ, a nuclear receptor that regulates the transcription
of several genes involved in glucose and lipid metabolism and energy balance, such as GLUT4,
glycogen synthase, and pyruvate dehydrogenase. PPARγ activation increases fat oxidation,
proliferation of adipocytes, lipogenesis, fat redistribution, and adiponectin levels, and reduces
plasma FFA levels and pro-inflammatory cytokines [222]. Despite their anti-diabetic effects,
the use of TZDs presents several adverse effects, such as fluid retention, weight gain, and
trauma-related fractures. Hence, compounds with similar anti-diabetic effects, but with
attenuated secondary effects are targets in the search for new anti-diabetics [223].

Alpha Glucosidase Inhibitors (AGIs)

AGIs have no effect on insulin secretion or sensitivity, they slow the carbohydrate
absorption by averting alpha-glucosidases from converting polysaccharide carbohydrates
to monosaccharides in the GI system, thus lowering post prandial blood glucose levels.
Some GI adverse effects, such as diarrhea, nausea, and abdominal pain, are related to the
use of AGIs [224].

As a summary, current approaches to the diabetes treatment are shown in Table 2.



Nutrients 2021, 13, 2830 17 of 50

Table 2. Pharmacological treatments for diabetes mellitus. The compounds are divided into class, mechanism of action,
drugs examples, current state of application and its side effects.

Class Mecanism of Action Drugs Type Current State Side Effects Reference

Hormone Reduce blood glucose levels Insulin 1 and 2 Commercial Hypoglicemia [208,209]

Biguanides Reduce hepatic
glucose production

Metformin *
Phenformin *
Buformin *

1 and 2 Commercial Abdominal
discomfort [169,211]

SGLT2 inhibitors Prevent glucose
reabsorption

Canagliflozin *
Dapagliflozin *
Empagliflozin *

1 and 2 Commercial

Urinary tract and
genital infections
Decrease in blood

pressure
Weight gain

[193,212,213]

DPP4 inhibitors Improve glycemic control

Sitagliptin *
Vildagliptin *
Saxagliptin *
Linagliptin *
Alogliptin *

1 and 2 Commercial

Hypoglicemia
Loss of consciousness
Gastrointestinal side

effects

[214]

GLP-1 receptor agonist Promote insulin secretion

Exenatide *
Liraglutide *
Lixisenatide *
Dulaglutide *

1 and 2 Commercial Transient nausea
Vomiting [215]

Calcineurin inhibitor Inhibit T cell activation Cyclosporin 1 Commercial Nephrotoxicity
Increase risk of cancer [216,217]

Amylin analogues Reduce blood glucose levels
Induce weight loss Pramlintide * 1 Commercial Nausea [217,219]

Sulfonylureas and
glinides Increase insulin secretion

Tolbutamide
Glibenclamide

Glipizide
2 Commercial Hypoglicemia

Weight gain [220,221]

PPARγ agonists Increase tissues sensibility
to insulin action

Rosiglitazone *
Pioglitazone * 2 Commercial

Fluid retention
Weight gain

Trauma-related
fractures

[222,223]

Alpha glucosidase
inhibitors

Slow the
carbohydrate absorption Acarbose 2 Commercial

Diarrhea
Nausea

Abdominal pain
[224]

* Similar compounds for more than one NCD.

3.7. COVID-19 and Diabetes

Data recorded during 2019 in China (179) showed that patients with severe disease had
a higher prevalence of diabetes (16.2%) compared to those with non-severe disease (5.7%),
and COVID-patients with diabetes had higher mortality, 7.3% versus 2.3% overall [225].
However, it should be noted that diabetes has been associated with a poor prognosis in
other viral infections.

Many hypotheses are emerging to explain the relationship between diabetes and
COVID-19. The first is that diabetic patients have an exaggerated proinflammatory re-
sponse in the absence of appropriate immunostimulation by increasing the cytokines
IL-1, IL-6, and TNFα, and this response could be more exaggerated with SARS-CoV-2
infection [226]. COVID-19 positive individuals with diabetes have been shown to have
significantly increased levels of IL-6 and C-reactive protein compared to COVID-19 patients
without diabetes [227]. Thus, diabetic patients may have a potential organ damage after
SARS-CoV-2 infection by the exacerbate cytokine response, increasing mortality rates [228].
On the other hand, the overexpression of angiotensin-converting enzyme 2 (ACE2) in
diabetic patients due to the use of ACE inhibitors (ACEi) or angiotensin-receptor blockers
(ARBs), favors the entry of the virus in the host [226]. It should be noted that ACE2 is
expressed in the pancreas, so the entry of SARS-CoV-2 into pancreatic islets may produce a
β-cell dysfunction, and, consequently, a hyperglycemic state [229].
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4. Metabolic Associated Fatty Liver Disease (MAFLD)

MAFLD, formerly known as non-alcoholic fatty liver disease (NAFLD), is a spectrum
of diseases ranging from steatosis, characterized by an abnormal hepatic lipid accumu-
lation; including non-alcoholic steatohepatitis (NASH), defined by liver inflammation
and steatosis; that, when aggravated, it can lead to fibrosis, and, ultimately, evolve to
cirrhosis and even hepatocellular carcinoma (HCC) [230]. MAFLD is estimated to affect
about 1.8 billion people worldwide, comprising about 25% of the world’s population [231].
Although silent in many cases, MAFLD is the most prevalent liver disease among the
population and its burden is expected to increase in the coming decades [232]. Despite
these surprising facts, the MAFLD is still absent from global public health policies and
there are still no approved pharmacological treatments for it.

The definition of MAFLD comprises the evidence of fat accumulation in the liver
in addition to at least one of the following comorbidities: overweight/obesity, T2D, or
evidence of metabolic dysregulation (e.g., larger waist circumference; elevated blood
pressure, high TG or plasma HDL levels, prediabetes, homeostasis model assessment of
insulin resistance (HOMA-IR) scores ≥2.5, and high plasma high-sensitivity C-reactive
protein levels) [233].

Well-known hallmarks for the development and progression of MAFLD are IR, mitochon-
drial dysfunction, lipotoxicity, and inflammation. Dietary intake, such as excessive fructose
and fat consumption, environmental factors, and genetic predispositions contribute to disease
progression [230]. MAFLD is a multifactorial pathogenesis that evolves from abnormal TGs
accumulation, comprising more than 5% of hepatocytes volume [234]. Several molecular
dysregulations are associated with this event: elevated FA uptake, white adipose tissue (WAT)
lipolysis, enhanced de novo lipogenesis (DNL), and defects in insulin signaling [235].

In MAFLD, the major source of lipids in hepatocyte accumulation is TG derived from
WAT lipolysis (up to 60%), induced by irregularities in the insulin pathway. Impaired in-
sulin signaling, caused by poor eating habits and by sedentary lifestyle, results in increased
lipolysis in WAT [236]. This generates an influx of TG into the liver, leading to substrate
overload and, consequently, the development of hepatic IR that leads to intensified accu-
mulation of DNL and TG [237]. Under IR condition, the phosphodiesterase 3B enzyme
(PDE-3B) is not active, inhibiting the protein kinase A (PKA) and the hormone sensitive
lipase (HSL). Consequently, lipolysis is not suppressed, increasing levels of circulating
FAs [238], which are harvested by CD36, FATP, FABP, and caveolin-1 transporters [239].
Once inside, these FAs are esterified to TGs by diglyceride acyltransferase (DGAT) 1/2,
which are stored in lipid droplets or exported via VLDL, very low-density lipoprotein
(LDL) (194). MAFLD patients have higher VLDL production, suggesting that even this
greater export of TGs is not able to compensate for the increased uptake of FAs [240].

Hepatic DNL accounts for 25% of TG accumulation in MAFLD [236]. Excess fructose
and impaired insulin signaling stimulate DNL through the action of different transcriptional
factors, such as carbohydrate response element binding protein (ChREBP), PPARγ, and
sterol response element binding protein 1c (SREBP-1c), which are responsible for increasing
gene transcription of glycolysis, and DNL, such as hepatic pyruvate kinase in the former,
and ACLY, FASN, and SCD1 in the latter [241].

Dietary TGs are transported into the circulation as chylomicrons [242] that are captured
by the liver via LDL receptor (LDLR) and LDLR-related protein 1 (LRP1) [243]. After
metabolizing, FA are exported from the liver packed in VLDL particles, accompanying
cholesterol, phospholipids, and apolipoproteins [244]. In MAFLD, this mechanism is
impaired by hepatic IR, which stimulates DNL without inhibiting VLDL production [245].

Fructose metabolism is another important pathway for hepatic lipid accumulation
that stimulates hepatic DNL, which ultimately contributes to lipid accumulation in hepa-
tocytes [246]. In healthy individuals, this pathway contributes up to 5% of total hepatic
TGs; however, in individuals with MAFLD, this contribution can reach 23%. Thus, this
considerable increase suggests that upregulation of fructose metabolism is associated with
MAFLD progression [247].
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One major hallmark that differentiates NASH from steatosis is the occurrence of hepa-
tocyte damage, that is mainly associated with oxidative and endoplasmic reticulum (ER)
stress caused by lipotoxicity and necroinflammation. Elevated levels of non-esterified fatty
acids (NEFA) are extremely toxic to hepatic cells, a phenomenon called lipotoxicity [248],
which increases hepatic gluconeogenesis [249]. The greater amount of acetyl-CoA, pro-
duced from FA oxidation, inhibits the pyruvate dehydrogenase complex (PDH), which
redirects pyruvate to glucose production [190]. However, the malonyl-CoA produced in
DNL initial stages inhibits carnitine palmitoyltransferase 1A (CPT1A), that, ultimately,
leads to downregulation of mitochondrial oxidation [250].

Over time, excess FA causes mitochondrial stress, leading to mitochondrial uncou-
pling, ROS production, and JNK activation [251]. In addition, other lipids in hepatocytes,
such as lysophosphatidylcholine, ceramides, cholesterols, and diglycerides, can trigger
hepatic IR and cell death [248]. These lipids are associated with increased ER stress, oxida-
tive damage, and activation of NLRP3 inflammasome, which can damage hepatocytes and
cause cell death by apoptosis, pyroptosis, and necropoptosis [252].

In addition to dysregulation of hepatic metabolic pathways, excess NEFA together
with pathogen-associated molecular patterns induce inflammation by activating TLRs [253].
TLRs activate the pro-inflammation transcription factor NF-kB in hepatocytes, Kupffer cells
(KC) and hepatic stellate cells (HSC) [254,255]. During increased inflammation, there is also
an increment in the activity of NADPH oxidase, an enzyme responsible for ROS production
in KC, which contributes to increased oxidative stress [256]. Through the production of
ROS, KCs stimulate inflammatory signaling, mainly through the chemoattraction of other
leukocytes [257]. Meanwhile, infiltrated pro-inflammatory macrophages stimulate the
inflammatory process, which contributes to a vicious cycle of inflammation. Increased
inflammation is strongly related to hepatic IR. The signaling of NF-kB and JNK, through
TNFR1, RANKL, and ILR receptors, promotes the action of IKKb, a protein associated with
increased IR due to phosphorylation of IRS-1/2 in hepatocytes [258].

Excess FAs and Ca2+ also induce mitochondrial adaptations, increasing ROS produc-
tion and oxidative stress [259,260]. Obesity, even without MAFLD, increases mitochondrial
respiration to its maximum [261]. However, obese individuals with NASH show an ap-
proximately 40% decrease in maximal respiration compared to healthy individuals, which
may be associated with hepatic IR, mitochondrial uncoupling, and leaking activity [251].
In this pathway, chronic excess of mitochondrial acetyl-CoA leads to increased ROS pro-
duction, decreased antioxidant capacity, and ATP depletion [262,263]. Increased ROS
production also leads to oxidation of mitochondrial DNA, depolarization of the membrane,
and translocation of cardiolipins to the cytosol, inducing cellular death [264].

In addition to these two hepatic apoptosis pathways, adipose tissue also contributes
to fibrogenesis in MAFLD, increasing the secretion of proinflammatory cytokines and
unbalancing secretion of leptin and adiponectin [265]. Both KC and HSC cells respond
to leptin [265–267]. In KC cells, leptin upregulates TGF-β, inducing activation of HSC
cells. In HSC cells, leptin induces the matrix metalloproteinase-1 inhibitor, TIMP-1, and
collagen 1 production, while repressing matrix metalloproteinase 1. Leptin also upregulates
microRNA 21, inducing the profibrogenic TGF-β/Smad pathway. In addition, leptin also
upregulates a hedgehog pathway that keeps the activated phenotype of HSCs [266]. After
NASH establishment, the aggravation of necroinflammation and fibrogenesis, immune cell
infiltration, and activation of hepatic progenitor cells contribute to the disease progression
from NASH to cirrhosis, and even to HCC [235].

In addition to the aforementioned environmental and metabolic factors, there are also
genetic factors associated with MAFLD development. The best-known mutations are in
patatin-like phospholipase 3 (PNPLA3), a gene that encodes a lipase [268]. Individuals with
PNPLA3 mutations have lower DNL and lower expression of SREBP-1c [269]; however,
they have increased levels of hepatic TG and decreased secretion of VLDL [270]. This
genetic mutation is more common in the Latino population than in any other ethnicity [271]
and increases the risk of NASH and HCC [272]. The molecular mechanism associated with
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PNPLA3 mutation is still poorly understood, but it is known that HSC cells have high
expression of these genes [273]. Therefore, PNPLA3 mutations may be associated with
greater activation of these cells, which increases the inflammation and fibrinogenesis. In
the last few years, two other genes have gained attention as genetic risks of MAFLD. They
are missense variants at the TM6SF2 and GCK receptor (GCKR) loci, associated with the
disease severity and progression. In particular, TM6SF2 is associated with an increased
CVD risk by increasing circulating LDL-cholesterol, and GCKR mutation is associated with
MODY individuals [274].

The high prevalence of childhood obesity also increased the incidence of pediatric
MAFLD which, in turn, is associated with increased overall mortality compared to the
general population [275,276]. Additionally, MAFLD is recognized as a risk factor for CVDs
in obese adult population, but this relationship is still discussed in children [277–279].
Recently, MAFLD criteria were evaluated in obese children, finding that diagnosis based
on more than one MAFLD criterion is more accurate in this selected population, provid-
ing better identification of individuals with higher cardiometabolic risk and prediabetes.
Thus, revealing the lack of more accurate description of MAFLD criteria in the context of
childhood obesity [280].

4.1. Management of MAFLD

Currently, there is no definitive pharmacotherapy to treat the MAFLD spectrum.
However, due to their metabolic dysfunctions interrelated with obesity and T2D, several
treatments for the latter diseases are interchangeable. As with all other metabolic diseases,
effective lifestyle changes, such as healthier dietary and increased physical activity, are
beneficial strategies. Overall weight loss can reduce levels of intrahepatocellular lipids that
damage liver cells [281]. Moreover, daily exercise training, as well as high fiber and protein
intake, combined with a shift in major calorie intake for the morning meal are beneficial in
MAFLD treatment [282]. In addition, pharmacological treatment can be used as an adjunct
to these lifestyle modifications as bariatric surgery in morbidly obese patients, driving to
gradual weight loss over time [283].

4.2. Anti-Diabetic Drugs

IR is the central factor behind toxic fat accumulation in the liver, as well as in steato-
hepatitis and fibrosis progression [284]. Thus, therapies focused on IR are also efficient in
MAFLD treatment. Insulin sensitizers are a group of antidiabetic medications that have
been proven to be effective in MAFLD treatment. Metformin treatment demonstrated
improvement in aminotransferase levels and IR in diabetic and non-diabetic patients.
However, it did not affect liver histology such as steatosis, inflammation, ballooning
hepatocellular injury, and fibrosis pattern [285].

Treatment with TZDs increases FFA uptake by adipose tissue, lowering fat deposition
in the liver, increasing hepatic lipogenesis and insulin sensitivity. Moreover, TZDs can also
upregulate adiponectin, an anti-steatogenic adipokine [286]. Pioglitazone treatment was
also able to reduce inflammation and fibrosis. Nevertheless, the use of TZDs have been
restricted due to its increased risk of CVD development, congestive heart failure, bladder
cancer, and bone loss [283].

Another class of antidiabetic medication used to treat MAFDL are the GLP-1 analogues.
Liraglutide or exenatide treatments increase pancreatic insulin release and stimulate β-cell
growth [287]. Liraglutide treatment demonstrates promising results in delaying fibrosis
progression [288]. DPP-4 inhibitors, molecules that target GLP-1 receptors, are also used in
MAFLD treatment [289].

SGLT2 inhibitors, such as canagliflozin, dapagliflozin, and empagliflozin, are glucose-
lowering agents that have cardiovascular and renal protective action. T2D patients who
also have MAFLD treated with SGLT2 inhibitors presented reduced liver fat content and
achieved better biological markers of MAFLD, such as serum liver enzymes [290].
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Obeticholic acid (OCA) is a synthetic bile acid with improved affinity for the farnesoid
X receptor (FXR) [291]. Activation of FXR results in improved glucose metabolism and
insulin sensitivity [292], reduced lipogenesis, and enhanced β-oxidation [293]. Bile acids
also presented anti-inflammatory [294] and antifibrotic action [295].

4.3. Antilipidemic Agents

Dyslipidemia drugs are another approach to MAFLD treatment. Statins have been
demonstrated to decrease hepatic FFA, steatosis, hepatic fibrosis, and the expression of
inflammatory markers TNF-α and IL-6 [296,297]. PUFA use was able to improve overall
symptoms and decrease TG and alanine transaminase (ALT) levels [298]. Fenofibrate and
niacin were also promising in MAFLD treatment, but their use is not recommended due to
possible hepatotoxicity and increased mortality risk [299].

Ezetimibe is a dyslipidemic medicament that acts by inhibiting cholesterol absorption.
In studies with MAFLD, it showed promising results, as in histological observations, it
was able to improve NASH and steatosis profiles. It also improves MAFLD biomarkers,
such as aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase, and
LDL-cholesterol levels [300,301].

The stearoyl-CoA desaturase (SCD) inhibitor, Aramchol, initially used in gallstone
treatment, has been shown to improve hepatic lipid accumulation in animal experiments,
as well as in humans [302,303].

Acetyl-CoA carboxylase (ACC) inhibitors act by reducing DNL and inducing FA
oxidation, thus decreasing hepatic FA content [304]. GS0976 is an ACC inhibitor that
is under investigation in MAFLD treatment, which has shown improvements in hep-
atic lipid content, and biomarkers of fibrosis and apoptosis after 12 weeks of treatment
(NCT02856555) [305,306].

4.4. Antioxidant Agents

Vitamin E is an antioxidant molecule used in NASH treatment to counteract the
oxidative stress that leads to hepatocellular injury and disease progression [307]. Studies
have shown that vitamin E has no impact on hepatic fibrosis. However, it was able
to decrease aminotransferases levels, improve inflammation, steatosis, ballooning, and
steatohepatitis in NASH subjects [308,309]. Still, vitamin E treatment is controversial due
to its association with all-cause mortality [310], and increased risk of prostate cancer [311].

N-acetylcysteine (NAC) is another antioxidant agent that acts by increasing glu-
tathione in hepatocytes. This mechanism reduces the amount of reactive oxygen species,
thus limiting hepatocellular injury progression [312]. Betaine are nutritional antioxidants,
also used in fatty liver treatment due to its anti-inflammatory, cytoprotective, antiapoptotic,
and anti-steatogenic action, thus increasing insulin sensitivity [313].

4.5. Others

Elafibranor is a PPAR-α/δ agonist that has shown promising results in NASH treat-
ment, with anti-inflammatory and antifibrotic effects, improving insulin sensitivity and
liver function [314,315]. Another study demonstrates that elafibranor was able to resolve
NASH without effects on fibrosis [316].

Pentoxifylline is a methylxanthine by-product that has been demonstrated to improve
ALT levels, as well as steatosis, inflammation, and fibrosis inhibition TNF-α [317].

Probiotic therapy is an alternative to treat dysbiosis changes that are observed in
MAFLD. Studies indicate that gut microbiome improvement by probiotics may ameliorate
hepatic histology, inflammation, and biochemical markers [318,319]. Gut microbiome is
also a target of IMM-124E, a hyperimmune bovine colostrum, which acts by reducing liver
exposure to LPS and gut bacterial byproducts. This increases GLP-1, adiponectin, and
regulatory T-cells, thus improving glycemic control [320].

Table 3 shows the different compounds under study used for the MAFLD treatment.
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Table 3. Pharmacological treatments for metabolic associated fatty liver disease. The compounds are divided into class,
mechanism of action, drugs examples, current state of application, and its side effects.

Class Mecanism of Action Drugs Current State Side Effects Reference

Biguanides
Reduce aminotransferase

levels
Increase insulin sensitivity

Metformin * Under studies Abdominal discomfort
Diarrhea Nausea [285]

PPARy agonist
Increase FFA uptake,

hepatic lipogenesis and
insulin sensitivity

Rosiglitazone *
Pioglitazone * Under studies

Increase risk of CVD
development, congestive

heart failure,
bladder cancer and bone

loss

[283,286]

GLP-1 receptor
agonists Delay fibrosis progression Liraglutide *

Exenatide * Under studies Transient nausea
Vomiting [287–289]

SGLT2 inhibitors
Reduce fatty liver content
Improve levels of serum

liver enzymes

Canagliflozin *
Dapagliflozin *
Empagliflozin *

Under studies

Urinary tract and genital
infections

Decrease in blood pressure
Weight gain

[290]

FXR receptor agonist
Regulate hepatic

metabolism of bile
and cholesterol

Obeticholic acid Under studies

Pruritus
Dyslipidemia

Fatigue
Headache

Gastrointestinal side effect

[291–295]

Statins
Decrease hepatic FFA,

steatosis, hepatic fibrosis
and inflammatory markers

Atorvastatin
Fluvastatin
Lovastatin

Pitavastatin
Pravastatin

Rosuvastatin

Under studies
Muscle pain (myalgia)

Creatine phosphokinase
elevation

[296,297]

Polyunsaturated
fatty acids

Improve overall symptoms
Decrease TG and alanine

transaminase levels

Eicosapentaenoic acid
Docosahexaenoic acid Under studies Unknown [298]

Lipid lowering Inhibit cholesterol and
phytosterol absorption Ezetimibe Under studies

Hepatotoxicity
Severe cholestatic hepatitis

Acute autoimmune
hepatitis

[300,301]

Stearoyl-CoA
desaturase inhibitors

Improve hepatic
lipid accumulation Aramchol Under studies Unknown [302,303]

Acetyl-CoA
carboxylase inhibitors

Reduce DNL and
FA content GS0976 Under studies Unknown [305,306]

Antioxidants

Decrease aminotransferases
levels

Improve inflammation,
steatosis, ballooning
and steatohepatitis

Vitamin E Under studies Increase blood pressure and
heart failure risk [307–311]

Increase glutathione
in hepatocytes N-acetylcysteine Under studies

Nausea
Vomiting
Diarrhea

Transient skin rash
Flushing

Epigastric pain
Constipation

[312]

Induce anti-inflammatory,
cytoprotective,

antiapoptotic and
anti-steatogenic actions

Betaine Under studies Gastrointestinal side effects [313]
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Table 3. Conts.

Class Mecanism of Action Drugs Current State Side Effects Reference

PPAR-α/δ agonists

Induce anti-inflammatory
and antifibrotic effects

Improve insulin sensitivity
and hepatic function

Elafibranor Under studies

Congestive heart failure
Peripheral edema

Bone fractures
Weight gain

[314–316]

Xanthine derivatives
Improve ALT levels,

steatosis, inflammation
and fibrosis

Pentoxifylline Under studies Unknown [317]

Probiotic therapy
Improve hepatic histology,

inflammation and
biochemical markers

- Under studies Unknown [318,319]

Hyperimmune
bovine colostrum

Improve glycemic control
Reduce liver exposure to

LPS and gut
bacterial bioproducts

IMM-124E Under studies Unknown [320]

* Similar compounds for more than one NCD.

4.6. COVID-19 and MAFLD

Underlying liver diseases such as MAFLD [321,322] may also increase the risk of
hospitalization and severity of COVID-19 [323]. Recent publications suggest that hepatic
pro-inflammatory profile and increased ROS, characteristic of fatty liver patients, may
worsen COVID-19 infection by intensifying the virus-induced inflammation [324,325].
Moreover, patients with liver disease had longer viral shedding time and increased rates of
liver failure [326].

Liver fibrosis is another risk factor for COVID-19 severity. One study correlated the
fibrosis-4 (FIB-4) index and the NAFLD fibrosis score (NFS) with COVID-19 severity [327].
Accordingly, intermediate and high FIB-4 and NFS scores were correlated with a higher
risk of severe COVID-19. Additionally, patients with FIB-4 rate greater than 2.67 had higher
risk of developing severe COVID-19, even in the absence of metabolic comorbidities. This
state induces the release of hepatic pro-inflammatory cytokines that may also contribute
to the exacerbation of virus-induced cytokine “storm” during the immune response to
infection [327]. In this state, overproduction of proinflammatory cytokines disturbs co-
agulation pathways, creating imbalanced procoagulant and anticoagulant rates, thereby
increasing the predisposition to microthrombosis, disseminated intravascular coagulation
and multiple organ failure [328,329].

5. Cardiovascular Diseases (CVDs)

CVDs are still the main cause of mortality and morbidity worldwide [330], which
is increasing globally [331], along with cardiovascular risk factors, such as obesity [332],
T2D [333] and metabolic syndrome (MetS) [334]. The underlying cause of almost all CVDs,
such as coronary vascular disease, cerebrovascular disease, venous thromboembolism, and
peripheral vascular disease, is commonly preclinical atherosclerosis, which ultimately leads
to myocardial infarction, cardiac arrhythmia, and stroke [330]. Although CVDs studies
have been traditionally focused on the clinical aspects of the disease, numerous studies
have shifted their focus on the metabolic basis of such conditions [331].

Cardiovascular function is heavily dependent on ATP availability, consequently de-
manding a constant supply of nutrients, i.e., fats, glucose, lactate, and ketones, to be used
as fuel by the myofibrils. Cardiac cells use a wide range of metabolic pathways to obtain
ATP, which include glycolysis, β-oxidation, tricarboxylic acid cycle or Krebs cycle, and
oxidative phosphorylation [335]. Still, cardiovascular function is altered by MetS-associated
metabolic alterations.
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These MetS-associated cardiovascular risk factors, especially obesity, IR, and athero-
genic dyslipidemia, lead to a myriad of vascular and cardiac diseases [336], including
coronary atherosclerosis and calcification [337], cardiac dysfunction, myocardial infarction,
and heart failure [338]. However, it is not completely understood how these risk factors
contribute to the development of such a spectrum of cardiovascular conditions.

Evidence associates obesity and IR with an increased risk of CVDs [339]. Thus, obesity
is especially related to two cardiovascular conditions: heart failure (also known as obesity
cardiomyopathy) and cardiac atherosclerosis [340]. The major physical consequence of obesity
is developing atherosclerotic CVDs, which increases the risk through risk factors brought
by obesity, such as hypercholesterolemia, hypertension, hyperglycemia, atherogenic dyslipi-
demia, IR, proinflammatory state, and prothrombotic state [341]. However, obesity leads to
alterations in the hemodynamic phenotype such as increased left ventricular mass [342]. In
addition to that, although not fully understood, underlying molecular mechanisms, such as
myocardial Ca2+ handling, are also deregulated, which is caused by changes in the expression
of SERCA2A and ryanodine receptors, responsible for calcium transportation and, ultimately,
leading to myocellular dysfunction in obesity and MetS [343].

A consequence of obesity to the cardiovascular system is high level of circulating FFA
that results from enhanced glucose use and decreased FA oxidation. Thus, the heart adapts
to this unbalanced metabolic profile by favoring increased FA regarding other metabolic
fuels. This change in cardiac substrate availability, resulting in loss of myocardium fuel
flexibility, has been associated with impaired cardiac function [344]. Further, the high
levels of FA impair β-cell function and contribute to IR, this latter being directly linked to
hypertriglyceridemia and considered a driver to CVDs [336]. Furthermore, evidence also
suggests overexpression of FA transporters in Zucker rats [345].

As already mentioned, IR is another threat factor linked to cardiac dysfunction, in-
creasing the risk of heart failure and atherosclerosis, especially in diabetic individuals [346].
A meta-analysis study with 516,000 participants argues that IR is the single most important
cause of coronary artery disease and its prevention would avoid about 42% of myocardial
infarctions [347]. Under IR condition, the switch between FA oxidation and glycolysis
becomes impaired, which makes FAs the only source of energy in the heart. Consequently,
the heart increases lipid uptake and accumulation and, ultimately, inflicts lipotoxicity [348].
As the switch between substrates depends on their availability through CD36 (for FA) and
GLUT4 (for glucose) transporters, regulation of FA and glucose uptake and modulation of
these transporters are possible therapeutic targets [349].

Evidence correlates IR with several cardiovascular events, namely, hypertension, fatal
and nonfatal myocardial infarction, and sudden death [350,351], mainly through the develop-
ment of dyslipidemia [346]. Such abnormal lipoprotein profiles have been associated with
vascular inflammation and endothelial dysfunction [352], resulting in several CVDs, espe-
cially atherosclerosis [352,353]. Although not fully understood, evidence suggests that small
dense LDL (sdLDL) and TG-rich lipoproteins (remnant lipoproteins) are atherogenic. HDL,
on the other hand, is antiatherogenic, being characterized by enhanced reverse cholesterol
transport, anti-inflammatory properties, protective capacity against LDL modification, among
others [341]. Additionally, hypertriglyceridemia has been shown to increase the incidence of
CVDs by about 76% in women and about 32% in men [354]. Moreover, the major drivers of
dyslipidemia-induced CVDs are related to alterations in lipoprotein metabolism and increased
release of FFA, causing lipotoxicity on endothelial cells [348].

Another well-known metabolic dysfunction related to CVDs is mitochondrial dysfunc-
tion, which includes structural changes in mitochondria [355], usually through formation
of a giant mitochondria by enlargement of the mitochondria or the fusion of adjacent
organelles by the action of fusion proteins, i.e., mitofusins 1/2 [356]. Other alterations
in mitochondria include changes in the cristae and intramitochondrial creatine kinase
crystals [357]. These abnormalities play a major role in various metabolic aberrations,
i.e., enhanced oxidative stress, lower ATP production and energy supply, increased cell
apoptosis, dysregulation of autophagy and ER stress, that ultimately contributes to CVDs
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pathogenesis [355]. Accordingly, restoring these cellular perturbations may be a significant
therapeutic target that goes beyond the energetic impairment [355,358].

Therefore, each covered risk factor contributes through its own alterations in cardio-
vascular metabolism, which may overlap. Hence, taken together, it has been shown that
CVDs have a complex etiology, in which multiple risk factors and pathological mechanisms
contribute to their development.

5.1. Management of CVDs
5.1.1. Primary and Secondary Prevention Strategies

Prevention strategies for CVDs are required globally to reduce the risk of major car-
diovascular events and, ultimately, related deaths [359,360]. There is consistent evidence
to support adequate risk reduction strategies in individuals who have not developed
any CVD (primary prevention) and in individuals with established diseases (secondary
prevention) [359]. Thus, the modification risk factors related to pathogenesis of CVDs
and implementation of therapeutic strategies have been able to mitigate major risk of
cardiovascular events [360]. Based on this, prevention guidelines include several recom-
mendations, e.g., healthy eating, regular physical activity, avoiding of tobacco and alcohol,
and achieving a healthy weight. Further, drug-based prevention strategies are based on
controlling blood pressure, cholesterol, hypercholesterolemia, and platelet aggregation to
prevent major cardiovascular events [359–361].

Since T2D increases the risk of CVDs, glycemic control is an important target to prevent
coronary-related diseases. Since then, sulphonylureas, metformin, and insulin have been
used to control glycemia [362]. Still, SGLT2 inhibitor drugs, e.g., empagliflozin, have been
administered to reduce the risk and mortality of CVDs during T2D treatment [213]. More-
over, recent studies have introduced new glucose-lowering drugs, such as semaglutide,
liraglutide, and empagliflozin, which can decrease CVD incidence [213,363,364].

Blood pressure-lowering drugs are another prevention strategy, effective in preventing
strokes, coronary heart disease, and heart failure [365,366]. Some antihypertensive agents,
such as β-blockers, ACE inhibitors, angiotensin receptor blockers, calcium channel block-
ers and diuretics, prevent the aforementioned CVDs, affecting metabolism, inflammation
and oxidative states [16]. Furthermore, statins have also been used to prevent stroke,
coronary-related diseases, and sudden cardiac death by decreasing levels of cholesterol
and lipoprotein in the blood. However, more recently, ezetimibe and antibodies that inhibit
proprotein convertase subtilisin-kexin type 9 (PCSK9) have been employed to reduce LDL
levels [367,368]. Nevertheless, acetylsalicylic acid (ASA) is recommended for all patients
with atherosclerosis, patients after a stroke or atrial fibrillation, and patients with acute
coronary syndrome (ACS). Still, patients with ACS were medicated with P2Y12 inhibitors,
i.e., clopidogrel, ticagrelor, and prasugrel, along with ASA, to inhibit thromboxane A2
(TXA2) [369,370]. In addition to those, anticoagulants and vitamin K agonists have been
shown to be effective against ACS recurrence [360]. Furthermore, combinations of hyper-
tensive agents (lisinopril and atenolol or hydrochlorothiazide), ASA, and statin improved
blood pressure and cholesterol concentrations [371].

5.1.2. Potential Therapeutic Targets

Recently, new therapeutic strategies have been investigated to reduce and mitigate
CVD events, such as agents to modulate glucose and lipid metabolisms, mitochondrial
targets, RNA-based therapies, and the endocannabinoid system.

Glucose Metabolism

Potential therapies to modulate the glucose metabolism in patients with CVDs risk
have been investigated, with GLP-1 receptor agonists, DPP-4 inhibitors, SGLT2 inhibitors,
and AMPK activators.

GLP-1 is a peptide hormone that mainly stimulates insulin secretion in β-cells, and
its receptor is endogenously expressed in myocardial tissue and vascular endothelium.
Evidence has demonstrated the protective role of GLP-1 receptor agonists in the cardiovas-
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cular system, decreasing abdominal visceral fat and systolic blood pressure, and improving
endothelial and myocardial function [372], which ultimately reduces non-fatal stroke and
the incidence of stroke and myocardial infarction [363,373]. However, GLP-1 is immedi-
ately subject to rapid degradation by DPP-4 [372] and, therefore, administration of DPP-4
inhibitors may reduce risk of major CVDs events [374,375]. In addition to those, SGLT2
plays an important role in glucose reabsorption in the kidney, and its inhibition decreases
the blood glucose concentration, improving insulin sensitivity, reducing glucose toxicity
and blood pressure, and inducing nephroprotection [376]. A study has shown that em-
pagliflozin, an SGLT2 inhibitor, together with lipid-lowering therapy and antihypertensive
medications reduce the incidence of risk factors, hospitalization, and death [213].

AMPK, considered the master metabolic regulator, has also been investigated as a
therapeutic target for obesity, diabetes, and CVDs. Activation of AMPK directly phospho-
rylates several downstream targets and effectors, which are related to lipid metabolism
(FA oxidation and DNL), glucose metabolism (glycolysis and glucose uptake), and mito-
chondrial integrity [377,378]. Furthermore, evidence suggests that AMPK activation yields
cardioprotection, e.g., protects against hypertrophic cardiomyocyte growth and cardiac
ischemia reperfusion injury [379,380]. As a result, many therapeutic agents currently used
to treat diabetes can activate AMPK, including metformin and TZDs. The former has been
shown to normalize the endothelial response via improved AMPK-induced nitric oxide
(NO) production in animal models [381,382] and further analysis has demonstrated that
metformin-induced AMPK activation suppresses 26S mediated GTP-cyclohydrolase degra-
dation, which is the main mediator of endothelial dysfunction [383]. For the latter, there is
evidence to support its cardioprotective properties, e.g., reducing ischemia, reperfusion,
and myocardial infarction in mouse models [384].

Lipid Metabolism

Elevated plasma lipoprotein(a) (Lp(a)) concentration has been associated with in-
creased risk of CVDs [385]. Well-known agents, such as inhibitors of proprotein conver-
tase subtilisin/kexin type 9 (PCSK9), nicotinic acid (niacin), statins and ASA, and novel
molecules, such as antisense oligonucleotides (ASOs) and inhibitors of lipoprotein lipase
(LPL) and its receptors, modulate Lp(a) levels. However, in clinical practice, no medication
directly lowers Lp(a) levels, so the primary goal with patients with elevated Lp(a) levels is
to reduce LDL-C levels [386].

Niacin administration studies have suggested that it reduces Lp(a), LDL-C, apolipopro-
tein (apo) B-100, sdLDL, and TG levels and raises HDL levels; however, clinical trials have
reported that the role of niacin in lowering CVDs risk is questionable [387–389]. Fur-
thermore, evidence indicates that ASA decreases serum Lp(a) concentrations, possibly
achieved by reducing apo(a) gene transcription, which causes a reduction in LPA gene
transcription [390]. Recently, PCSK9 inhibitors, e.g., evolocumab and alirocumab, have
been combined with statins to reduce LDL-C, but this new class of medication has not yet
been approved for the treatment of elevated Lp(a) levels [386,391]. However, the PCSK9-
induced mechanism that lowers Lp(a) levels is unclear; hence, it has been hypothesized
that a reduction in LDL-C and LDL-R may be involved in the lowering of Lp(a) levels [391].

Novel therapies have been evaluated to modulate Lp(a) synthesis. ASOs targeting
apo(a) have been demonstrated to inhibit apo(a) synthesis and, consequently, Lp(a) se-
cretion [392,393]. However, administration of an apo(a)-specific ASO, IONIS-APO(a)LRx,
has been indicated to reduce plasma LDL-C levels and monocytes inflammatory effects,
and, ultimately, Lp(a) levels [394]. Angiopoietin-like proteins (ANGPTLs), LPL inhibitors
that hydrolyze circulating TG to FFA, have also been evaluated [395]. ANGPTL3 sup-
presses LPL activity, which reduces plasma levels of TG and LDL-C, while ANGPTL4 re-
duces plasma TG and increases HDL-C levels [395–397]. Both also play a role in glucose
homeostasis [398–400]. Dewey et al. [401] showed that ASOs and monoclonal antibody-based
inactivation of ANGPTL3 reduce plasma TG and LDL-C levels. In addition, a study demon-
strated that metformin inhibits ANGPTL3 expression in the liver, modulating LPL activity
and lowering plasma lipids [402]. Furthermore, LRP6 impairment exhibits elevated LDL, TG
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and fasting glucose levels, which also deregulate Wnt/β-catenin signaling and lipoprotein
endocytosis [403]. With that, targeting LRP6 with small molecules, such as GNF-6231 inhibits
the canonical and non-canonical effects of the Wnt ligand, slowing the progression of myocar-
dial fibrosis and inflammation [404]. Another LRP6 antagonist is the Dickkof-related protein
1 (DKK1), which is an endogenous inhibitor that regulates blood pressure [405].

Mitochondrial Therapies

Mitochondrial dysfunctions play an important role in CVDs pathogenesis [355]; how-
ever, there are no medications to modulate mitochondrial functions available in clinical
practice [406]. However, therapeutic agents have been investigated to target mitochondrial,
including the mitochondria-targeted antioxidant MitoQ1, that decreases ROS production
and has shown protective effect in hypertensive rat models [407], and carvedilol or an-
tidiabetic drugs that prevent cardiac mitochondrial oxidative damage [408]. Therapies
targeting endothelial NO synthase (eNOS) activity and function, using statins, ACE in-
hibitors, and AT1-receptor blockers, have been shown to improve cardiovascular prognosis
by decreasing the level of oxidative stress, inflammation, and mediators of vascular dys-
functions [409,410]. In addition, third-generation β-blockers stimulate endothelial NO
formation and improve oxidative stress in animal models [411,412].

5.1.3. Emerging Strategies

RNA-Based Therapies

Over the past decades, RNA-based therapies have emerged as an important strat-
egy for the diagnosis and treatment of many diseases [413]. However, insights into the
role of non-coding RNAs (ncRNAs) in health and disease have characterized them as
valuable therapeutic targets [414]. Although ncRNAs do not encode a protein, ncRNAs
play an important role in several pathways through post-transcriptional regulation of
gene expression [413]; thus, affecting different biological processes, such as cell survival,
differentiation, and proliferation [415]. Due to their broad influence on biological processes,
the role of ncRNAs, particularly microRNAs (miRNAs), have been explored in CVDs
development [415–418], as well as their potential therapeutic applications [413,419–421].

Several studies have explored miRNA-based treatment in CVDs, such as myocardial
infarction, cardiac fibrosis, and atherosclerosis. Upregulation of miR-146a in a myocardial
ischemia/reperfusion injury in mice showed a 55% reduction in myocardial infarct size
and an improvement in cardiac function after myocardial infarction [422]. Likewise,
overexpression of miR-99a in C57/BL6 mice subjected to myocardial infarction attenuated
cardiac remodeling by preventing cardiomyocyte apoptosis and promoting autophagy,
cardiac function gain and increasing survival ratio [423]. Conversely, downregulation of
miR-433 in mice ameliorates cardiac fibrosis and ventricular dysfunction after myocardial
infarction [424]. Similarly, the administration of miRNA mimetics is also explored for CVDs
treatment, which act on mRNA degradation and translation inhibition [425]. Thereby,
systemic administration of a miR-100 mimic in an LDLR-deficient atherosclerotic mouse
model decreased 55% of the plaque area, attenuating atherosclerosis [426]. In addition,
intracardiac administration of miR-199a-3p and miR-590-3p mimetics immediately after
myocardial infarction in mice led to cardiac repair, reducing infarct size and preserving
cardiac function [427].

Since the discovery of miRNA in Caenorhabditis elegans, a deeper understanding of
miRNAs functionality is still needed to translate it into clinical practice. With that, many
ncRNAs have not yet been characterized, leaving a broad horizon of potential targets for
the development of RNA-based treatments for CVDs with improved efficacy. Therefore,
RNA-based therapies are a promising field of research for the treatment of several diseases,
including CVDs, but their application remains a challenge for the scientific community.
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Endocannabinoids

There is mounting evidence that the endocannabinoid system (ECS) influences the
regulation of CVDs risk factors, such as hypertension and atherosclerosis [428]. Studies
have explored ECS modulation, such as through endocannabinoids (e.g., anandamide
(AEA), 2-arachidonoylglycerol), cannabinoid receptors antagonists (e.g., AM251), synthetic
cannabinoids (e.g., WIN55212-2), or even related pathways (e.g., FA amide hydrolase
inhibitors), to promote hypotensive effects in different types of hypertension, e.g., spon-
taneous, acute, and salt-induced hypertensions [429–434]. This evidence suggests that
ECS-mediated hypotensive effects depend on the endocannabinoid or receptor involved
and the type of hypertension being treated. However, further investigations are still
required to elucidate the mechanisms behind the hypotensive effect and what are the
appropriate therapeutic targets to be explored in clinical practice.

NO is an important cardiovascular signaling molecule [435]. In addition to playing
a significant role in cardiovascular homeostasis [435], atherosclerosis [436], and renal
damage [437], NO is also deeply involved in endocannabinoid-induced cardiovascular
effects. AEA treatment promoted a notable relaxation of the thoracic aortas dependent on
CB1 and CB2 activations [438]; however, when eNOS inhibitor, L-NAME, was administered,
no AEA-evoked relaxation was observed, indicating that the AEA-induced vasodilation
effect is also NO-dependent. Similarly, AEA-induced vasorelaxation was also reversed by
L-NAME treatment in human mesenteric [439] and pulmonary [440] arteries, highlighting
the role of NO in ECS-mediated vasodilation. Together, this evidence supports a central
role for NO in cardiovascular homeostasis, as well as highlighting the NO contribution to
the beneficial vascular effects induced by ECS.

Despite investigation of ECS strategies in hypertension treatment, the ECS have
been shown to also play a role in CVDs development, especially by endothelial dam-
age [441]. Endothelial CB1 signaling has been associated with proatherosclerotic effects by
increasing oxidative stress and promoting immune cell recruitment into the arterial wall
in atherosclerotic mice, apoE (−/−) [442]. Interestingly, a different study, also conducted
with apoE (−/−) mice, presented that CB2 signaling promotes anti-inflammatory and
anti-atherosclerotic effects [443]. Similar studies have shown that CB1 receptor activation
in human primary coronary artery endothelial cells promoted cell-death and increased
ROS levels [444]. However, CB1 activation promotes antioxidant effects in the digestive
system [445] and CNS [446], highlighting that CB1 and CB2 receptors may exert different
functions depending on their location.

Therefore, ECS is an exciting target for novel therapeutic strategies in CVD, especially
those associated with hypertension and atherosclerosis. The broad distribution of the ECS
throughout the organism makes it a versatile tool for targeting different diseases, given its
wide range of modulation possibilities, such as receptor agonists and antagonists, metabo-
lites, and enzymatic inhibitors and activators. However, CB1 and CB2 receptors can evoke
opposite effects depending on their localization, making pharmacological vectorization
strategies, such as nanotechnology, extremely important for accurate drug delivery.

The different compounds under study used to the CVDs treatment are shown as a
summary in Table 4.
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Table 4. Pharmacological treatments for cardiovascular diseases. The compounds are divided into class, mechanism of
action, drugs examples, current state of application, and its side effects.

Class Mecanism of Action Drugs Current State Side Effects Reference

GLP-1 receptor
agonists

Reduce abdominal visceral fat
and systolic blood pressure

Improve endothelial and
myocardial function

Liraglutide *
Exenatide * Under studies Transient nausea

Vomiting [363,372,373]

DPP4 inhibitors Degrade GLP-1

Sitagliptin *
Vildagliptin *
Saxagliptin *
Linagliptin *
Alogliptin *

Under studies

Hypoglicemia
Loss of consciousness

Gastrointestinal
side effects

[374,375]

SGLT2 inhibitors

Promote glucose reabsorption
Decrease blood glucose
concentrationImprove

insulin sensitivity
Reduce glucose toxicity and

blood pressure
Induce nephroprotection

Empagliflozin * Under studies

Urinary tract and
genital infections
Decrease in blood

pressure
Weight gain

[213,376]

AMPK activators

Induce NO production
Suppress 26S mediated

GTP-cyclohydrolase
degradation

Metformin * Under studies
Abdominal discomfort

Diarrhea
Nausea

[381–383]

Reduce isquemia, reperfusion
and myocardial infarction TZDs Under studies

Increase risk of CVD
development,

congestive heart failure,
bladder cancer and

bone loss

[384]

Lp(a)and LPL-C
modulators

Reduce Lp(a), LDL-c, apo
B-100, sdLDL and TG levels

Raise HDL levels
Niacin Under studies

Hepatic toxicity
Myopathy

Blurred vision
Nausea

Vomiting

[387–389]

Decrease Lp(a) levels ASA Under studies GI upset
Nausea [390]

Reduce LDL-c levels Evolocumab
Alirocumab Under studies

Nasopharyngitis
Injection site pain

Arthralgia
Back pain

[386,391]

Inhibit apo(a) synthesis and
LP(a) secretion ASOs Under studies Unknown [392,393]

LPL inhibitors
Suppress LPL activityReduce

TG level s
Increase HDL-C levels

ANGPTLs Under studies Unknown [395–402]

Mitochondrial
therapies

Decrease ROS production MitoQ1 Under studies Unknown [407]

Reduce oxidative stress
and inflammation

Statins
ACE inhibitors

AT-1 receptor blocker
Under studies Unknown [409–412]

RNA-based therapies

Reduce myocardial
infarct size

Improve cardiac function
miR-146a Under studies Unknown [422]

Prevent
cardiomyocyte apoptosis

Promote autophagy
miR-99a Under studies Unknown [423]

Ameliorate cardiac fibrosis
and ventricular dysfunction miR-433 Under studies Unknown [424]

Attenuate atherosclerosis miR-100 Under studies Unknown [426]
Promote cardiac repair

Reduce infarct size
Preserve cardiac function

miR-199a-3p
miR-590-3p Under studies Unknown [427]

Endocannabinoids Induce hypotensive and
vascular effects

Anandamide
2-arachidonoylglycerol Under studies Neuropsychiatric

side effects [429–434]

* Similar compounds for more than one NCD.



Nutrients 2021, 13, 2830 30 of 50

5.2. COVID-19 and CVDs

ACE2 is located in the cell membrane or circulating in the bloodstream. This enzyme
is responsible for transforming angiotensin I into II, which is a potent vasoconstrictor
agent. Thus, ACE2 is a blood pressure modulator. The SARS-CoV-2 entry into the host cell
through the binding of the viral S protein to ACE2. Therefore, the interaction between S
protein and ACE2 has been considered a promising therapeutic target [447]. CVDs and
their risk factors, such as hypertension, were common pre-existing conditions in COVID-19
patients, with a prevalence of 15% of hypertension and 15% for other CVDs [448].

The use of ACEi and angiotensin-receptor blocker (ARB) therapy is a standard prac-
tice in hypertension treatment as we have discussed in the management of CVDs section.
Recently, it has been questioned whether the use of antihypertensive medications would
have a favorable or deleterious impact on people infected with SARS-CoV-2, since they can
modulate ACE2 expression. Thus, possibly turning the users of ACEis and ARBs into sus-
ceptible individuals to increased entry and propagation of the viral host cells [449]. On the
other hand, the treatment of COVID-19 patients with ACEi or ARB is not harmful [450,451],
and the ACE2 modulation may be beneficial in patients with lung injury because of its
anti-inflammatory effects [449,452].

6. Conclusions

Taking all these metabolic alterations together, we observe that human metabolism is
a finely tuned network of biomolecular interactions, from simple alterations, such as leptin
and insulin resistance, to complex ones, such as modifications in metabolic enzymes and
redox metabolism. These deregulations can lead to a wide range of diseases, including
hormonal disorders, obesity, diabetes, MAFLD, CVDs, and cancer. With each one of
these diseases having its own characteristics and complications, but of common origin
that consists of an imbalance in the human metabolism (Figure 1). Each metabolism-
related disease has its specific target tissues, e.g., liver cells in MAFLD, adipose tissues
in obesity and diabetes, and a set of disruptions in the finely tuned metabolic network
that characterizes it. However, all these alterations mainly came from the 21th century
way of life, with high calorie diet, with sugary and fatty foods, and low physical activity.
These factors are directly responsible for the increase in such diseases in recent decades;
however, we must not ignore the genetic and epigenetic contribution to the development
and progression of such diseases.

Treatments for these NCDs should integrate lifestyle changes and pharmacological or
surgical approaches, when necessary, to successfully cure them or at least mitigate their
burdens. Comprehensive lifestyle interventions, such as adequate physical training, psy-
chological assistance, and dietary re-education, are the core step to combat the metabolic
conditions covered in this review. The major barriers to successful lifestyle changes are
long-term adherence to the proposed interventions and complete reeducation of patients’
lifestyle towards a more conscious one. Hence, in some situations, individuals fail to
achieve the required weight loss or have compromised health; thus, adjunctive treatments,
i.e., pharmacological or surgical interventions, may be required. Interestingly, pharma-
cological treatments tend to share targets and medications among NCDs, mainly due to
shared or complementary metabolic changes. Thus, we showed some medications that are
employed to treat more than one NCD, such as metformin, liraglutide, empagliflozin, and
even treat more than one simultaneously. Therefore, treatments should be designed in an
individualized manner to address the patient’s condition.

With this silent pandemic of NCDs that we are currently facing globally, its burdens
are pronounced with the COVID-19. The clearest relationship between both pandemics are
the increased risk of hospitalization, severity, and mortality, sharing molecular mechanisms,
mainly related to inflammation and cytokine storm. However, further investigation is
still required by the scientific community to fully understand the underlying relationship
between these pandemics.
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associated fatty liver disease—MAFLD—in the blue, cardiovascular diseases—CVDs—in the pink, and diabetes mellitus in
the yellow. The relationship between the diseases are shown in the intersections.

Therefore, reducing the burden of such metabolism-related diseases demands mul-
tidisciplinary approaches, which combine individual interventions with environmental
and social changes. A better comprehension of notable regional specificities that contribute
to the prevalence and trends of such diseases can help identify environmental and social
causes and provide guidance on developing intervention strategies. In general, our com-
prehension of metabolism has become increasingly thorough in the past few decades. With
these advances, our knowledge of underlying the mechanisms, progression and prognosis
of diseases related to metabolic alterations are also deepening. Despite advances in recent
years, more extensive research is still required to further improve diagnosis, therapy, and
minimize the chance of chronic complications development. Additionally, accessing and
reducing cost for high quality and powered genetic techniques will provide a wealth of
information and opportunities for enhanced targeted treatment. Therefore, continuous
investment in this field of research is essential to effectively target and mitigate the global
pandemic of metabolic diseases-related we face.
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anisms of endothelium-dependent relaxation evoked by anandamide in isolated human pulmonary arteries. Naunyn Schmiede-
berg’s Arch. Pharmacol. 2014, 387, 477–486. [CrossRef] [PubMed]

441. Quercioli, A.; Pataky, Z.; Vincenti, G.; Makoundou, V.; Di Marzo, V.; Montecucco, F.; Carballo, S.; Thomas, A.; Staub, C.; Steffens,
S.; et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur. Heart J.
2011, 32, 1369–1378. [CrossRef] [PubMed]

442. Montecucco, F.; Matias, I.; Lenglet, S.; Petrosino, S.; Burger, F.; Pelli, G.; Braunersreuther, V.; Mach, F.; Steffens, S.; Di Marzo,
V. Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis.
Atherosclerosis 2009, 205, 433–441. [CrossRef] [PubMed]

443. Steffens, S.; Veillard, N.R.; Arnaud, C.; Pelli, G.; Burger, F.; Staub, C.; Karsak, M.; Zimmer, A.; Frossard, J.L.; Mach, F. Low dose
oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 2005, 434, 782–786. [CrossRef]

444. Rajesh, M.; Mukhopadhyay, P.; Hasko, G.; Liaudet, L.; Mackie, K.; Pacher, P. Cannabinoid-1 receptor activation induces reactive
oxygen species-dependent and -independent mitogen-activated protein kinase activation and cell death in human coronary
artery endothelial cells. Br. J. Pharmacol. 2010, 160, 688–700. [CrossRef]

445. Abdel-Salam, O. Gastric acid inhibitory and gastric protective effects of Cannabis and cannabinoids. Asian Pac. J. Trop. Med. 2016,
9, 413–419. [CrossRef]

446. Palomba, L.; Silvestri, C.; Imperatore, R.; Morello, G.; Piscitelli, F.; Martella, A.; Cristino, L.; Di Marzo, V. Negative Regulation of
Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons.
J. Biol. Chem. 2015, 290, 13669–13677. [CrossRef]

447. Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical
perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [CrossRef] [PubMed]

448. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected
with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [CrossRef]

449. Bosso, M.; Thanaraj, T.A.; Abu-Farha, M.; Alanbaei, M.; Abubaker, J.; Al-Mulla, F. The Two Faces of ACE2: The Role of ACE2
Receptor and Its Polymorphisms in Hypertension and COVID-19. Mol. Ther. Methods. Clin. Dev. 2020, 18, 321–327. [CrossRef]
[PubMed]

450. Li, J.; Wang, X.; Chen, J.; Zhang, H.; Deng, A. Association of Renin-Angiotensin System Inhibitors with Severity or Risk of Death
in Patients with Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol.
2020, 5, 825–830. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/21966155
http://doi.org/10.1016/j.chembiol.2010.08.013
http://www.ncbi.nlm.nih.gov/pubmed/21095576
http://doi.org/10.1111/j.1476-5381.2008.00034.x
http://doi.org/10.1161/01.HYP.35.2.679
http://www.ncbi.nlm.nih.gov/pubmed/10679517
http://doi.org/10.1016/j.lfs.2017.06.019
http://doi.org/10.1124/jpet.106.112904
http://doi.org/10.1038/sj.bjp.0707410
http://doi.org/10.1038/nrcardio.2017.224
http://doi.org/10.1016/j.artere.2016.05.002
http://doi.org/10.1007/s12192-015-0622-z
http://www.ncbi.nlm.nih.gov/pubmed/26228633
http://doi.org/10.1111/1440-1681.12450
http://doi.org/10.1016/j.phrs.2016.08.028
http://www.ncbi.nlm.nih.gov/pubmed/27633407
http://doi.org/10.1007/s00210-014-0961-9
http://www.ncbi.nlm.nih.gov/pubmed/24682422
http://doi.org/10.1093/eurheartj/ehr029
http://www.ncbi.nlm.nih.gov/pubmed/21303779
http://doi.org/10.1016/j.atherosclerosis.2008.12.040
http://www.ncbi.nlm.nih.gov/pubmed/19187936
http://doi.org/10.1038/nature03389
http://doi.org/10.1111/j.1476-5381.2010.00712.x
http://doi.org/10.1016/j.apjtm.2016.04.021
http://doi.org/10.1074/jbc.M115.646885
http://doi.org/10.1038/s41569-020-0413-9
http://www.ncbi.nlm.nih.gov/pubmed/32690910
http://doi.org/10.1016/S0140-6736(20)30183-5
http://doi.org/10.1016/j.omtm.2020.06.017
http://www.ncbi.nlm.nih.gov/pubmed/32665962
http://doi.org/10.1001/jamacardio.2020.1624
http://www.ncbi.nlm.nih.gov/pubmed/32324209


Nutrients 2021, 13, 2830 50 of 50

451. Reynolds, H.R.; Adhikari, S.; Pulgarin, C.; Troxel, A.B.; Iturrate, E.; Johnson, S.B.; Hausvater, A.; Newman, J.D.; Berger, J.S.;
Bangalore, S.; et al. Renin-Angiotensin-Aldosterone System Inhibitors and Risk of Covid-19. N. Engl. J. Med. 2020, 382, 2441–2448.
[CrossRef] [PubMed]

452. Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin-Angiotensin-Aldosterone System
Inhibitors in Patients with Covid-19. N. Engl. J. Med. 2020, 382, 1653–1659. [CrossRef] [PubMed]

http://doi.org/10.1056/NEJMoa2008975
http://www.ncbi.nlm.nih.gov/pubmed/32356628
http://doi.org/10.1056/NEJMsr2005760
http://www.ncbi.nlm.nih.gov/pubmed/32227760

	Introduction 
	Obesity 
	Management of Obesity 
	Lifestyle Interventions 
	Pharmacotherapy 
	Bariatric Surgery 
	New Drugs and Strategies 
	COVID-19 and Obesity 


	Diabetes Mellitus 
	Type 1 Diabetes Mellitus 
	Type 2 Diabetes Mellitus 
	Gestational Diabetes Mellitus 
	Maturity Onset Diabetes of the Young 
	Other Types of Diabetes 
	Management of Diabetes Mellitus 
	Dual Therapies 
	T1D Therapies 
	T2D Therapies 

	COVID-19 and Diabetes 

	Metabolic Associated Fatty Liver Disease (MAFLD) 
	Management of MAFLD 
	Anti-Diabetic Drugs 
	Antilipidemic Agents 
	Antioxidant Agents 
	Others 
	COVID-19 and MAFLD 

	Cardiovascular Diseases (CVDs) 
	Management of CVDs 
	Primary and Secondary Prevention Strategies 
	Potential Therapeutic Targets 
	Emerging Strategies 

	COVID-19 and CVDs 

	Conclusions 
	References

