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Abstract: Cheddar cheese is a protein-dense whole food and high in leucine content. However,
no information is known about the acute blood amino acid kinetics and protein anabolic effects
in skeletal muscle in healthy adults. Therefore, we conducted a crossover study in which men
and women (n = 24; ~27 years, ~23 kg/m2) consumed cheese (20 g protein) or an isonitrogenous
amount of milk. Blood and skeletal muscle biopsies were taken before and during the post absorptive
period following ingestion. We evaluated circulating essential and non-essential amino acids, insulin,
and free fatty acids and examined skeletal muscle anabolism by mTORC1 cellular localization,
intracellular signaling, and ribosomal profiling. We found that cheese ingestion had a slower yet
more sustained branched-chain amino acid circulation appearance over the postprandial period
peaking at ~120 min. Cheese also modestly stimulated mTORC1 signaling and increased membrane
localization. Using ribosomal profiling we found that, though both milk and cheese stimulated
a muscle anabolic program associated with mTORC1 signaling that was more evident with milk,
mTORC1 signaling persisted with cheese while also inducing a lower insulinogenic response. We
conclude that Cheddar cheese induced a sustained blood amino acid and moderate muscle mTORC1
response yet had a lower glycemic profile compared to milk.

Keywords: dairy; ribo-seq; muscle protein synthesis; anabolism; insulin

1. Introduction

Aminoacidemia from the digestion of protein sources is a major stimulator of skeletal
muscle protein anabolism and important for maintenance of muscle mass and overall
muscle health. Circulating amino acid kinetics and acute skeletal muscle protein anabolic
responses have been extensively evaluated following ingestion of dairy proteins such as
casein and whey protein isolate [1–5]. Though these data have provided fundamental
information in understanding how muscle responds to protein, it is less generalizable to
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the community since most dietary protein sources contain a mixed-macronutrient profile,
contain many micronutrients within their matrix, and are more complex during digestion.

Recent protein metabolism studies have evaluated blood amino acid kinetics and
muscle anabolic responses to protein-enriched, nutrient-complex foods such as beef, egg,
and pork [6–14] and as a result, have demonstrated unique amino acid and protein anabolic
responses. For example, consumption of 18 g of protein from whole egg after a bout of
exercise increased protein synthesis more so than egg whites in spite of similar post
absorptive plasma leucine levels [14]. This suggests protein-dense whole foods have utility
to promote protein anabolism not simply predicted by the amount of protein or level
of aminoacidemia, which is in contrast to what has been observed with isolated protein
products [5]. Therefore, there is a continued need to characterize whole food products to
identify high quality protein sources that encourage human health.

To our knowledge, no studies have evaluated the amino acid pattern in plasma or
muscle anabolic response to cheese ingestion. Cheddar cheese, is a low carbohydrate,
high-fat, protein-rich food that is a regular dietary component of the U.S. diet [15]. Cheddar
cheese has a well characterized amino acid profile with a high content of leucine (~10%)
and is considered low glycemic. Moreover, the protein in Cheddar cheese is partially
hydrolyzed due to aging/ripening [16], and therefore is likely to speed up digestion and
promote the appearance of amino acids in the circulation [4,17]. Cheddar cheese is also
composed of many other underappreciated nutrients within its food matrix [18] that are
beneficial for human health and could further enhance protein anabolism.

Therefore, the primary purpose of this study was to characterize the amino acid re-
sponse following 65 g (20 g protein) of Cheddar cheese, an amount of protein capable of
increasing blood amino acid levels from a whole dairy product [7,9,19]. In addition, to
gain insight on the protein anabolic processes in skeletal muscle, we evaluated mTORC1
localization and cellular signaling following cheese ingestion, given that mTORC1 in-
tracellular signaling is highly responsive to acute protein intake particularly to sources
that are rich in leucine [20,21]. We also complimented mTORC1 signaling with a unique
‘omics approach of ribosome profiling [22] to capture key information regarding which
mRNAs are translated after cheese ingestion. Finally, to provide context in comparison to a
well-described whole food, we conducted a within subject crossover study comparing to an
isonitrogenous amount of milk [19]. We hypothesized that a single dose of Cheddar cheese
in young male and female adults, equivalent to 20 g of protein, would acutely increase
the blood branched-chain amino acids (particularly leucine) and induce a translational
program characterized by mTORC1 signaling.

2. Methods
2.1. Subjects

Twenty-four young male (n = 12) and female (n = 12) subjects participated in this
study (Table 1; 27 ± 4 years; BMI 23.1 ± 3.5 kg/m2). Interested subjects were notified of the
study through posted flyers on campus and in areas around the university and were also
contacted through the University of Utah PEAK Health and Fitness registry. Subjects were
screened (self-report) based on the following exclusion criteria: history of cardiovascular
disease, endocrine or metabolic disease (e.g., hypo/hyperthyroidism, diabetes), kidney
disease or failure, liver disease, respiratory disease (acute upper respiratory infection,
chronic lung disease), stroke with motor disability, use of anticoagulant therapy (e.g.,
Coumadin, heparin) including aspirin and fish oils within 7 days (d) of the first metabolic
experiment, elevated systolic blood pressure > 150 or a diastolic blood pressure > 100,
smoking, recent anabolic or corticosteroids use (within 12 weeks of first biopsy), pregnancy,
lactose intolerance, and irregular menstruation. Enrolled participants read and signed the
informed consent document, which was approved by the University of Utah Institutional
Review Board (IRB #110963) and in agreement with the Declaration of Helsinki. This study
is registered at clinicaltrials.gov (NCT04660877).
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Table 1. Subject Characteristics.

Pooled Male Female

Sample Size (N) 24 12 12
Age (year) 27 ± 4 27 ± 4 26 ± 4

Height (cm) 175 ± 8 181 ± 5 * 169 ± 7
Body Mass (kg) 71 ± 14 80 ± 12 * 63 ± 10

BMI (kg/m2) 23.1 ± 3.5 24.6 ± 3.8 21.9 ± 2.8
Lean Mass (kg) 57.5 ± 11.9 67.9 ± 8.7 * 48.1 ± 4.9
Fat Mass (kg) 13.5 ± 7 12.5 ± 8 14.9 ± 6
Body Fat (%) 18.7 ± 8 14.8 ± 8 22.8 ± 6

Daily Protein Intake (g/kg/day) 1.32 ± 0.49 1.40 ± 0.61 1.25 ± 0.35
Steps/Day 8798 ± 3444 7364 ± 2845 * 10,122 ± 3514

Mean ± SD, * Different from Female (p < 0.05).

2.2. Experimental Design

After enrollment, participants completed baseline testing which included a dietary
assessment, body composition and habitual activity levels. Body composition (lean and
fat mass) was assessed using a Bod Pod instrument (conducted prior to Metabolic Study
#1). Physical activity was tracked for a 7 days period between the Metabolic Study visits.
Additionally, a 3 d daily dietary record (ASA24) was recorded before each Metabolic Study
visit. The daily dietary record was averaged between all recorded days and reported
in Table 1.

Each subject took part in two metabolic studies (Figure 1) with each designed to test
the acute blood and muscle response to an ingested amount of either Cheddar cheese or
milk matched for protein (Table 2). Approximately, one month after the first experiment
(Metabolic Study #1), the participant completed the second experiment (Metabolic Study #2)
which was exact in design and at the same time of day as the first study but the participant
ingested the alternate food product. Prior to each of the metabolic studies, the participant
ate a standardized research meal the night before the study and refrained from intense
physical activity for 48 h. The morning of the metabolic studies, the participant arrived at
the clinical research center after a ~10 h fast. A catheter was then placed in the participants’
arm for blood sampling. Next, the participant underwent a baseline vastus lateralis skeletal
muscle biopsy (0 min) using a modified version Bergström muscle biopsy technique [23].
Following the baseline muscle biopsy, the participant consumed either Cheddar cheese
(65 g) or milk (370 mL; 2%; Fairlife) each amounting to 20 g of protein. The Cheddar
cheese was processed at Glanbia Nutritionals, aged to one month, and frozen into batches
distributed monthly by the sponsor as needed. The amino acid profile of low-fat Cheddar
cheese and 2% Fairlife milk can be found in Supplemental Table S1. Subsequent muscle
biopsies occurred 60 and 180 min on the same thigh after product ingestion which is an ideal
timeframe to capture mTORC1 signaling and mRNA translational events following protein-
enriched nutrient ingestion [24,25]. Blood sampling occurred before and periodically after
ingestion of the products (up to 300 min). Blood samples were taken every 20 min during
the first 3 h and then every 30 min for the last 2 h. Therefore, there were a total of 14 blood
draws and 3 muscle biopsies for each Metabolic Study visit. The starting thigh for muscle
biopsies for the first Metabolic Study was randomized for each subject and balanced with
the second Metabolic Study (left leg then right or right leg then left). Muscle samples were
frozen in liquid nitrogen (for immunoblotting and ribosomal profiling) or prepared in
O.C.T. (Optimal Cutting Temperature) and frozen in liquid nitrogen-cooled isopentane for
the immunohistochemical assessment.
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Figure 1. Overview of the crossover study experimental design.

Table 2. Nutrient content of experimental products.

Cheddar Cheese 2% Fairlife Milk

Amount 65 g 370 mL
Protein (g) 20 20
Leucine (g) 1.97 1.98

Fat (g) 10 7.5
Carbohydrates (g) 0 9

Calories (kcal) 170 183

2.3. Blood Analyses

Blood samples were collected in EDTA (Ethylenediaminetetraacetic) vacutainer collec-
tion tubes and immediately placed on ice. Samples were centrifuged (2500 rpm, 10 min) and
plasma was collected and frozen at −80 ◦C until later analysis. Plasma was processed for
essential and non-essential amino acids using the EZ:Faast Amino Acid Kit (Phenomenex;
Cat #KG0-7165) and analyzed using GCMS analysis in collaboration with the institution’s
Metabolomics Core. Essential amino acids included detection of leucine, isoleucine, valine,
threonine, methionine, phenylalanine, lysine, histidine, and tryptophan. Non-essential
amino acids included detection of alanine, glycine, serine, proline, asparagine, glutamate,
glutamine, and tyrosine. Samples were also immediately assessed for glucose (YSI) at
the time of the study and later assessed for insulin (Human Insulin ELISA, Millipore
Sigma, Burlington, MA, USA; EZHI-14K) and non-esterified fatty acids (NEFA-HR; Wako
Chemicals, Richmond, VA, USA) in replicate using commercially available kits. Insulin
and free fatty acids were determined at select time points (baseline, 20, 40, 80, 140, 210, and
300 min).
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2.4. Skeletal Muscle Immunoblotting

Approximately 30 mg of tissue at each biopsy time point for Cheddar cheese and milk
interventions was homogenized 1:10 (wt/vol) using a glass tube and mechanically-driven
pestle grinder in an ice-cold buffer containing 50 mM Tris (pH 7.5), 250 mM mannitol,
40 mM NaF, 5 mM pyrophosphate, 1 mM EDTA, 1 mM EGTA, and 1% Triton X-100
with a protease inhibitor cocktail. Homogenates were centrifuged for 10 min at 4 ◦C. After
centrifugation, the supernatant was collected and the protein concentration was determined
using a modified Bradford protein assay and measured by a spectrophotometer (EPOCH;
BioTek, Winooski, VT, USA).

Thirty micrograms of protein from muscle homogenate was separated via polyacry-
lamide gel electrophoresis, transferred onto a polyvinylidene difluoride membrane (PVDF),
and incubated with primary and secondary antibodies. PVDF Membranes were imaged on
a ChemiDoc XRS (Bio-Rad, Hercules, CA, USA) and quantified with Image lab software
(Bio-Rad). The primary antibodies were purchased from Cell Signaling Technology and
were the following: phospho-S6K1, Thr389, 1:1000, #9205; phospho-ribosomal protein S6,
RPS6, Ser240/244, 1:1000, #2215; phospho-AS160, Ser588, 1:1000, #8730; phospho-GSK-3β,
Ser9, 1:1000, #9336; phospho-Akt, Ser473, 1:1000, #9271. Secondary antibody (HRP Anti-
Rabbit, #SC2004, 1:2000) was purchased from Santa Cruz Biotechnology. Phosphorylation
of these proteins were normalized to Ponceau-S staining and reported as fold change
from baseline.

2.5. Skeletal Muscle Immunohistochemistry

Muscle was sectioned into 8 µm cross-sections, mounted on slides in −25 ◦C, then
left to air-dry overnight, and stored at −20 ◦C. Immunofluorescent staining was used
to detect mTORC1 (Cell Signaling Technology, #2983, 1:100), the lysosomes (LAMP2:
Abcam, #ab25631, 1:100), and the membrane (WGA: Fisher Scientific, #W32466, 1:50) as
demonstrated by others [26–29]. Briefly, tissue was fixed in acetone (10 min), and the
following blocking steps were performed: (1) endogenous peroxidases: 3% H2O2 for
7 min, (2) Non-Specific Binding Sites: 5% goat serum, Vector Labs #S-1000 with 0.3%
Triton-X for 1 h, and (3) Avidin/Biotin: Vector Labs #SP-2001 according to manufacturer’s
instructions. WGA was added (5 min), and mTOR and LAMP2 were incubated on the
slide overnight. Secondary antibody for LAMP2 was performed using Alexa Fluor 488
Tyramide SuperBoost (Invitrogen, #B40932, according to manufacturer’s instructions),
while secondary for mTOR was on Cy3 (Jackson ImmunoResearch, #711-165-152; 1:500)
for 1 h. Finally, slides were mounted, cover slipped (Vectashield with DAPI, Vector Labs,
#H-1200), and stored in the fridge until imaged (within 1 month of staining).

Images were taken using a Leica SP8 White Light laser confocal microscope equipped
with automated stage, and Nikon NIS-Elements multi-platform acquisition software. At
least 9 images (16 bit) were taken at 40X/1.3 magnification with oil immersion, with each
image capturing ~5 muscle fibers per image in high detail at each time point, analyzing a
total of ~45 muscle fibers per subject per time point, for each product consumed. When
looking at events detected above threshold (set with help of combinations of positive and
negative controls) of mTOR and LAMP2, anything not within 80% of the average was not
used. The number of objects/events per channel times the average area covered by each
object gave us the total area per channel. As previously described [26], Mander’s overlap
coefficient of colocalization was employed (k1 for mTOR/LAMP2; k2 for mTOR/WGA) to
quantify the cellular overlap of these proteins, and this was performed in NIS-Elements for
mTOR/LAMP2 and mTOR/WGA.

2.6. Ribosomal Profiling

Muscle samples at each time point (0, 60, 180 min) from Cheddar cheese and milk
studies were assessed from a subset of subjects (4 subjects, 2 M, 2 F). Traditional RNA-Seq
captures total mRNA abundance within a tissue sample, while the emerging technique of
Ribo-Seq allows the capture of ribosome protected fragments (RPF) measuring translational
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activity in a transcript-specific manner [30,31]. Polysome complexes were isolated, and
unprotected mRNA digested with RNase I, and the ribosome protected mRNA footprints
were analyzed by RNA-Sequencing methods as previously described by our group [22]
with the exception that rRNA was removed from the RPF samples using the NEBNext
rRNA Depletion kit and libraries were size selected by polyacrylamide gel electrophoresis
on 6% native gels. Libraries were then sequenced on an Illumina Novaseq 6000 instrument.
Raw sequence data can be obtained from the National Center for Biotechnology Information
Gene Expression Omnibus repository entry GSE163279.

Uniquely mapping sequences were identified by alignments using bowtie to Reference
Sequence database (RefSeq) mRNA entries obtained from the University of California,
Santa Cruz browser (Hg38 human genome reference assembly) in which all mRNAs de-
rived from the same gene were reduced to a single entry corresponding to the longest
isoform. Normalization factors based on the trimmed mean of M-values were determined
by using the calcNormFactors function of the Bioconductor package edgeR [32]. Dispersion
estimates were obtained prior to likelihood ratio tests (glmFit and glmLRT functions of
edgeR) to determine significance of the log2 fold change in RPFs or RNA for all tran-
scripts with ≥1 count/million in all samples. Differences were considered significant if
the false discovery rate was ≤0.05. Pearson’s product-moment correlation coefficients
were calculated.

Ingenuity Pathway Analysis was performed to determine significantly altered path-
ways informed by the translation changes at each time point for the two respective protein
sources. mTOR pathway volcano plots used all of the molecules within the top 3 pathways
(‘EIF2 Signaling’, ‘Regulation of eIF4 and p70S6K Signaling’, ‘mTOR Signaling’) in either
cheese or milk for comparison, yielding presentation of the translation for 202 total tran-
scripts, at 3 contrasts (60 vs. 0 min translation f.c.; 180 vs. 0 min translation f.c. and 180 vs.
60 min translation f.c.).

2.7. Statistical Analyses

Subject characteristics were compared between males and females using a t-test.
Because there were no notable differences between males and females in major outcomes
(i.e., blood amino acids), subjects were pooled and all comparisons (Plasma NEFA, Insulin,
Amino Acids, Immunoblotting, and IHC colocalization) were analyzed using a 2-Way
ANOVA with repeated measures for product and time. When appropriate after a significant
interaction was detected, Sidak’s multiple comparisons post-hoc test was used to identify
differences from baseline or between protein products at a given time point. For all analyses,
differences were considered statistically significant at p < 0.05. All statistical calculations
and graphs were completed using GraphPad Prism (v8).

3. Results
3.1. Subject Characteristics

A total of 24 young adult participants completed both trials of this study. This was
made up of 12 males and 12 females (Table 1). As expected, men had greater height, body
weight, and had more lean mass than females (p < 0.05). The men also had less daily step
activity than the females (p < 0.05). There were no differences between the sexes in age,
BMI, fat mass, body fat % or daily protein intake.

3.2. Blood Insulin, Glucose and Non-Esterified Fatty Acids

Milk induced a rapid spike in insulin 20 min after ingestion (2-Way ANOVA: Time*Product
Interaction, p < 0.0001; Sidak’s multiple comparisons test, Milk different from base-
line and from cheese at 20 and 40 min, p < 0.0001) while cheese consumption did not
significantly change insulin at any time point (Figure 2A). Blood glucose decreased at
60 min following ingestion of either product, but this decrease occurred earlier for milk
(40 min; Time*Product Interaction, p < 0.0001) and was significantly lower than cheese
(Figure 2B). Similarly, NEFA levels decreased after ingestion of either Cheddar cheese or
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milk, (Time*Product Interaction, p < 0.0001), but this response was further decreased for
milk compared to Cheddar cheese (Sidak’s multiple comparisons test, Cheese vs. milk
40 min post, p = 0.023). Additionally, NEFA levels were significantly elevated in response to
both protein sources by 300 min, in comparison to baseline NEFA values (Sidak’s multiple
comparisons test, Cheese: p = 0.003; Milk: p = 0.011) (Figure 2C).
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3.3. Plasma Branched-Chain, Essential and Non-Essential Amino Acids

Total branched-chain amino acids (BCAAs) increased with different kinetics in re-
sponse to ingestion of the respective products (Time*Product Interaction, p < 0.0001)
(Figure 3A). After milk, BCAAs returned to baseline by 240 min post, and cheese main-
tained higher BCAA levels out to 270 min. Milk induced significantly higher BCAA levels
than cheese from 20 to 60 min post ingestion, and decreased gradually towards base-
line as cheese induced significantly higher BCAA in plasma than milk between 120 and
210 min (Sidak’s, p < 0.05). Plasma leucine exhibited a similar response as total BCAAs
(Time*Product Interaction, p < 0.0001) (Figure 3B), with both products increasing leucine
levels out to 210 min and with cheese elevating leucine levels slightly longer to 240 min
(Sidak’s, p < 0.05). The leucine response occurred to a greater magnitude for milk from
20 to 60 min while cheese induced higher leucine levels (vs. milk) from 120 to 180 min.
Plasma isoleucine (Time*Product Interaction, p < 0.0001) (Figure 3C) increased out to
160 min for milk while cheese increased isoleucine levels out to 240 min. Milk had a greater
isoleucine response compared to cheese from 20 to 60 min while cheese had a greater
plasma isoleucine response than milk from 120 to 210 min (Sidak’s, p < 0.05). Plasma
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valine (Time*Product Interaction, p < 0.0001) (Figure 3D) increased over the 300 min time
course for cheese and out to 270 min for milk. This response was greater for milk at
20–60 min while the cheese induced a greater valine level than milk from 120 to 210 min
(Sidak’s, p < 0.05). Total essential amino acids (EAA) increased above baseline for milk
out to 180 min while cheese increased total EAA out to 300 min (Time*Product Interaction,
p < 0.0001) (Figure 3E). Plasma EAA were higher for milk from 20 to 60 min (compared to
cheese) while EAA were higher for cheese from 120 to 210 min (vs. milk). Non-Essential
amino acids (NEAA) (Figure 3F) increased above baseline for milk from 20 to 100 min
while NEAA were elevated above baseline from 40 to 180 min for cheese (Time*Product
Interaction, p < 0.0001). Milk induced a greater NEAA response at 20–60 min while cheese
induced a greater response than milk from 120 to 300 min (except at 270 min). Despite
differences in amino acid kinetics between the products, the area under the curve over 5 h
for total BCAA, leucine, isoleucine, valine, total EAA, and total NEAA were not different
between cheese and milk products (Figure 3A–F).

Figure 3. Plasma levels (µmol/L) of (A) branched-chain amino acids (Total BCAA), (B) leucine, (C) isoleucine, (D) valine,
(E) essential amino acids (Total EAA), and (F) non-essential amino acids (Total NEAA) in the fasted state (0 min) and over a
300 min time period following the ingestion of either cheese (solid line) or milk (dotted line) in men and women (n = 24).
Different from baseline (0 min) for milk (*) and cheese ($), p < 0.05. #, Different between groups at the specific time point,
mboxemphp < 0.05. Units are in micromolar (µM). Note: Total EAA (E) does not include the BCAAs.

3.4. Muscle mTORC1 Signaling and Localization

Phosphorylated p70S6K(Thr389) (Time*Product Interaction, p = 0.0005) and phospho-
rylated rpS6(Ser240/244) (Time*Product Interaction, p < 0.0001) increased above baseline
and were increased to a greater extent for milk at 60 min post ingestion compared to
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cheese (Sidak’s multiple comparisons test, p < 0.0001 for p70S6K and rpS6K) (Figure 4A,B).
Phosphorylated Akt(Ser473) was significantly elevated 60 min post ingestion as a result
of cheese or milk with no difference between cheese and milk (2-Way ANOVA: Main
Effect of Time, p = 0.0097) (Figure 4C). There were no significant differences detected for
phosphorylated AS160(Ser588) or phosphorylated GSK-3β(Ser9) (Figure 4D,E). Figure 4F
is representative immunoblotting images for the phosphorylated proteins.
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the specific time point, p < 0.05.

Using immunohistochemistry to fluorescently label and measure the spatial distribu-
tion of mTOR, we did not detect changes to the colocalization of mTOR with the lysosomal
protein, LAMP2 (Figure 5A). However, mTOR colocalization with the sarcolemma (WGA)
was different between groups at 60 and 180 min and increased at 180 min only after cheese
ingestion (Time*Product Interaction, p = 0.042; Sidak’s multiple comparisons test, p = 0.003)
(Figure 5B). Representative images for DAPI, WGA, mTOR, LAMP2 and the overlay are
found in Figure 5C.
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Figure 5. Skeletal muscle mTOR colocalization using immunohistochemistry. Panel (A) represents Mander’s k1 mTOR-
LAMP2 colocalization and (B) Mander’s k2 mTOR-WGA colocalization at baseline (0 min) and at 60 and 180 min following
the ingestion of either cheese (solid line) or milk (dotted line) in men and women (n = 24). Panel (C) are representative
images using immunohistochemistry. Different from baseline (0 min) for cheese ($), p < 0.05. #, Different between groups at
the specific time point, p < 0.05.

3.5. Ribosomal Profiling

A subset of subjects’ muscle samples (n = 4) was used for ribosomal profiling. Riboso-
mal profiling captures ribosome protected mRNA fragments to measure active translation
of specific transcripts using RNA sequencing libraries. Both cheese and milk altered the
same top 3 Canonical Pathways related to mTORC1 signaling (IPA: EIF2 Signaling, Regula-
tion of eIF4 and p70S6K Signaling, mTOR Signaling) (Figure 6A) at both 60 and 180 min,
while only milk activated glucose metabolism-related pathways (Glycolysis I, Gluconeoge-
nesis I) 60 min post ingestion. Next, we created a volcano plot for the significantly altered
transcripts from within the top 3 Canonical Pathways for cheese and milk respectively,
representative of all translation changes under control of mTORC1 signaling. As a result,
we demonstrated a significant and dramatic milk-induced (in comparison to cheese) trans-
lational response from 0 to 60 min for these mTORC1 mediated molecules (Figure 6B). This
response for milk was reduced at 0–180 min after ingestion while cheese-induced trans-
lation of mTORC1 molecules was maintained at similar levels as was observed at 60 min
(Figure 6C). Moreover, translation changes across the 60–180 min time period (Figure 6D)
highlight the observation that stimulation of mTORC1 pathway is reduced at 180 min after
milk ingestion but persists with cheese.
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4. Discussion

Our current understanding of amino acid kinetics and subsequent skeletal muscle
anabolism following protein intake has been informed by isolated protein sources (and
often in liquid form) such as whey [33], casein [34], soy [5], and leucine-enriched EAAs [35].
Recently, the study of solid protein-enriched whole foods, of which the food matrix can
greatly alter protein digestion and absorption kinetics and the subsequent muscle anabolic
signature, is a valuable next step in studying the impact of dietary interventions on muscle
health and disease [36]. The purpose of our study was to examine the response to 20 g of
protein from Cheddar cheese on plasma amino acids, free fatty acids, insulin, and glucose
and the subsequent skeletal muscle mTORC1 signaling and mRNA translational response.
To better contextualize the results of Cheddar cheese ingestion with what is known in the
field, we utilized a crossover design with comparison to milk, a highly studied protein
source with a well-characterized absorption profile and muscle anabolic response [19,37].
The results from this study indicate that Cheddar cheese had a slow, yet persistent amino
acid circulation appearance and subsequent skeletal muscle mTORC1 signaling and mRNA
translation response when compared with the quick absorption and potent but short-lived
mTORC1 stimulation induced by milk. At the studied dosage, Cheddar cheese did not
induce a plasma insulinogenic or muscle glycemic response, a known effect of milk [19,38],
suggesting Cheddar cheese may be an interesting food choice for dietary strategies geared
to promote muscle protein anabolism yet requiring strict glycemic control.
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The primary finding of this study was that consumption of Cheddar cheese (65 g)
amounting to 20 g of protein promoted a delayed, yet sustained plasma amino acid
concentration over 5 h, compared with the acute and potent appearance of circulating
amino acids induced by milk proteins. Even though the amounts of protein and leucine
were similar between the products, milk resulted in a more rapid and robust amino
acid response likely driven by the whey protein component (20% whey, 80% casein in
bovine milk vs. 100% casein in Cheddar cheese). Nonetheless, we found it interesting
that there was no difference in the total circulating amino acids across the entire 5 h time
course between cheese and milk. Thus, although the solid food matrix of cheese and
protein composition may slow the digestion and absorption of protein and, subsequently,
amino acid release into the circulation, when matched for protein, cheese and milk have
similar total plasma amino acid availability. Casein hydrolysate, the form present in
Cheddar cheese, has shown to result in a greater appearance in circulating levels of leucine
compared with intact casein [4,17,39]. Though difficult to compare to a liquid casein
beverage, the plasma leucine appearance data following 20 g Cheddar cheese protein
ingestion demonstrated a slower plasma leucine appearance rate and magnitude compared
to a similar amount of isolated casein hydrolysate [4] suggesting that the complex matrix of
cheese may delay the release of amino acids into circulation [40]. It is currently unknown
if a longer aged Cheddar cheese may speed the circulating appearance of amino acids.
However, when compared with other solid, protein-dense foods, such as pork [6], cooked
egg [14], and steak [13], Cheddar cheese aged to one month produced a similar plasma
appearance, magnitude, and sustained amino acid availability response.

We also measured muscle mTORC1 activation using three different approaches with
the cumulative result of these assessments demonstrating that anabolic signaling tracked
closely with circulating amino acids for each product and with milk demonstrating a
more robust mTORC1 signaling response early after intake (1 h). This is logical since
essential amino acids, especially leucine, along with insulin, which also peaked prior to
1 h, are stimulators of mTORC1-mediated protein synthesis [41,42]. It is likely that the
insulin response from milk, combined with the quickly absorbed leucine, synergized to
enhance mTORC1 signaling as noted by the magnitude of p70S6K and rpS6 activation [42].
It is well known that anabolic cues such as insulin, mechanical stimulation, and amino
acid ingestion stimulate mTORC1 and its downstream effectors (e.g., S6K1) to enhance
translation initiation [43]. While our measurement of mTORC1 signaling was limited to
a 3 h time course (based on other protein-dense whole food studies [6,13,14]), we found
it noteworthy that mTORC1 activation following Cheddar cheese ingestion persisted at
3 h (and possibly beyond) in accordance with the plasma amino acid appearance and
as supported by the mTORC1 localization data and the ribosomal profiling of translated
mRNAs under control of mTORC1 signaling. It is unclear how a sustained circulation of
amino acids following Cheddar cheese intake may impact muscle protein accretion. Whole
foods that are slow digesting (in comparison to commonly studied dairy protein drinks)
may have utility in sustaining the free amino acid pool so that they have a longer window
to synergize with other anabolic cues such as exercise, or by offsetting protein breakdown
to enhance net protein balance when combined with the acute stimulus of a faster digesting
protein source [3,44]. For example, drinking a small glass of milk with cheese, may result
in a greater net protein balance over several hours in comparison to a bolus of milk alone,
because of the ceiling for acute anabolic activation and subsequent oxidation of excess
amino acids (coined the ‘muscle-full effect’) thereby limiting the anabolic benefit of the
beverage [38,44,45]. There is a similar underlying premise behind the recommendation
of ingesting casein (a major component of cheese) prior to bedtime to enhance exercise
adaptations [46–48].

Another interesting observation about the acute response to Cheddar cheese intake
(in contrast to milk) in this study, was that cheese did not observably increase circulating
insulin or translation of muscle mRNAs related to glycolytic pathways at any time point
we measured after ingestion. Therefore, if a dietary intervention requires strict glycemic
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control, such as for individuals with diabetes [49] or requires adhering to a ketogenic
diet [50], cheese may be a valuable protein food source to keep on the menu. The two most
likely reasons for why cheese and milk ingestion had different circulating insulin responses,
are that (a) milk contains higher levels of carbohydrates and (b) milk induced an early
spike in circulating serum leucine (compared with cheese), which stimulates endogenous
insulin release [51]. In addition to being less glycemic, the general public’s health opinion
of cheese should be re-examined since regular consumption of cheese does not appear to
influence LDL or HDL levels despite the characteristically high fat content [52]. Though
Cheddar cheese does incorporate a significant portion of its calories from fat, fat does not
appear to influence muscle protein anabolism [53], and may even synergize with protein
to promote a greater anabolic response [14,36]. However, because of the extra calories
associated with fat as compared to other macronutrients, individuals who must restrict
their calories may benefit from reduced fat cheese.

5. Conclusions

In summary, Cheddar cheese provided a slow and sustained appearance of circulating
amino acids and subsequent activation of mTORC1 signaling when compared to milk
matched for protein (and leucine) content. Also, Cheddar cheese at the amount consumed
in this study did not noticeably increase circulating insulin or induce a muscle glycemic
response in contrast with milk. Overall, low fat Cheddar cheese should be considered
as a protein-dense food choice given its high leucine content, ability to sustain amino
acid levels and promote protein anabolism and, especially, considering its low glycemic
properties. Future studies are needed to examine muscle protein accretion in response to
daily Cheddar cheese ingestion when combined with habitual exercise.
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