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Abstract: Body composition is a key component for maintaining good general health and longevity.
It can be influenced by a variety of factors, including genetics, environment, and lifestyle choices. The
assessment of body composition is an essential tool for nutrition specialists to effectively evaluate
nutritional status and monitor progression during dietary interventions. As humans age, there is a
natural increase in fat mass coupled with a gradual decline in lean mass, specifically in bone and
muscle mass. Individuals with a high body fat percentage are at a greater risk of cardiovascular
diseases, type 2 diabetes, several types of cancer, and early mortality. Significant decreases in
bone mineral density signify osteopenia and osteoporosis, while reductions in skeletal muscle mass
increase the risk of developing sarcopenia. Moreover, undernutrition exacerbates the effects of many
medical conditions and is important to address. Though weight tracking and calculation of BMI are
used commonly by clinicians and dietitians, these measures do not provide insight on the relative
contributions of fat mass and fat-free mass or the changes in these compartments that may reflect
disease risk. Therefore, it is important that healthcare professionals have a critical understanding of
body composition assessment and the strengths and limitations of the methods available.
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1. Introduction

An individual’s nutritional status is defined as “the condition of the body, resulting
from the balance of intake, absorption, and utilization of nutrients and the influence of
particular physiological and pathological status” [1,2]. The assessment of nutritional status
has major relevance at both the individual level, as is the case for clinical practice, and
among populations, as used in epidemiologic and public health research, to determine
the presence of increased risk for nutrition-related conditions [2]. Anthropometric and
body composition assessments are used to routinely detect or diagnose several impor-
tant nutritional problems among adults and youth, including being overweight, obesity,
undernutrition, osteoporosis, sarcopenia, and sarcopenic obesity.

When determining a patient or client’s nutritional status, nutrition specialists (e.g.,
dieticians, expert clinicians) begin with a nutritional risk screening. The tools used in
this screening assessment must be easy to use, time efficient, accurate, and standardized,
allowing for adequate reliability between different assessments and assessors without a
substantial increase in measurement error. Because there is no “silver bullet” measurement
tool, practitioners are prompted to use a holistic approach to increase the validity of the
screenings. Clinicians and dieticians most commonly use recent weight loss, current
body mass, recent food intake, and medical history questionnaires during daily routine
assessments [3,4]. Additional nutritional risk screening tools exist, including the Nutritional
Risk Screening 2002, the Malnutrition Universal Screening Tool, and the Mini Nutritional
Assessment, each one varying in its intended population [3,5]. However, as useful as
the aforementioned tools are, certain inherent weaknesses exist amongst them, such as
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subjectivity, lack of sensitivity and precision to subtle changes in nutritional status, and
inability to account for specific tissues of the body (e.g., fat mass, bone mineral content,
and skeletal muscle mass). For these reasons, clinicians, dieticians, and other nutrition
specialists should look to incorporate specific body composition assessment techniques for
further insight into an individual’s nutritional status.

Body composition assessment divides an individual’s total body mass into the relative
proportions of fat mass (FM) and fat-free mass (FFM); FFM is comprises muscles, bones,
organs, ligaments, tendons, and water. The quantification of fat, muscle, bone, and water
are highly informative in the diagnosis, management, and treatment of several nutrition-
related conditions that impact individual and population health. Once an individual’s
nutritional status has been determined following a nutritional risk screening, clinicians,
dieticians, and other practitioners are then responsible for developing a protocol to achieve
certain health-related outcomes. These outcomes can range from weight loss in overweight
or obese clients with or at-risk for diabetes mellitus type 2 to significant increases in lean
tissue mass or bone mineral density in patients with sarcopenia or osteoporosis. Though
baseline assessments allow for the initial construction of a dietary program, frequent
adjustments and the tracking of changes are necessary throughout its duration in order
to gauge progression and establish realistic short-term goals. Understanding the best
body composition assessment techniques and practices will allow nutrition specialists to
perform these duties more effectively. Therefore, the aim of this review is to provide an
overview of various body composition assessment methods that are relevant to common
nutrition-related conditions.

2. Clinical Relevance of Body Composition Assessment

The primary purpose of measuring body composition in clinical settings is to eval-
uate nutritional status through the quantification of FM, FFM, bone mineral content,
and/or body water (intracellular and extracellular). Assessment of nutritional status is
recommended in clinical practice for hospitalized patients and at-risk outpatients with
nutrition-related conditions [5,6]. While there is currently not a universally accepted best
method for the assessment of nutritional status [3,7,8], body composition provides valuable
information that contributes to the identification, diagnosis, and management of several
medical conditions for which nutrition therapy is indicated. A general understanding of the
methodology, advantages, limitations, and impracticalities of current and emerging body
composition assessment tools is beneficial for clinicians, dietitians, and other practitioners
who play an integral role in nutrition management. Moreover, with healthcare becoming
more outcome-driven, it is necessary that valid and reliable methods are used to evaluate
the efficacy of various nutrition interventions.

Obesity is classified as a worldwide epidemic that adversely affects health and
longevity. Excess adiposity increases the risk of cardiovascular diseases [9], type 2 di-
abetes [10], several types of cancer [11], and early mortality [12]. In the United States,
more than 70% of adults are classified as overweight or obese based on body mass index
(BMI) [13], with over $100 billion spent annually on medical costs related to obesity [14].
Obesity has even been associated with a higher risk of hospitalization and placement on
mechanical ventilation among individuals with coronavirus disease 2019 (COVID-19) [15].
Body composition assessment enhances the diagnosis of obesity and the monitoring of
responses to obesity treatment programs, which is highly relevant to the management of
obesity-related chronic diseases.

Despite the high prevalence of obesity, undernutrition and malnutrition are significant
nutritional problems that are often detected with anthropometric and/or body composition
assessments. Chronic undernutrition is defined as a progressive decrease in both FFM and
FM that diminishes the general quality of health [16]. This condition is more prevalent in
low-resource settings and can be attributed to multiple factors, including food insecurity,
poverty, and illness [17–19]. Undernutrition has been linked to negative impacts on mor-
bidity, hospital stay duration, quality of life, health care costs, and mortality [16,20–23]. The
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prevalence of undernutrition among older adults, patients with various chronic diseases,
and hospitalized patients has continued to increase over time, with at least one-third of
admitted adult patients being malnourished [16,17,20–23]. According to a meta-analysis
involving 240 studies, malnutrition has been reported in 3.0% of community dwelling
older adults, 6.0% of those in outpatient care, 8.7% among those receiving home care
services, 22.0% of those with in-hospital stay, 17.5% of those in nursing homes, and 29.4%
in rehabilitation/sub-acute care [24].

In the U.S. and Europe, it has been reported that 30% of women have osteoporosis,
and that 40% of post-menopausal women and 30% of men will experience osteoporotic
fractures [25]. Osteoporosis is a major public health problem contributing to fractures,
loss of independence, and early mortality. Generally, individuals with osteoporosis share
the characteristics of being underweight through severely diminished lean tissue and fat
mass stores [26]. In the past, clinicians used low BMI values in older men (<20.9 kg/m2)
and women (20.1 kg/m2) to evaluate the risk of losing basic living skills and developing
osteoporosis [26]. Over the years, because its diagnosis is based on the quantification of
bone mineral density, dual-energy X-ray absorptiometry (DXA) has become the criterion
indicator. The accuracy and precision of DXA scans can give clinicians and dieticians
greater knowledge of an individual’s status. Classification as having normal bone mineral
density, osteopenia, or osteoporosis allows for nutrition specialists to better prescribe
dietary and supplemental intake changes of calcium, vitamin D, and other nutrients to
treat the disease [27].

Another condition plaguing many older adults is sarcopenia, which is characterized
by reduced FFM, with a muscle mass index that is more than two standard deviations
below the sex-specific reference in a young, healthy population [2]. In addition to the ob-
served significant atrophy of skeletal muscle, there are simultaneous decreases in muscular
strength and overall physical function, further increasing the risk of injury, disability, and
mortality [28]. Both sarcopenia and sarcopenic obesity, in which reduced FFM is combined
with increased FM, are recognized as important nutritional problems that place older
adults at higher risk of morbidity and mortality [2,29]. The combination of low muscle
mass and excess adiposity in an older adult poses significant adverse consequences on
functional capacity, resulting in diminished cardiorespiratory fitness and declining health
status [30]. Importantly, because BMI does not distinguish FM from FFM, it often does not
identify sarcopenia, particularly if the BMI value is in the healthy or overweight range.
Having accurate assessments of body composition will allow practitioners to monitor lean
tissue changes during a nutrition intervention and more efficiently prescribe protein intake
patterns and physical activity to promote optimal muscle building. Moreover, in the case
of sarcopenic obesity, simultaneous goals exist to increase skeletal muscle mass while also
decreasing fat mass. Greater nuance is needed by clinicians and dieticians to ensure that
significant muscle mass is not lost during weight loss phases and that a significant increase
in body fat percentage does not occur during weight gain phases. Therefore, it is important
to use a body composition assessment method that quantifies FM and FFM.

The routine assessment of body composition has also shown clinical significance for
the treatment of cancer, specifically as it pertains to cachexia and lymphedema. Cancer
cachexia falls under the umbrella of sarcopenia, where it is defined as a multifactorial
syndrome that causes extreme weight loss and muscle wasting, with or without the loss
of fat [31,32]. Cachexia can occur in up to 80% of patients with advanced stage cancer
and has been associated with nearly 20% of cancer-related deaths [33]. For the screening
and monitoring of cancer-induced cachexia, measuring total caloric and macronutrient
amounts are recommended in conjunction with regular and consistent tracking of weight
and BMI changes. In 2017, the European Society of Clinical Nutrition and Metabolism
published evidence-based guidelines for nutritional care and recommended that body
composition measures be added to expand nutrition-related assessments, aiding clinicians
in treating patients with cancer cachexia and researchers investigating the condition [34].
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With further progression, computer tomography (CT) is used for more in-depth analysis of
body composition changes [35].

Lymphedema is another condition most commonly observed during the treatment
of cancer [36]; however, increasing evidence has shown the potential link between lym-
phedema and obesity [37]. Lymphedema refers to the swelling present in the arms or legs
caused by damage or the removal of a patient’s lymph nodes, resulting in a blockage in the
lymphatic system that prevents lymph from draining properly [37]. Due to the swelling
located in the limbs of patients with lymphedema, segmental bioelectrical impedance
analysis (BIA) has demonstrated significant relationships with clinical measurements and
can be used as a practical tool for monitoring individuals during treatment [36,38].

Treatment for all of these conditions—obesity, undernutrition, osteoporosis, sarcope-
nia, sarcopenic obesity, cachexia, and lymphedema—necessitates accurate diagnosis to
implement the proper nutritional intervention and therapy. For these reasons, nutritional
management of at-risk patients should integrate strategies to accurately and reliably assess
body composition using a cost-effective medico-economic approach [6,39,40].

3. Methods for Estimating and Quantifying Body Composition

Several of the most commonly-used body composition assessment methods are pre-
sented in this review. Table 1 lists each method, the equipment needed, the assessment time
required, and the pros and cons of each. Anthropometric methods that provide proxies for
body composition, such as BMI and circumferences, are included for completeness, as they
are widely available, widely used, and have reference values that signify different levels of
health and disease risk.

Table 1. Body mass index and waist circumference classifications.

Weight Status Classification Body Mass Index (kg/m2)

Underweight <18.5
Severe Thinness <16.0

Moderate Thinness 16.0 to 16.9
Mild Thinness 17.0 to 18.4
Normal weight 18.5 to 24.9

Overweight 25.0 to 29.9
Obese, Class I 30.0 to 34.9
Obese, Class II 35.0 to 39.9
Obese, Class III ≥40.0

Waist Classifications Waist Circumference

Risk Classification Women Men
Normal <32 in. (80 cm) <37 in. (94 cm)

Increased ≥32 in. (80 cm) ≥37 in. (94 cm)
Substantially increased ≥35 in. (88 cm) ≥40 in. (102 cm)

Source: Adapted from World Health Organization. 2008. Waist Circumference and Waist-to-Hip Ratio. Report of
a WHO Expert Consultation. Geneva: WHO.

Most body composition assessment methods are based on a two-compartment model
that separates the body into fat and fat-free components (i.e., FM and FFM, respectively).
Historically, hydrostatic weighing (HW) was the gold-standard assessment technique,
but the equipment, space, expertise, and time required, combined with high participant
burden, made HW impractical in most non-research settings. Dual-energy X-ray absorp-
tiometry is currently the preferred criterion measure and has the advantage of quantifying
bone mineral content in addition to FM and FFM, making this a three-compartment, or
multi-compartment, model. Alternative methods for assessing body composition include
skinfolds (SKF), BIA, digital image analysis, air displacement plethysmography (ADP),
and sophisticated imaging techniques such as CT and magnetic resonance imaging (MRI).
Attributes that guide the optimal choice of body composition assessment method include
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accuracy, reliability, the condition for which it is being used, accessibility, cost, ease of use,
participant burden, and participant safety.

3.1. Body Mass Index (BMI)

Body mass index is the most commonly used anthropometric method to assess weight-
related health risk. The BMI method classifies individuals into specific weight status
categories that are associated with different levels of health risk (see Table 1) [41]. Advan-
tages of BMI include the relative ease of performing height and weight measurements, low
cost, minimal participant burden, and standardized classification of health risk based on
large reference datasets. The utility of BMI is not only for classifying weight status, but
also for tracking changes at the individual or population-level over time, particularly in
response to individualized treatment or public health measures. The primary limitation of
BMI is that it does not distinguish between FM and FFM [42] and therefore may misclassify
some older adults as being a healthy weight (i.e., those with increased FM and decreased
FFM) and some athletes as being overweight (i.e., those with increased muscle mass and
relatively low FM).

3.2. Waist and Hip Circumferences

Circumference measures require only a tape measure to quantify the circumferences
of various anatomical locations, with waist circumference being one of the most notable
measures. Waist circumference can be used to identify excess abdominal adiposity, with
values >80 and >88 cm in women and >94 and >102 cm in men reflecting increased risk and
substantially increased risk, respectively, for metabolic complications [43,44]. Waist-to-hip
ratio (WHR) and waist-to-height ratio (WHtR) also reflect excess abdominal adiposity
when WHR values are ≥0.85 in women or ≥0.90 in men or when WHtR ≥0.50 (women and
men). High values for these measures are associated with various chronic cardiovascular
and metabolic diseases as well as early mortality [42]. Although circumference measures
are informative and practical to obtain, they do not quantify FM and FFM and therefore do
not provide a measure of body composition.

3.3. Skinfolds (SKF)

The SKF technique is an inexpensive method to estimate %Fat by measuring the
thickness of skinfolds at different sites of the body using calipers. This method is based
on the principle that the amount of subcutaneous fat is proportional to the amount of
total body fat. The specific skinfold sites and number of sites vary depending on which
equation is used to estimate body density (Db). Common Db equations are sex-specific and
include three, four, or seven skinfold sites; some also include circumference measurements.
As examples, a three-site method for men may include triceps, chest, and subscapular
skinfolds or chest, abdomen, and thigh skinfolds; three sites for women may include
triceps, abdomen, and suprailiac skinfolds. A common seven-site method for men and
women includes chest, midaxillary, triceps, subscapular, abdomen, suprailiac, and thigh
skinfolds [45–47]. To perform this technique, the assessor pulls the fold of skin and
subcutaneous fat away from the underlying muscle and then places a skinfold caliper
over the fold. The pressure-sensitive caliper adjusts to the skinfold thickness and provides
a measurement in mm. Metal calipers are preferred (see Figure 1); plastic calipers also
are available. To compute %Fat, FM, and FFM, the SKF measurements are summed and
inserted into the applicable sex-specific Db equation. The %Fat is then calculated from the
Db using one of the following equations [48,49]:

%Fat = [4.95/Db − 4.50] × 100 or %Fat = [4.570/Db − 4.142] × 100
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3.4. Bioelectrical Impedance Analysis (BIA)

Bioelectrical impedance analysis involves a low-level electrical current that passes
through an individual’s body while impedance, or opposition to the flow of the current, is
measured. The electrical current flows readily through aqueous compartments because
electrolytes in body water conduct this current; fat tissue causes resistance to the current
flow. Lean tissue mass comprises approximately 73% water, whereas fat mass has ex-
tremely low hydration based on its chemical composition. Therefore, individuals with a
high proportion of FFM (i.e., low %Fat) with proper hydration through intracellular and
extracellular water have lower resistance and greater reactance measures than those with
high %Fat. The sum of the resistance and reactance measured within an individual pro-
vides impedance values. Because BIA is extremely sensitive to total body water, measures
should be consistently taken in similar states of hydration to reduce error (e.g., fasted,
upon waking in the morning). BIA devices quantify impedance, from which they estimate
intracellular water, extracellular water, total body water, FFM, FM, and %Fat. BIA devices
vary in sophistication and features; some use single-frequency electrical currents, while
others implement multi-frequency currents for greater penetration of different tissues and
therefore with greater accuracy (see Figure 2) [50,51]. Some BIA instruments provide a
measure of whole-body FM and FFM only, others provide segmental assessments of FM
and FFM in each limb and the trunk, in addition to whole-body measures, and other BIA
devices provide estimates of bone mineral content in addition to FM and FFM. Additionally,
the raw BIA variable of phase angle, (i.e., ratio of resistance to reactance) provided with
certain BIA devices, has gained significance for its potential application in both sports and
healthcare. It can change based on the interface between cell membranes and tissues and
be used as an index for water distribution, body cell mass, and cellular integrity. Phase
angle has been associated with many nutritional markers and can provide viable insight to
nutritional status and the effects of the supplementation strategies used by clinicians and
dietitians [52].

Accuracy and reliability vary widely among BIA instruments. A number of studies
have demonstrated the validity of both single-frequency and multi-frequency devices,
concluding that BIA may be used as an alternative to DXA for whole-body and segmental
body composition assessment in large groups (see Figure 3) [53,54]. However, single-
frequency devices and segmental measures demonstrate the largest differences when
compared to DXA, with the inaccuracy increasing in conjunction with higher levels of
BMI [55–58]. Previous research has also shown BIA scales to give inaccurate estimates of
bone mineral content in comparison to DXA [59,60], while other research has demonstrated
that BIA-derived bone mineral content can be used in multi-compartment models in
place of DXA [61]. The accuracy of the devices is also affected by the regression used
by the device in question, with many manufacturers using their own equations derived
during the internal validity testing of the product in question. However, many of these
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equations are general, with little specificity to varying populations. Finally, many BIA
instruments are portable, while the more sophisticated models designed for clinical and
research settings are less portable [62]. Although relatively inexpensive compared to DXA
and ADP instruments, the cost among the wide variety of BIA devices varies significantly,
depending on the features.
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3.5. Digital Image Analysis

Three-dimensional (3D) body scanner devices and smartphone digital image analysis
applications have emerged as relatively quick and easy-to-use techniques for body compo-
sition analysis. Whole-body optical scanners use digital imaging to estimate body volume,
size, and circumferences at various anatomical locations to estimate body composition
metrics [63]. Some 3D optical scanners have been validated against multi-compartment
models, such as DXA, ADP, and BIA. However, because of the novelty of these devices
and applications, more validation research is needed in a wide range of populations and
during longitudinal tracking of body composition.

3.6. Air Displacement Plethysmography (ADP)

Air displacement plethysmography, performed using the BOD POD, uses densitome-
try to estimate body composition [64] (similar to SKF and HW). The BOD POD contains
a chamber with a volume of 450 or 500 L and computerized sensors that measure body
volume by air displacement while the individual is seated in the chamber (see Figure 4).
Thoracic gas volume (i.e., the volume of air in the lungs and thorax) can be quantified as
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an additional measure while in the chamber or estimated by the BOD POD. Once all of the
necessary variables are measured, the BOD POD program calculates ~8 body composition
metrics. The accuracy of the BOD POD has been deemed high, but it has been shown to
overestimate %Fat in lean individuals in some studies when compared to HW [65–67].
Potential contributors to inconsistent measures include testing conditions, clothing worn
in the BOD POD, and excessive facial or body hair [50,51].
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3.7. Dual-Energy X-ray Absorptiometry (DXA)

DXA has become the preferred method for assessing body composition, with a no-
table advantage being that it provides a multi-compartment assessment that includes
bone [68,69]. Multi-compartment models have the ability to distinguish multiple tissue
components, which reduces the assumptions from which body composition estimates are
based and increases the accuracy [70,71]. The DXA instrument measures tissue absorption
of high- and low-energy X-ray beams that pass through the individual lying supine on the
scanning bed (see Figure 5). It uses the attenuation, or weakening, of those X-ray beams
to provide accurate estimates of bone mineral content and soft-tissue composition. This
attenuation of the X-ray beams is measurable and heavily dependent on the thickness,
density, and chemical composition of the underlying tissue. The major limitation of DXA is
radiation exposure (albeit a very low dose). With DXA, practitioners can quantify FM, bone
mineral content, and non-bone, fat-free tissue mass, thereby reducing the assumptions
being relied on with SKF, ADP, and HW methods [68]. However, DXA is unable to assess
total body water and therefore assumes a constant FEM hydration level and measures
excess body water as additionally lean tissue mass, indicative of a source of error.

3.8. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)

CT and MRI are imaging techniques that provide cross-sectional images of specific
body regions in the form of a plane through the body (see Figure 6) [51,72]. The results
from these imaging methods are considered the most accurate means of quantifying
body composition at the tissue–organ level and have significantly impacted the scientific
understanding of body composition and its relation to disease risk and outcome [51,73].
Both CT and MRI allow for the segmentation of specific tissues and provide direct measures
of a tissue cross-sectional area [72]. The CT system comprises an X-ray tube and receiver,
both of which rotate in a perpendicular plane to the patient. Similar to the DXA scan,
X-rays are emitted from the tube and are attenuated as they flow through the targeted
tissues [51,74]. Once the receiver identifies the X-rays, image reconstruction commences
using various mathematical techniques. Pixelated cross-sectional images of the target area
are illustrated in gray scale, which reflects the composition of the tissue and differs based
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on the density of the tissues. Similar to a DXA scan, a CT scan exposes the patient to a
relatively low-dose of radiation, though it is greater than that of DXA. For example, the
average effective dose for a DXA bone density test is 0.001 mSv, while a CT scan of the spine
or pelvis is 6 mSv. This higher exposure dosage makes the frequency of CT scans a limiting
factor. While the CT system uses ionizing radiation, MRI relies on the interaction between
protons and the magnetic fields produced by the MRI system’s instrumentation [51,72,74].
MRI uses the radio frequency signals resulting from the interaction between the protons of
the tissues and the magnetic fields to generate cross-sectional images. Both CT and MRI
provide valid and in-depth body composition information, but these imaging techniques
require expensive scanners, certified, trained technicians to perform the scans, analysis
software, and expertise to quantify the tissue–organ level components of the produced
images. It is worth noting that one drawback of the MRI scan is the adherence of patients
in remaining motionless for long periods of time (e.g., 20–120 min) in a small space with
potentially loud noises caused by the working equipment. These obstacles presented by
the MRI system can diminish compliance and make patients uncomfortable during testing.
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3.9. Hydrostatic Weighing (HW)

Hydrostatic weighing (aka underwater weighing, hydrodensitometry) is a founda-
tional body composition method that was considered the “gold standard” for assessing
FM and FFM for decades. HW is based on Archimedes’ principle, which states that when
a body is immersed in water, it is buoyed by a counterforce equal to the weight of the
displaced water (see Figure 7) [50,51]. Basically, the weight of a person (or an object) in
water is less than their mass on land. This difference in weight provides an estimate of body
volume. Muscle and bone are denser than water, while fat tissue is less dense; therefore,
the more the FFM and less FM someone has, the greater their underwater weight will
be, and vice versa. Once the mass and volume of an individual are known, body density
can be calculated as mass ÷ volume, and %Fat can be calculated using one of the body
composition equations shown above for the SKF method [48,49]:
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One additional, important component needed for HW assessment is residual lung
volume, which is the amount of air remaining in the lungs after a maximal expiration
(~1–2 L). Whether practitioners measure residual lung volume or estimate it using various
prediction equations, this value must be included in the hydrostatic weighing calculations
of body composition to avoid significant overestimations of %Fat. Because HW requires
individuals to submerge themselves underwater repeatedly after expiring as much air from
their lungs as possible, many find it to be extremely uncomfortable.

4. Practical Applications

Important factors to consider when choosing a body composition assessment method
are accuracy, accessibility, and expense. Table 2 provides an overview of the various meth-
ods discussed above and provides each method’s requirements as well as the associated
pros and cons. In order to achieve the greatest accuracy and reliability, it is important
to choose the method that is the most appropriate for the tissue or condition of interest.
For example, DXA is optimal for quantifying bone mineral density for the diagnosis and
management of osteoporosis, whereas BIA, ADP, or DXA may be used to quantify FFM
and FM for identifying sarcopenia, cachexia, or sarcopenic obesity. Moreover, BIA stands
as an ideal tool for monitoring significant changes in hydration status and body fluid
distribution among patients participating in a weight loss intervention and those with or at
risk of developing lymphedema. With older adults comprising an increasing proportion of
the population, the identification of these age-related conditions is particularly important.
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Any of the anthropometric and body composition assessment methods can be used to
identify obesity, the most prevalent nutrition-related condition in the U.S. and one for
which treatment and management approaches are implemented frequently. Likewise, this
array of assessment methods can be used to track treatment responses during weight loss
interventions for obesity. Waist circumference, alone or expressed as WHR or WHtR, is
an effective and simple approach for identifying the excess abdominal adiposity that con-
tributes to metabolic conditions such as type 2 diabetes, polycystic ovary syndrome, and
non-alcoholic fatty liver disease. An MRI facilitates the quantification of intra-abdominal
and subcutaneous adipose tissues, which pose distinct metabolic risks. SKF, BIA, and
ADP are excellent options for quantifying the FFM and FM of athletes and for guiding
nutritional strategies to optimize performance. A combination of anthropometric and
more sophisticated assessment methods may be advantageous, particularly when tracking
changes longitudinally in response to a diet or exercise program.

Table 2. Overview of Body Composition Assessment Technique Requirements, Pros, and Cons.

Assessment Method Equipment Needed Time Needed for
Assessment Pros Cons

Body Mass Index (BMI)
• stadiometer
• scale ≤3 min

• quick
• simple
• inexpensive

• does not differentiate
between FM and FFM

Circumferences
• flexible tape

measure ≤5 min

• quick
• simple
• inexpensive
• portable

• does not differentiate
between FM and FFM

Skinfolds (SKF) • skinfold calipers 10–20 min

• accurate when
performed by a
skilled assessor

• inexpensive
• portable

• technical expertise
required to minimize
intra- and inter-observer
variability

• close proximity & skin
contact required with
various body regions

• accuracy is compromised
by dehydration, edema,
& muscle wasting

Bioelectrical Impedance
Analysis (BIA)

• BIA instrument
• stadiometer
• scale & electrodes

(for some BIA
instruments)

≤5 min

• quantifies reginal
body composition
(some models)

• provides an
estimate of body
water

• simple for assessor
& individual being
assessed

• accessible at home
(some models)

• relatively
inexpensive (prices
vary)

• accuracy varies across
instruments

• contraindicated in
individuals with
implantable electronic
devices due to potential
interference

Digital Image Analysis

• 3D scanner

~ or ~

• smartphone with
camera & digital
image app

1–2 min
• quick
• simple
• portable

• limited validation
research

• tight-fitting clothing
must be worn

Air Displacement
Plethysmography (ADP)

• BOD POD
instrument

• stadiometer
• scale

≤10 min

• automated;
minimal technical
expertise needed

• minimal effort
needed from
participant

• expensive
• large space required
• minimal and tight-fitting

clothing and swim cap
must be worn

• excessive facial or body
hair may introduce error
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Table 2. Cont.

Assessment Method Equipment Needed Time Needed for
Assessment Pros Cons

Dual-Energy X-ray
Absorptiometry (DXA)

• DXA machine 10–30 min

• quantifies bone
mineral content &
bone mineral
density, in
addition to FM &
non-bone lean
mass

• high reliability
• minimal effort

needed from
participant

• expensive
• personnel training &

certification required
• low-level radiation

exposure
• contraindicated during

pregnancy

Computed Tomography
(CT)

• CT scanner
• analysis software

variable (depends on
regions being scanned)

• quantifies tissue
cross-sectional
area

• high validity
• minimal effort

needed from
participant

• expensive equipment
• personnel training &

certification required
• radiation exposure
• contraindicated during

pregnancy

Magnetic Resonance
Imaging (MRI)

• MRI scanner
• analysis software

variable (depends on
regions being scanned)

• quantifies
abdominal FM
and other regions
of interest

• high validity

• expensive equipment
• personnel training &

certification required

Hydrostatic Weighing
(HW)

• large tank or pool
filled with water

• chair suspended
from a scale above
the tank

• spirometer
• metabolic cart or

nitrogen washout
system (for residual
lung volume)

• scale (for body weight
on land)

• nose clips

30–45 min
• accurate
• validated

• expensive, sophisticated
equipment, set-up, &
maintenance required

• technical expertise
required

• uncomfortable for
participant

• not feasible for individuals
who fear being underwater

The accuracy of body composition assessment is optimized if the individual follows
specific pre-testing guidelines: (a) no food within 8 h of testing, (b) no water within 2 h of
testing, (c) no exercise within 24 h of testing, (d) no alcohol consumption within 48 h of
testing, and (e) empty the bladder/bowels within 30 min before testing. It is recommended
to perform body composition assessments in the morning after an overnight fast, which
helps to ensure that these conditions are met. Additionally, adequate (but not excessive)
hydration is important for accurate assessment and can be estimated by checking the color
of urine; if the urine color is dark, the individual should drink water and wait 30–45 min
before being assessed (when feasible) [50,51]. Although accuracy is arguably the most
important factor when choosing a body composition method, accessibility and expense are
important considerations.

5. Conclusions

All of the body composition assessment techniques discussed in this article have some
level of scientific literature validating them. Nevertheless, each of the aforementioned
methods has limitations and all methods provide estimates of body composition that
are dependent on a range of assumptions. Finally, it is worth noting that quantifiable
and clinically meaningful changes in body composition take time to occur; therefore, the
frequency of assessments should be determined based on the individual, the intervention,
and the goals to be achieved. In summary, body composition assessment is an important
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tool for the identification of common nutrition-related conditions that impact individual
and public health and provides valuable information about responses to treatment.
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