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Abstract: Seafood (fish in particular) is one of the main food groups in nutrition models with proven
health benefits. Seafood has long been considered a very valuable dietary component, mainly due
to presence of n-3 polyunsaturated fatty acids (n-3 PUFA) but it is also an important source of
protein (including collagen), anserine, taurine, iodine, selenium, vitamin A, vitamin K, vitamin D,
tocopherols, B vitamins and astaxanthin. Considering the beneficial effects of these ingredients on
blood pressure, lipid profile and the inflammatory process, seafood should be an essential component
of the diet. Non-communicable diseases (NCD) such as cardiovascular diseases, cancer, diabetes and
mental disorder, chronic respiratory diseases are common diseases associated with advanced age.
Promotion of a healthy lifestyle (including proper nutritional behavior) and prevention of diseases
are the most effective and efficient ways to decrease premature mortality from NCD and to maintain
mental health and well-being. This review article shows the potential preventive and therapeutic
effects of seafood with an emphasis on fish. Our narrative review presents the results of systematic
reviews and meta-analysis.
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1. Introduction

Seafood includes fish or shellfish, divided into crustaceans and molluscs. Crustaceans
include shrimp, lobsters, crabs, crayfish, and molluscs include scallops, oysters, clams, and
squid [1]. The most important national and international nutritional guidelines recommend
the regular consumption of fish [2,3]. Seafood (fish in particular) is one of the main food
groups in nutrition models with proven with health benefits, such as the Mediterranean
diet [4] and Dietary Approaches to Stop Hypertension dietary pattern [5].

The consumption of fish in the USA has not changed over almost two decades (1999–
2016) [6]. There are variations in the amount of fish consumed both within and between
populations. Consumption of fish in many Western populations differs. It can be divided
in three groups regarding the frequency of consumption and each group is represented by
approximately one third of the studied populations.

The first group includes people who do not eat fish at all, the second group includes
people who consume fish up to once a week, and the representatives of the third group eat
fish more often than once a week. The differences in fish consumption are undoubtedly
due to personal and environmental factors (e.g., culture, place of residence, family habits,
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socioeconomic status) [7]. In the European and US populations surveyed (86,467 partici-
pants from the US, Estonia, Finland, Greece, Italy, and the Netherlands), the average fish
consumption ranged from 0.19 servings/day (19 g/day) to 0.75 servings/day (75 g/day).
Overall, participants in the European cohorts had a higher fish consumption than the
US cohorts [8]. It has been estimated approximately 37% of elderly (range 72–83 years)
eat one serving of fish less than once a week, 29% 1 serving/weekly, approx. 27% 2–3
servings/weekly, and only 6% more than four servings/weekly (results from one French
cohort and four US cohorts) [9].

The mean consumption of eicosapentaenoic acid and docosahexaenoic acid (EPA and
DHA) ranged from 89 to 563 mg/day and was generally adequate to fish consumption. The
exception was for the Greek population which had a relatively higher fish consumption
than EPA + DHA consumption, suggesting a predominant consumption of white non-
greasy fish. Overall, participants in the European cohorts consumed more fish than the US
cohorts [8].

As World Health Organization (WHO) experts concluded, promotion of a healthy
lifestyle (including proper nutritional behavior) and prevention of diseases are the most
effective and efficient ways to decrease premature mortality from non-communicable
diseases (NCD) and to maintain mental health and well-being [10]. It is recommended to
eat at least two servings of fish per week, one of which should be oily fish [2]. Seafood
is of interest as a dietary component with potential beneficial effects in preventing the
development of chronic NCD due to the presence of long-chain n-3 fatty acids (especially
in oily marine fish), essential amino acids, vitamins and minerals and ingredients with
antioxidant activity [11–14]. Considering the beneficial effects of these ingredients on
blood pressure, lipid profile and the inflammatory process, seafood should be an essential
component of the diet. Meanwhile, the consumption of this group of products varies
globally. Several epidemiological studies have shown that higher fish consumption is
associated with lower rates of cardiovascular diseases (CVD), coronary heart disease (CHD),
and cerebrovascular mortality (including mortality from stroke, myocardial infarction and
sudden cardiac death) [15–17].

The World Health Organization (WHO) estimates that the global elderly population
will increase from 12% to 22% by 2050 [18]. It has been estimated that non-communicable
diseases (NCD) such as cardiovascular diseases, cancer, diabetes and mental disorder,
chronic respiratory diseases, which are common diseases associated with advanced age [19],
are the leading cause of death in the world (over 70% of all deaths worldwide in 2016).
Probability of premature mortality from NCD in the age group of 30–70 years old ranges
between 8% and 31%, depending on geographical localization [10]. NCD are an economic
burden on the economy, especially in developing countries [20].

Therefore, it is very important to introduce early prophylaxis in order to prevent
age-related diseases, to minimize the risk or slow down their development, thus affecting
well-being of older adults [19].

This narrative review briefly describes the nutrients and bioactive components found
in seafood. It shows the potential preventive and therapeutic effects of seafood with an
emphasis on fish based on 14 systematic reviews and meta-analysis published in 2007–2020.
The systematic reviews and meta-analysis are considered to be the most powerful assessing
tools [21].

2. Nutrients and Bioactive Compound

Seafood has long been considered a very valuable dietary component, mainly due to
presence of n-3 polyunsaturated fatty acids (n-3 PUFA) but it is also an important source
of protein (including collagen), anserine, taurine, iodine, selenium, vitamin A, vitamin K,
vitamin D, tocopherols, B vitamins and astaxanthin [11,22–26].
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2.1. Eicosapentaenoic Acid and Docosahexaenoic Acid

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are included
in the so-called long-chain acids (n-3 LC PUFA) have particularly health beneficial prop-
erties [22]. EPA and DHA acid show a beneficial effect on endothelial dysfunctions,
anti-inflammatory properties [27–30], and reducing blood viscosity [31]. N-3 fatty acids
lower the level of lipids [32], blood pressure [33] and decrease the risk of cognitive de-
cline [34]. Vitamin D and selenium also present in fish, can enhance the neuroprotective
effects of long-chain n-3 fatty acids [34]. Selenium (especially in the form of selenoproteins)
and vitamin D are involved in several processes within central nervous system [35–37].
Vitamin D receptors are present in numerous tissues, including brain cells. Vitamin D is
an important factor in regulation of the development and functioning of nerve cells. It
probably plays a role similar to that of neurosteroids, influencing intracellular metabolism.
The active form of vitamin D is involved in the synthesis and release of nerve growth factor
(NGF—neurotrophic factors influencing neuron differentiation) and increases the levels
of glial cell line-derived neurotrophic factor (GDNF). It also modifies the expression of
(i) genes encoding the enzyme choline acetyltransferase (CAT) which participates in the
synthesis of acetylcholine neurotransmitter, and (ii) genes associated with GABA-ergic
neurotransmission. The hormonal form of vitamin D (1.25-(OH)2 D3) as well as selenium
influence calcium ion pathways in the neuronal environment by altering the calcium ion
homeostasis. Vitamin D activates the glutamyl transpeptidase enzyme activity and thereby
stimulates the synthesis of glutathione. Selenium, selenoproteins and vitamin D protect the
cells of the central nervous system against oxidative damage [36,37]. The long-chain docos-
apentaenoic acid (22:5n-3) is also present in seafood. It is believed that both the circulating
and tissue level of this fatty acid may have a beneficial cardiovascular effect [38].

The richest sources of EPA and DHA are mainly fatty fish (including mackerel, salmon,
herring, sardines, sprats, farmed trout). Depending on the fishing season, these fish contain
from 1.4 to 2.5 g of EPA and DHA in 100 g of muscle tissue [22,39]. As a rule, the lowest
EPA and DHA content in oily fish occurs during spawning (March–April) and winter
migration, i.e., when the fish are not feeding [40]. However, the highest content occurs after
the period of abundant foraging, which most often occurs in the autumn months, between
September and October [39].

Farmed seafood is wrongly viewed as being nutritionally inferior to wild seafood.
Taking into account EPA and DHA, farmed fish, both marine and freshwater, are often
a richer source of fatty acids. This is due to the higher fat content of the feed, which is
often based on fishmeal or fish oil rich in EPA and DHA. Farmed seafood also have a
less intensive lifestyle compared to their wild counterparts, therefore their fat content is
higher [41,42].

Interestingly, a decrease in the content of n-3 LC PUFA (DHA, EPA) in farmed fish has
been observed for several years, as a result of replacing fishmeal and fish oil with vegetable
oils in feeds [43,44].

Seasonal fluctuations in the content of lipids and n-3 PUFAs occur in both marine
fish [45] and freshwater fish [46,47] and are related to fish development cycle (lipid
metabolism) and food (availability and composition of the food) [48].

When comparing content of EPA and DHA in seafood, only absolute content of acids
per 100 g of the product should be taken into account. The weight of 100 g of muscle
tissue of farmed salmon contains 1.36 g of EPA and DHA, while in wild salmon—0.76 g.
Observed differences result from higher lipid content in muscle tissue of farmed fish [43].
The lowest content of EPA and DHA, 80–160 mg/100 g, is found in lean fish (cod, pollock,
hake) and mollusks such as octopus and cuttlefish.

Assuming that the daily requirement of DHA + EPA is 500 mg [49], it is enough to
eat only 20–75 g of oily fish to provide this amount of acids. It does not seem to be a large
amount, so it can be easily included in diet even for people who do not prefer fish dishes.
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2.2. Astaxanthin and Tocopherols

Astaxanthin (AX) is a red pigment from the carotenoid group, which does not have
the properties of provitamin A. The marine products such as alga, shrimp, crabs, trout, krill,
lobster, crayfish, salmon and salmon roe are the source of AX [50,51]. It is used as a feed
ingredient for farmed fish and as a food coloring [23]. Among salmonids, the content of
astaxanthin ranges from 3 to 37 mg/kg and the highest content was estimated in free-living
species where the content was at the level of 26–38 mg/kg flesh [23,52]. Thus, a 200 g
serving of salmon provides about 1–7 mg of astaxanthin. In a randomized, double-blind,
placebo-controlled trial conducted in healthy subjects aged 35–69 years, no side effects
were found with a daily intake of 6 mg of astaxanthin (H. pluvialis algae extract) [53].

Among carotenoids, astaxanthin most effectively protects cells, lipids and lipoproteins
of cell membranes against oxidative damage (fluorometric assay: BODIPY 665/676 or
BODIPY 581/591 C11 as an indicators; AMVN as a peroxyl radical generator; Trolox as a
calibrator). Astaxanthin was more effective than fish oil in modulating the immune system
response and reducing the risk of vascular and inflammatory diseases. The antioxidant
activity of astaxanthin is 10 times more than zeaxanthin, lutein, canthaxanthin, β-carotene
and 100 times higher than α-tocopherol [23]. Oxidative stress and inflammation are
pathophysiological features of atherosclerotic cardiovascular disease and cancer [54].

α-, β-, γ-, and δ-tocopherol, fat-soluble vitamin, which are present in seafood also
have antioxidant properties [24]. The vitamin E content in fish is higher than that of meat
or poultry and varies between species and tissues (higher amounts in dark muscle). The
content ranges from 0.1 mg/100 g in some wild fish species to 3–4 mg/100 g in aquaculture
fish and depends on diet, season, age, and size. For example, in cod, which is a lean fish,
the level is 0.3 mg/100 g. In seafood the level of tocopherols decreases as a result of freezing
storage for 6 months and of cooking [24].

The presence of other vitamins and selenium in seafood enhances the pro-health effect
of tocopherols [55]. Vitamin E has been proposed for the prevention against colon, prostate
and breast cancers, some cardiovascular diseases, ischemia, cataract, arthritis and certain
neurological disorders [56].

2.3. Protein

In case of the lean fish, the main ingredients are proteins, which are a great source
of amino acids (AA), including nutritionally essential (EAA), nonessential (NEAA), con-
ditionally essential (CEAA), as well as functional amino acids (FAAs) [57,58]. The latter
includes arginine, cystine, leucine, methionine, tryptophan, tyrosine, aspartate, glutamic
acid, glycine, proline and taurine [58].

FAAs perform a variety of functions in the human body, including regulation of
gene expression, cell signaling via kinase pathways, stimulation of brown adipose tissue
development and thermogenesis, appetite and body composition, modulation of immune
responses and prevention of infectious disease, reproduction, hormone secretion and en-
docrine status, antioxidative defense and removal of toxic substances, anti-inflammatory
mechanisms, regulation of apoptosis and aging, neurological function and behavior (in-
cluding neuroprotective effects), regulation of blood flow and cardiovascular function (e.g.,
NO synthesis) and recovery from injury. Accordingly, FAAs show great potential in the
prevention and treatment of metabolic diseases, e.g., obesity, diabetes, cardiovascular dis-
orders, intrauterine growth restriction, infertility, intestinal and neurological dysfunction,
and infectious disease [58].

The content of these amino acids in different species of fish varies, resulting in the
following range of content for arginine 0.1–6.5 g/100 g protein; leucine 0.1–10.4 g/100 g
protein; methionine 0.02–4.0 g/100 g protein; tyrosine 0.03–8.4 g/100 g protein; tryptophan
0.1–6.5 g/100 g protein; cystine 0.03–0.6 g/100 g protein; aspartate 0.1–12.3 g/100 g
protein; glutamic acid 0.2–16.5 g/100 g protein; glycine 0.1–13.7 g/100 g protein; proline
0.07–9.6 g/100 g protein [59].
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Interestingly, a diet based on lean fish (such as cod) provides more certain amino
acids (alanine, arginine, aspartic acid, glycine, methionine, and lysine) compared to a
diet in which the lean fish is replaced with lean poultry, beef, veal or pork. In studies
involving insulin-resistant men and women, it was found that cod protein diet improves
insulin sensitivity compared with other lean animal protein sources. This effect is probably
dependent on the amino acid composition, e.g., lower branched-chain amino acids (BCAAs)
and higher arginine content [60]. An increase in sex hormone-binding globulin [61] and
high-density lipoprotein 2 (HDL2) cholesterol concentrations [61,62] was also observed.

Collagen (mainly type I collagen) is the most abundant protein of intramuscular
connective tissue in fish [63] and mostly is composed of amino acids such as glycine, valine,
proline, and alanine [64]. Collagen obtained from fish skins, fish bones and scales is used in
the pharmaceutical, cosmetic and food industries. Glycine has been shown to, in addition
to reducing the symptoms associated with arthritis, have a beneficial effect on the growth
of nails and hair [64].

2.4. Taurine and Anserine

Taurine is classified as an amino acid with antioxidant properties, but it is not built
into the structure of proteins. Among foods, taurine is the most abundant in seafood (up to
800 mg/100 g in scallops), compared to 300 mg/100 g in turkey [65]. Cooking seafood in
water causes its greatest losses [66].

Interestingly, in patients with metabolic syndrome, obesity, type II diabetes and
cardiovascular diseases, lower plasma taurine concentrations were observed compared to
healthy subjects. The decline in plasma and tissue taurine levels is also associated with the
aging process [13].

The physiological function of taurine and its derivatives is very complex and has
beneficial properties on many systems: cardiovascular, digestive, endocrine, immune,
muscular, neurological, reproductive, and visual systems. Taurine provides antioxidant
protection for cells and tissues, including the brain. As a component of bile salts, it
is involved in the absorption of fat and fat-soluble vitamins and in the elimination of
cholesterol via the fecal route. In addition, it stimulates the development of the nervous
system and shows anti-inflammatory and antiapoptotic properties. The taurine derivative,
n-chlorotaurine participates in defense mechanisms against pathogens: viruses, bacteria,
fungi and parasites [11].

Anserine is a carnosine-like dipeptide [67] abundant in fish skeletal muscles e.g.,
salmon, tuna, trout [68]. For humans, it is an exogenous compound [69] and is metabolized
into carnosine [70]. Physiological role includes H+ buffering, antioxidation and modulation
of muscle contractility [68,70].

Human clinical trials have shown anserine to be beneficial for metabolic (reduced
blood glucose), ageing-associated neurological (cognitive and memory), inflammation, im-
munological, cardiovascular and renal functions and also enhance muscular strength [11].

3. Potential Health Benefits
3.1. Cardiovascular Diseases and Mortality

Cardiovascular diseases are the leading cause of death in the United States. Mortality
after the onset of heart failure (HF) is estimated at almost 50% within 5 years of the
diagnosis [71]. As the incidence of obesity, diabetes and hypertension is increasing, the
incidence of HF is projected to increase in the coming years. Coronary artery disease (CHD)
and hypertension are the main causes of HF, therefore reduction of the risk of CHD and
hypertension may reduce the incidence of HF [72].

Some studies have shown geographical differences in the effect of fish consumption
on mortality risk. An inverse relationship has been observed in studies on the Asian
population [73,74], while some Western studies have not shown a relationship and even
reported a higher risk associated with high fish consumption [75–77].
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Zhong et al., after 30 years of follow-up (mean follow-up 19 years) and a group of
29,682 American adults (mean ± standard deviation (SD) age was 53.7 ± 15.7 years at
baseline), found that higher consumption of processed meat, unprocessed red meat or
poultry but not fish, is significantly associated with a higher risk CVD occurrences [78].
The median (interquartile range (IQR)) intake in servings per week was 1.6 (0.9–3.4) for
fish. The association between fish consumption and the incidence of CVD was stronger
for participants who consumed significant amounts of protein in their diet than those who
consumed less protein (HR, 0.96 (95% confidence interval (CI): 0.93–0.99) compared to 1.02
(95% CI: 0.99–1.05); p for interaction = 0.002) [68]. Additional intake of two servings of fish
per week was not significantly associated with CVD incidence (HR, 1.00 (95% CI: 0.98–1.02);
30-years adjusted absolute risk difference (ARD), 0.12% (95% CI: −0.40% to 0.65%) and with
all-cause mortality (HR, 0.99 (95% CI: 0.97–1.01); 30-years adjusted ARD, −0.34% (95% CI,
−0.88% to 0.20%) [78]. There was no significant difference between the consumption of oily
and non-oily fish with regard to CVD incidents and all-cause mortality [78]. However, in a
10-year follow-up with sensitivity analysis, the authors observed a statistically significant
inverse relationship between fish consumption and total mortality (all causes of death) [78].

Two meta-analyses showed a weak inverse correlation between fish consumption and
the risk of developing CVD or mortality [79,80]. Jayedi et al. analyzed 14 studies with
911 348 participants (age range 30–84; follow-up duration of 5–30 years) and found that
increase of 20 g/day in fish intake was significantly and inversely associated with the
risk of total CVD mortality and inversely associated with the risk of all-cause mortality.
Interestingly, the shape of the association varied depending on geographical region
(linear—Asian studies or U-shaped—Western studies) [79]. The association between
20 g/day increase in fish consumption and all-cause mortality was significant only among
Asian studies (RR = 0.97; 95% CI: 0.96–0.98; I2 = 0%, Pheterogeneity = 0.49, n = 5) compared
to Western studies (RR = 0.99; 95% CI: 0.97–1.01; I2 = 80.3%, Pheterogeneity < 0.0001, n = 8).
It was also significant only in the subgroup of studies with follow-up duration <13 years
(RR = 0.97; 95% CI: 0.96–0.99; I2 = 57 5%, Pheterogeneity = 0.02, n = 8) compared to >13 years
of follow-up (RR = 1.00; 95% CI: 0.98, 1.01; I2 = 76.7%, Pheterogeneity = 0.001, n = 6) [79]. A
relatively rapid decrease in risk was observed with an increase in fish consumption of over
~60 g/day (Pnon-linear < 0.0001) [79].

Djousse et al. [80] found that higher fish consumption and higher dietary or plasma
EPA/DHA levels were associated with an approximately 15% lower risk of HF compared
to the corresponding lower exposure category [80]. There is also evidence of a linear
and inverse relationship between fish consumption and the risk of HF. There was a 5%
lower risk of HF [RR: 0.95 (95% CI: 0.93–0.98)] with a higher fish consumption of 15 g/day
(equivalent to one additional fish per week). In the pooled analysis between the highest
versus lowest category of fish intake, a higher intake of fish was associated with a 15%
(95% CI: 1% to 27%; I2 = 8%) lower risk of HF. Sensitivity analysis based on geographical
location, showed that in USA pooled RR is 0.69 (95% CI: 0.54–0.89). Heterogeneity has not
been demonstrated [80].

In turn, Zhao et al. [81] showed a significant inverse relationship between the con-
sumption of fish and the risk of all-cause mortality at the consumption of 60–80 g/day.
Further increase of the amount did not affect the RR value [81].

3.2. Metabolic Syndrome and T2DM

Metabolic syndrome is a serious public health problem in Western countries. Its
incidence has risen rapidly over the past two decades. According to data from the Na-
tional Health and Nutrition Examination Survey (NHANES), approximately one-third of
American adults suffer from this syndrome [82,83].

Meta-analysis of relative risk from three prospective cohort studies (7860 participants;
18–69 years old) indicated a significant inverse association between fish consumption and
development of metabolic syndrome comparing the highest and the lowest category of
intake (RR: 0.71, 95% CI: 0.58, 0.87; I2 = 60.7%, p = 0.08). The increment of one serving of
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fish/week reduces metabolic syndrome risk by 6% (RR: 0.94; 95% CI: 0.90, 0.98; I2= 66.3%,
p = 0.052) [84].

The meta-analysis of 16 studies (overall number of participants 679,763) with a min-
imum and maximum follow-up period of 4 and 23 years, respectively (11.5 years an
average), indicated that seven times increase in fatty fish consumption reduces the risk of
T2DM (RR 0.89; CI = 0.801, 0.987; I2 = 0) [85]. The same study found no significant effect
of lean fish and shell fish consumption on T2DM. Interestingly, among the Asians and
Australians three times higher consumption of marine n-3 fatty acids reduces the risk of
diabetes (RR 0.857, CI 0.79–0.93) [85].

3.3. Cancer

In particular, oily fish are a good source of n-3 fatty acids which may have anticancer
properties against various types of cancer [86]. Meta-analysis by Tavani et al. [87] showed
an inverse relationship between the consumption of n-3 polyunsaturated fatty acids and
ovarian cancer [87]. However, the pooled analysis of fish consumption and cancer risk did
not show such a trend.

The meta-analyses based on two case–control studies indicated an increased risk of
endometrial cancer associated with total fish consumption (OR: 1.88; 95% CI: 1.20–2.98).
However, as the authors note, the evidence is limited and inconsistent [88].

Kolahdooz et al. [86] in their meta-analysis defined “the total fish” as “canned tuna
and dark-meat fish such as sardines (also classified as fatty fish), other types of fish
(also classified as nonfatty fish), fish sticks, and seafood such as prawns and crabs” [86].
Analysis based on overall six studies (16 886 patients, at the age of 18–79 years old) such as
population based case–control studies and hospital-based case-control studies showed an
inverse relation between total fish consumption and the risk of ovarian cancer (RR: 0.84;
95% CI: 0.68, 1.03; Pheterogeneity = 0.003) [86].

Dose-response analysis of 13 cohort studies indicated that overall RR for the fish
intake of 120 g/day was 1.07 (95% CI: 0.94–1.21) with moderate heterogeneity (I2 = 33.3%),
therefore null association between fish intake and risk of breast cancer was observed.
Additionally, subgroup analysis showed a similar tendency taking into account factors
such as age, menopausal status, region, duration of follow-up and study type [89].

Similar results were obtained by Zheng et al. [90] in meta-analysis of 11 studies (687,770
participants) estimating the pooled relative risk between the highest versus lowest category
of fish intake (RR 1.03, 95% confidence interval 0.93 to 1.14; I2 = 54%). Dose–response
analysis also showed no association with risk of breast cancer for 15 g/day increase of
intake (RR 1.00, 95% Cl 0.97 to 1.03) [90].

In pooled analysis with 52,683 patients (range 18–97 years old; 9–22 years of follow-up)
Wu et al. did not observe a statistically significant relationship between seafood intake
and the risk of prostate cancer regardless of stage or grade for the following consumption
categories: below 5 g/day, 5–40 g/day and above 40 g/day (RR 1.04 (0.98–1.09); I2 = 25%).
No separate analysis was performed for lean and fatty fish [91].

Another meta-analysis (49,661 participants) showed no strong evidence of a protective
influence of fish consumption on prostate cancer incidence (even in subgroup analyzes
for factors such as race, fish type and method of preparation, grade and stage cancer). A
statistically significant 63% lower risk was found for prostate cancer-specific mortality
comparing the highest versus lowest categories of fish intake (RR: 0.37; 95% CI: 0.18, 0.74).
However, the results were based on only four cohort studies and there was significant
heterogeneity in the results between studies (test for heterogeneity P = 0.001) [92].

Colorectal cancer is the third most common cancer in men (10.0% of all cancer cases)
and the second most common cancer in women (9.2% of all cancer cases) worldwide [93].
An 11% decrease of risk of colorectal cancer was observed for fish intake (RR for 100 g/day
= 0.89 (95% CI = 0.80–0.99, I2 = 0%, Pheterogeneity = 0.52)) based on 11 studies [93]. The
association of fish intake and colon or rectal cancer risk were not significant, with RR = 0.91
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(Cl 0.80–1.03, I2 = 0%, Pheterogeneity = 0.76, 11 studies) and RR 0.84 (0.69–1.02; I2 = 15%,
Pheterogeneity = 0.31, 10 studies), respectively [93].

3.4. Cognitive Impairment

Zhang et al. in meta-analysis defined standard serving as 105 g. The sample of 21941
participants (55–94 years old; 2–9.6 years of follow-up) from four independent cohorts
were included; four trials and five trials reported the association between fish consumption
and various risk of adverse cognitive outcomes, respectively, dementia and Alzheimer’s
disease (AD).

Overall RRs and 95% confidence intervals (CIs) were one-by-one investigated for an
increment of fish (one serving/week). A dose–response meta-analysis showed that risk
of dementia and AD was significantly reduced for an increment of one serving/week,
respectively, RR 0.95 (95% CI: 0.90, 0.99; p = 0.042, I2= 63.4%) and RR: 0.93; (95% CI: 0.90,
0.95; p = 0.003, I2 = 74.8%). Both results had no publication bias.

Whereas, for participants who had no fish consumption, relative risks (RRs) of AD
were 0.79 (95% CI: 0.66, 0.95), 0.74 (95% CI: 0.62, 0.89), and 0.71 (95% CI: 0.62, 0.81) for 2,
3 and 4 servings fish/week, respectively. However, no significant curvilinear association
with risk of dementia was observed (p = 0.176) [94].

Recently published umbrella meta-analysis of 34 meta-analyses on prospective ob-
servational studies indicated additional 100 g/day increment in fish consumption was
associated with a lower risk of all-cause mortality (summary relative risk SRR: 0.92; 95% CI:
0.87, 0.97), cardiovascular mortality (SRR: 0.75; 95% CI: 0.65, 0.87), coronary heart disease
(SRR: 0.88; 95% CI: 0.79, 0.99), myocardial infarction (SRR: 0.75; 95% CI: 0.65, 0.93), stroke
(SRR: 0.86; 95% CI: 0.75, 0.99), heart failure (SRR: 0.80; 95% CI: 0.67, 0.95), depression (SRR:
0.88; 95% CI: 0.79, 0.98), and liver cancer (SRR: 0.65; 95% CI: 0.48, 0.87) [95]. These outcomes
were evaluated as moderate-quality evidence [95]. The results of described studies are
summarized in Table 1.

Table 1. Summary of significant potential health benefits of fish consumption in previous meta-analysis.

References Studies (N) Participants (n) Outcome RR (95% Cl)/SRR *

Jayedi et al. (2018) [79] 14 911,348 All-cause mortality 0.97 (0.96–0.98)
Djousse et al. (2012) [80] 5 170,131 Heart failure 0.95 (0.93–0.98)

Zhao et al. (2016) [81] 12 672,389 All-cause mortality 0.94 (0.90–0.98)
Kim et al. (2015) [84] 9 7860 Metabolic syndrome 0.71 (0.58–0.87)

Muley et al. (2014) [85] 16 679,763 T2DM 0.89 (0.801–0.987)
Kolahdooz et al. (2010) [86] 6 16,886 Ovarian cancer 0.84 (0.68–1.03)

Bandera et al. (2007) [88] 5 10,543 Endometrial cancer 1.88 (1.20–2.98)
Wu et al. (2016) [89] 13 758,359 Breast cancer 1.07 (0.94–1.21)

Zheng et al. (2013) [90] 11 687,770 Breast cancer 1.03 (0.93–1.14)
Wu et al. (2016) [91] 52,683 Prostate cancer 1.04 (0.98–1.09)

Szymański et al. (2010) [92] 49,661 Prostate cancer 0.37 (0.18–0.74)
Vieira et al. (2017) [93] 11 3944 Colorectal cancer 0.89 (0.80–0.99)
Zhang et al. (2016) [94] 4 21,099 Dementia 0.95 (0.90–0.99)

5 21,941 Alzheimer’s disease 0.93 (0.90–0.95)
Jayedi et al. (2020) [95] 38 153,998 All-cause mortality 0.92 * (0.87–0.97)

8 11,720 Cardiovascular mortality 0.75 * (0.65–0.87)
22 16,732 Coronary heart disease 0.88 * (0.79–0.99)
11 8468 Myocardial infarction 0.75 * (0.65–0.93)
20 14,360 Stroke 0.86 * (0.75–0.99)
8 7945 Heart failure 0.80 * (0.67–0.95)
8 5732 Depression 0.88 * (0.79–0.98)
5 1572 Liver cancer 0.65 * (0.48–0.87)

* SRR—summary relative risk. Type 2 Diabetes Mellitus (T2DM).
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4. Culinary Determinants of Seafood Health Properties

Thanks to the lipids, seafood has a widespread opinion that it is “good for every-
thing”. Despite this opinion, there are studies showing a positive correlation between
fish consumption and the risk of developing cancer of the prostate [96], stomach [97] or
even colon [98]. Certain factors, including the method of preparing the fish, the types
of fish consumed and the level of local contamination, may determine the impact of fish
consumption on health outcomes in different regions [79]. Higher consumption of nonfried
fish was inversely associated with the risk of mortality from coronary heart disease, while
a nonsignificant trend towards higher risk was observed with increasing consumption of
fried fish [99]. Another Australian prospective cohort study indicated that the consumption
of uncooked fish was marginal and inversely associated with the risk of CVD mortality
in women, while total fish consumption was not related to that risk [100]. There are also
different types of fish to consider. Lean fish have lower amounts of n-3 fatty acids and are
more often deep-fried [99]. Meanwhile, oily fish is generally high in n-3 and the results
from a population cohort study in China suggest that higher consumption of oily fish may
be more strongly associated with a lower risk of death from any cause and CVD compared
to nonfatty fish [101]. It should be borne in mind that this correlation is the result of the
formation of free radicals during intense heat treatments or the presence of salt that often
accompanies seafood products. Both salt and some lipid oxidation products show a strong
carcinogenic effect [102,103]. n-3 LC PUFA, EPA and DHA, in particular, are characterized
by a high level of unsaturation, which promotes oxidation reactions. These reactions can
take place both in the enzymatic and nonenzymatic way. The latter are induced mainly by
free radicals.

Eating at least one serving a week of fried fish or shellfish (shrimp and oysters)
results in a risk ratio for all-cause mortality of 1.07 (1.03 to 1.12) and 1,13 (1.04 to 1.22)
for cardiovascular mortality in the US female population (aged 50–79 at study entry,
n = 106,966) [104]. On the other hand, in another study involving the Spanish population,
no adverse effects were observed [105]. This discrepancy is likely due to the fact that
the effect is also dependent on the source of the fried seafood and the frying fat [104].
In the USA, fried food is most often bought, for example, in fast food restaurants, and
is prepared in deep oil. Corn oil is commonly used for this purpose. In contrast, in the
Mediterranean countries, both olive oil (home-cooked meals) and corn oil (meals prepared
in the restaurants) are used for frying [104]. Therefore, it is extremely important to properly
select ingredients and cooking methods for the preparation of seafood-based dishes.

The dishes should be prepared using thermal treatment, in which the heat is trans-
ferred by convection and/or radiation, i.e., boiling and baking. However, frying, in which
heat is transferred by conductivity, should be avoided as it results in a sudden increase in
the temperature of the outer parts of seafood [106]. In general, all cooking methods con-
tribute to lipid oxidation [106], however, those in which heat is transferred by convection
are characterized by a lower level of oxidation [107].

Elderly people are not advised to eat raw seafood [108], therefore, these dishes should
be prepared in the mildest possible conditions. They should also avoid salted, dried and
cold-smoked seafood because of its high salt content [14,102].

5. Seafood Safety
5.1. Pollution in Seafood

Environmental pollution has led to contamination of the fish mainly with dioxins and
mercury in methylated form (MeHg). Most of the pollutants undergo biogenochemical
migration accompanied by the process of bioaccumulation along the subsequent links of
the food chain, e.g., in the muscles of fish. It poses a serious health risk to their potential
consumers [109].

The adverse health effects associated with chronic exposure to dioxins include car-
cinogenic, immunotoxic, embryonic and fetotoxic, teratogenic and hepatotoxic effects [110].
In adults, the possible health effects associated with the consumption of MeHg is mainly
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the increase in oxidative stress. As a consequence, it may lead to, inter alia, atherosclerosis,
myocardial infarction, heart rate variability and hypertension [110].

The literature clearly shows that the health benefits of consuming oily fish (2–3 serv-
ings per week) far outweigh the potential contamination risks [111,112]. In addition, EPA
and DHA are known for their strong antioxidant, anti-inflammatory and pro-extinguishing
properties, which mitigate the effects of exposure to such pollutants as polycyclic aro-
matic hydrocarbons (PAHs) [113], polychlorinated biphenyls (PCB) [114] and 2,3,7,8-
Tetrachlorodibenzo-p-Dioxin (TCDD) [115]. There are even countries such as Finland,
Sweden and Latvia which allow trade of fish in which permissible level of dioxins has
been exceeded (Regulation of European Union (EU) 2016/1139). Tocopherols which are
very often found in seafood can also reduce the effects of oxidative stress caused by
pollution [116].

The risk related to the presence of contamination can be significantly reduced by
choosing seafood from the appropriate fishing areas.

Although the levels of such pollutants as PAHs, dioxins, heavy metals and radionu-
clides in cod did not exceed the limits set by the EU, fish from the Baltic Sea had the higher
content of contaminants compared to fish from the Barents Sea or Greenland [109].

Catch area is also of key importance in the case of mercury contamination in seafood.
Depending on the geographical area, the mercury content of tuna varied from 0.03 to
0.82 mg/g [117].

Fish, such as shark and swordfish, which are at the top of the aquatic food chain, often
have higher levels of contamination than other fish. That is why choosing the right species
is so important to reduce consumption of pollutants. Research by Cammiller et al. [118]
showed that the mercury content in bluefin tuna was nearly three times higher than in
yellowfin tuna [118].

In addition to the catch area and species, factors such as the age and the season of
fishing also play a significant role in the concentration of pollution in the seafood. Although
the content of dioxins and dioxin-like compounds in Norwegian herring is generally low,
the fish caught in the period between January and February had a higher content of
contaminants compared to those caught in the period between April and June. Older
specimens were also characterized by a higher accumulation of pollutants than younger
specimens [119]. As in the case of lipids and n-3 PUFA, also in the case of contaminants,
the physiological state of seafood related to its seasonality plays an important role.

In the spring the contaminants are transferred within herring body along with lipids
from the muscle tissue to the gonads during their maturation which leads to decrease
of their level. In addition, these fish can transfer also a certain amount of pollutants to
their offspring via their gonads. In this way, they eliminate lipid-soluble impurities, thus
reducing their toxic effects [119].

Contrary to the popular belief, the level of contamination in farmed seafood is at a
similar level or often lower than the one of its wild counterparts [120,121]. Some publica-
tions show that wild fish have a lower content of contaminants than farmed fish [122,123].
However, the fat content is ignored in these studies. As it is commonly known, most
contaminants are lipophilic, so the studies should include this variable [120]. For this
reason, farmed fatty fish have a higher level of contamination compared to farmed lean
fish [124,125]. In addition, the fat content within the fillet is not the same, which makes it
difficult to compare the content of impurities if different parts of the fillet were analyzed,
e.g., the dorsal or the abdominal [126]. Due to the fact that the content of contaminants in
feed is strictly limited and controlled [127], this translates into a lower level of contamina-
tion in farmed fish. It is estimated that in the future, the level of contamination in salmon
fillets will be close to the limit of quantification due to the development of methods of
purifying fish oil and replacing it in part with plant ingredients [128,129].
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5.2. Seafood Allergy

Certain food hypersensitivity may develop during adulthood. Examples are shellfish
and fin fish allergy [130,131] and it may concern, respectively, 2.9% and 0.9% of the US
adult population [132]. A meta-analysis showed that 0–2% of adults are hypersensitive to
fish and 0–10% to crustaceans [131]. Average age of the adult seafood-allergic patient is
50 years old [1]. In adults over 60 years old, the prevalence of various seafood products
allergy is similar to that in younger age groups [132]. Most often, elderly people report
hypersensitivity after consuming shellfish (2.6%; 95% Cl:2.2–3.0), shrimp (1.6%; 95% Cl:1.3–
1.9) and mollusks (1.2%; 95% Cl:1.0–1.5) [132]. The most commonly reported symptoms
are skin, respiratory and gastrointestinal symptoms [1]. In Australia, seafood is the most
common cause of fatal food anaphylaxis [133]. Ethnically, the most common seafood allergy
is among Caucasians and African-Americans [1].

In the available literature there are controversial opinions about the relationship of
radiocontrast, iodine, protamine and seafood allergies [134–138]. The major fish allergen
is the low molecular-weight calcium-binding protein (parvalbumin). Allergy to seafood
is not related to iodine. Iodinated contrast agents and povidone are the main iodinated
drugs used in the radiology procedures and perioperative setting. IgE-mediated, both
immediate and delayed hypersensitivities have been documented. However, the allergenic
determinants remain unknown. The risk of reactions to radiocontrast ranges from 0.2% to
17%, severe reactions occur in 0.02–0.5% and deaths in 0.0006–0.006% [134]. A systematic
review from seven prospective studies showed that the risk of reaction after radiocontrast
media injections in patients with a seafood allergy is similar to that in patients with other
food allergies or asthma [136,137]. Up to date, there is no evidence to avoid the use of
iodinated drugs in seafood allergy.

Protamine is a polypeptide, isolated from salmon fish sperm. It is also used in insulin
preparation to prolong the pharmacological effect. The evidence for an IgE-mediated
allergy to protamine is very limited. Evidence supporting the increased risk for protamine
allergy in fish allergy is lacking [136]. Up to date, there is no evidence to avoid the use of
protamine or NPH insulin in fish allergies [134,136,137].

6. Conclusions

This review presented a broad overview of the association of seafood (especially
fish) intake with the risk of non-communicable disease based on systematic review and
meta-analysis. Although some of the results clearly do not state an impact on health, our
review has important implications and indicates the direction of future research.

It is essential to evaluate the impact of intake of different types of fish such as fatty, lean,
processed (e.g., smoked, canned, salted fish), methods of cooking fish (e.g., frying, steaming)
on health and what potential factors cause these differences in effect in presented studies.

On the other hand, this strong or moderate evidence of the beneficial effects of seafood
suggests that promoting a diet based on the regular consumption of different types of
seafood should be further strengthened in populations of all ages. However, to get the
full benefits of eating seafood, it should be cooked properly so as not to lose its health
benefits. Our present review provides evidence that seafood, especially fish intake, indicate
the potentially beneficial effects of the antiaging process and well-being in the elderly
population. Taking action to reduce the incidence of non-communicable diseases in the
elderly group (primarily changing the lifestyle, including nutritional behavior) is a moral
and an economic imperative.
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