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Abstract: In the last decades, the global prevalence of non-alcoholic fatty liver disease (NAFLD) has
reached pandemic proportions with derived major health and socioeconomic consequences; this
tendency is expected to be further aggravated in the coming years. Obesity, insulin resistance/type
2 diabetes mellitus, sedentary lifestyle, increased caloric intake and genetic predisposition constitute
the main risk factors associated with the development and progression of the disease. Importantly,
the interaction between the inherited genetic background and some unhealthy dietary patterns has
been postulated to have an essential role in the pathogenesis of NAFLD. Weight loss through lifestyle
modifications is considered the cornerstone of the treatment for NAFLD and the inter-individual
variability in the response to some dietary approaches may be conditioned by the presence of different
single nucleotide polymorphisms. In this review, we summarize the current evidence on the influence
of the association between genetic susceptibility and dietary habits in NAFLD pathophysiology, as
well as the role of gene polymorphism in the response to lifestyle interventions and the potential
interaction between nutritional genomics and other emerging therapies for NAFLD, such as bariatric
surgery and several pharmacologic agents.

Keywords: non-alcoholic fatty liver disease; gene polymorphism; dietary intervention; gene-nutrient
interactions; bariatric surgery; pharmacotherapy

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) has become the leading cause of chronic
liver disease worldwide, with an estimated global prevalence of 25% among the adult pop-
ulation [1]. NAFLD comprises the full spectrum of the disease, from simple macrovesicular
steatosis to non-alcoholic steatohepatitis (NASH), which is defined by the coexistence of
steatosis, hepatocyte ballooning and inflammation with or without fibrosis, presenting an
increased risk of progression to cirrhosis, hepatocellular carcinoma and end-stage liver
disease [2]. In addition to the important clinical consequences derived from NAFLD,
socioeconomic costs of this pathology have been reported to be enormous and the disease
burden is expected to continue to increase in the coming years [3].

NAFLD is directly associated with the different components of the metabolic syn-
drome, including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia and hypertension;
in fact, obesity and insulin resistance/T2DM constitute the most common risk factors for
NAFLD [4]. Actually, this disease is considered as the hepatic manifestation of the metabolic
syndrome and bidirectional relationships between NAFLD and the rest of metabolic com-
plications have been established [5]. Accordingly, environmental factors such as sedentary
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lifestyle and high-caloric intake play a major part in NAFLD development and progres-
sion [6]. However, it is important to note that NAFLD pathogenesis is complex and several
factors are involved in the natural history of this pathology. In line, novel environmental
modifiers, such as gut microbiota, have been proved to directly influence the course of the
disease [7]. Importantly, genome-wide association studies (GWAS) and candidate gene
studies have revealed, in the last few years, that NAFLD development, severity and risk
of progression are strongly influenced by a number of single-nucleotide polymorphisms
(SNPs), including patatin-like phospholipase domain-containing protein 3 (PNPLA3),
transmembrane 6 superfamily member 2 (TM6SF2), membrane bound O-acyltransferase
domain containing 7 (MBOAT7), glucokinase regulatory protein (GKRP) and hydroxys-
teroid 17-βdehydrogenase 13 (HSD17B13) as the main genetic determinants of NAFLD [8].
Moreover, the intricate interaction of genetic predisposition and environmental factors,
such as nutrition, is considered to play a key role in the pathophysiology of NAFLD [9].

To date, the mainstay of treatment for NAFLD is weight loss [5]. Lifestyle intervention
through dietary habits modifications and structured physical activity enables sustained
weight loss and the subsequent hepatic fat content reduction and NASH improvement [10].
Importantly, the effect of specific training modalities, such as endurance training, may
contribute to NASH improvement [11]. Furthermore, bariatric surgery (BS) has emerged as
an effective therapeutic approach to NASH and fibrosis resolution [12]. However, a signifi-
cant number of patients do not achieve the expected results even after adequate adherence
to therapy. Thereby, among other factors, nutrient-gene interaction could explain this
inter-individual variability in response to treatment and gene-based personalized therapies
may constitute a useful tool in NAFLD treatment. In this article, we review the role of
gene polymorphism in the variability in response to therapy in NAFLD, including the
interaction between SNPs and dietary interventions, as well as the potential relationships
among nutritional genomics, BS and other therapies.

2. Nutrigenetics and NAFLD Pathogenesis

In addition to the classical metabolic risk factors for NASH and fibrosis progression,
several studies have identified genetic associations with NAFLD susceptibility and sever-
ity [13]. The I148M (rs738409 C > G) variant of PNPLA3 (isoleucine to methionine exchange
at the amino acid position 148 due to cytosine to guanine transversion in rs738409) is the
most important risk mutation related to NAFLD, and it is strongly associated with the
development and progression of the disease and also with the response to treatment [14]
(Figure 1). PNPLA3 exhibits triacylglycerol lipase and acylglycerol transacylase activity
in the hepatocytes and the I148M variant causes loss of function, promoting triglyceride
accumulation in the hepatocytes [15]. The frequency of the I148M allele is particularly high
in Hispanics (0.49), with lower frequencies in European Americans and African Americans;
therefore, this fact may partially explain the differences in NAFLD prevalence among
different ethnic groups [16]. On the other hand, TM6SF2 regulates hepatic lipid metabolism
and the E165K missense variant impairs very low-density lipoprotein (VLDL) secretion
and triggers hepatic lipid accumulation [17], whereas MBOAT7 rs641738 C > T SNP in-
creases risk of NAFLD through the imbalance of phosphatidylinositol species [18]. GKRP
rs780094 C > T variant presents a reduced capacity of glucokinase inhibition and conse-
quently enhances glycolysis and glucose uptake by the liver [19]. Conversely, HSD17B13
rs6834314 A > G variant, involved in retinol metabolism, protects against NAFLD pro-
gression [20]. Finally, other reported genetic determinants associated with NAFLD in-
clude SH2B Adaptor Protein 1 (SH2B1), superoxide dismutase 2 (SOD2), signal transducer
and activator of transcription 3 (STAT3), phosphatidylethanolamine-N–methyltransferase
(PEMT), apolipoprotein B (APOB) or uncoupling protein 2 (UCP2) [21]. Of note, there are
some mitochondria-related SNPs among the NAFLD-associated genetic determinants, since
mitochondria dysfunction increases oxidative stress which is closely related to NAFLD
pathogenesis [22]. Thus, C47T variant in the mitochondrial enzyme SOD2 is linked to
advanced fibrosis in NASH [23], whereas mitochondrial UCP2-866 G > A polymorphism
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reduces risk of NASH progression [24]. Furthermore, mitochondrial deoxyribonucleic acid
(DNA) polymorphism 12361 A > G was associated with increased risk of moderate and
severe NAFLD in a Chinese population [25].
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Figure 1. The role of PNPLA3 rs738409 C > G variant in NAFLD. PNPLA3 I148M is associated
with NAFLD development and progression, and the interplay between this variant and environ-
mental factors, including dietary habits, seems to be crucial in the pathophysiology of the disease.
PNPLA3 I148M presence may also be related to an increased response to lifestyle interventions,
bariatric surgery and certain types of therapeutic agents, such as the combination of sodium-glucose
cotransporter 2 inhibitors and polyunsaturated fatty acid (PUFA). PNPL3: patatin-like phospholipase
domain-containing protein 3; I148M (rs738409 C > G): isoleucine to methionine exchange at the
amino acid position 148 due to cytosine to guanine transversion in rs738409); NAFLD: non-alcoholic
fatty liver disease.

Notably, SNP-mediated liver damage only explains a small proportion of NAFLD
pathophysiology, and synergistic interaction between these risks variants and the envi-
ronment are needed to trigger significant alterations [26]. As an example, Smagris et al.,
showed that PNPLA3 I148M knock in mice developed sucrose diet-dependent hepatic
steatosis, but no hepatic alterations were found in chow-fed animals with the mutation [27].
Moreover, a preclinical study revealed that several mitochondrial gene polymorphisms
only predisposed to NASH when either a methionine and choline deficient diet or Western-
style diet was administrated [28]. Thus, the interaction between nutrients and genetic
factors could modulate NAFLD presence and evolution. Additionally, it is also important
to bear in mind that nutrition can also give rise to modifications in gene expression through
several epigenetic mechanisms, including histone modification, DNA methylation and
the regulation of transcription by micro-ribonucleic acids (miRNAs) [29]. These complex
pathways are encompassed within the field of nutrigenomics, which constitutes a key
element in NAFLD pathogenesis [29]. However, this topic is beyond the scope of this
review and we will focus on the influential effect of genetics on response to different
nutrients in NAFLD.
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2.1. Carbohydrates

Dietary carbohydrates, including free sugars, can promote the accumulation of liver
fat by increasing intrahepatic triglyceride content [30] and the presence of some SNPs
may involve an additive harmful effect. Among them, the most studied nutrient/diet-
gene interactions in clinical studies include the I148M variant of PNPLA3. Thus, in a
cross-sectional study, Davis et al., reported a positive association between high dietary
carbohydrate/sugar consumption and hepatic fat accumulation in Hispanic children with
overweight and PNPLA3 GG genotype [31]. Similarly, Nobili et al., found that carriers of
this genotype with a high consumption of sweetened beverages presented higher degrees
of hepatic steatosis [32]. Furthermore, in a small clinical trial including 14 adolescents,
GKRP rs1260326 TT variant increased de novo lipogenesis after glucose overload [33].

Particularly, the consumption of the monosaccharide fructose has been implicated
in the development and progression of NAFLD [34]. Fructose triggers hepatic de novo
lipogenesis via increasing the levels of lipogenic enzymes and stimulating sterol regulatory
element-binding protein (SREBP)-1, and it also inhibits fatty acid oxidation, leading to
an increase of reactive oxygen species (ROS) [35]. Thus, an ongoing clinical trial aims to
evaluate the impact of fructose intake on liver lipogenesis in subjects with different genetic
risk categories for NAFLD [36]. In a case control study, the combination of distinct gene
variants related to oxidative stress mechanisms (glutathione S-transferase theta 1-GSTT1,
glutathione S-transferase mu 1-GSTM1, sulfotransferase family 1A member 1-SULT1A1,
cytochrome P450 2E1-CYP2E1 and cytochrome P450 1A1-CYP1A1) with high fruit/grilled
food consumption increased the risk for NAFLD development [37]. In line with these
results, previous studies have shown that high fructose diet promotes hepatic steatosis, ox-
idative stress and inflammation, leading to hepatocyte apoptosis [38]. The pathophysiology
of fructose induced-NAFLD via oxidative stress encompasses several mechanisms, such as
nonenzymatic reactions of fructose and ROS generation, hepatic phosphate deficiency and
the production of harmful metabolites (e.g., methylglyoxal) [39]. In addition, the severity
of liver injury by fructose may be mediated by the induced degree of mitochondrial dys-
function and oxidative damage [40]. On the other hand, the hepatic deleterious effects of
fructose may be counteracted by some nutrients that prevent oxidative stress and increase
the expression of antioxidant defense enzymes [41–45]. Dietary advanced glycation end
products compounds found in grilled food have also been postulated to aggravate NAFLD
via liver injury induced by chronic oxidative stress, and pharmacological and dietary
strategies targeting the implied pathways could help to ameliorate NAFLD [46]. Therefore,
the interaction between fructose/grilled food consumption and SNPs involved in oxidative
stress may be crucial in NAFLD pathogenesis and resolution.

2.2. Lipids

In addition to carbohydrate overfeeding, dietary fat pattern may interrelate with some
genotypes. In this sense, Santoro et al., showed that the interaction between PNPLA3
I148M and a high ratio of omega-6/omega-3 polyunsaturated fatty acid (PUFA) intake
was associated with higher serum levels of alanine transaminase (ALT) and hepatic fat
accumulation [47]. Jones et al., reported that the intake of several dietary types of unsat-
urated fat, including omega-6, was associated with liver fibrosis by PNPLA3 rs738409
variants [48]. Furthermore, the interaction between SH2B1 rs7359397 T allele and high
protein/low fiber and monounsaturated fatty acid (MUFA) consumption may be associated
with NAFLD severity [49].

Growing body of evidence supports that disturbances in cholesterol homeostasis
contribute to the pathophysiology of NAFLD/NASH [50]. Beyond hepatic accumulation
of fatty acids and triglycerides, an increase in free cholesterol deposition in the liver leads
to hepatocyte injury [51]. Atherogenic dyslipidemia, a common feature of the metabolic
syndrome, may facilitate this fact [52]. Remarkably, high cholesterol atherogenic diets may
interact with SNPs involved in cholesterol metabolism. In a study including women that
received a high cholesterol Western-type diet, the microsomal triglyceride transfer protein
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(MTTP)-493 T/T variant was associated with higher fasting levels of plasma cholesterol and
higher cholesterol absorption status, whereas these levels decreased to values comparable
to G carriers after 3 months of low-fat diet [53]; this variant was related to an increased
risk of NAFLD compared with G/G carriers [54]. TM6SF2 C > T polymorphism implies
a less atherogenic lipoprotein profile and postprandial cholesterol redistribution from
smaller atherogenic lipoprotein subfractions to larger VLDL subfractions in subjects with
NAFLD [55]; however, specific interactions with high cholesterol diets remain unexplored.
Similarly, SREBP-1c polymorphism is also closely implicated in cholesterol metabolism in
NAFLD [56], yet dietary interactions have not been investigated.

2.3. Choline Deficiency in NAFLD

Choline is a key nutrient in NAFLD pathogenesis, as its deficiency is closely related
to the onset and progression of this disease [57,58]. Susceptibility to choline deficiency
and the subsequent increased risk of developing NAFLD may be influenced by specific
polymorphisms in genes that regulate choline metabolism, such as PEMT [59,60]. In addi-
tion, a study showed that carriers of the 5,10-methylenetetrahydrofolate dehydrogenase
(MTHFD)-1958A gene allele were more likely to develop NAFLD on a low-choline diet
than non-carriers [61].

In light of the above, nutrient-gene interaction may play a crucial role in NAFLD
pathogenesis, although large-scale, long-term prospective clinical studies are needed to
corroborate these associations.

3. Gene Polymorphism and Response to Lifestyle Interventions in NAFLD
3.1. Dietary Changes

Currently, the primary treatment for NAFLD is based on lifestyle modifications,
including diet and physical activity to achieve weight loss [62]. The role of nutritional
intervention has been demonstrated to be essential for the prevention and management of
NAFLD in a number of randomized controlled clinical trials [63–67]. Recent evidence also
suggests that the presence of different SNPs combined with some dietary patterns may
increase the effect of this approach. In a clinical trial performed within the Fatty Liver in
Obesity (FLiO) Study, carriers of T allele of the SH2B1 rs7359397 genetic variant exhibited
greater benefits in terms of hepatic health and liver status after two energy-restricted
dietary patterns [68]. Interestingly, in a study performed in 140 Japanese patients with
biopsy-proven NAFLD, the reduction in liver stiffness measurement after diet therapy for
one year was greater among subjects with HSD17B13 rs6834314 GG variant [69]. Previously,
in a pilot study conducted by Sevastianova et al., the homozygous subjects for the PNPLA3
rs738409 G allele experienced a more significant decrease in liver fat content in response to
a 6-day hypocaloric low carbohydrate diet [70], and a post-hoc analysis of a randomized
controlled trial including 154 patients revealed that this genotype was associated with a
greater reduction in intrahepatic triglyceride content, body weight and waist-to-hip ratio
after a dietitian-led lifestyle program based on a reduced caloric intake for 12 months [71].
Conversely, in a cohort study of 51 children, Koot et al., did not find any relationship
between PNPLA3 rs738409 SNP and liver steatosis improvement in a 6-month intensive
lifestyle treatment [72], and neither PNPLA3 nor TM6F2 variants were related to NAFLD
improvement after a 4-month reduction of caloric intake, although these risk genotypes
did not impair the response of dietetic intervention [73]. In addition to the aforementioned
SNPs, the Gly385Arg polymorphism in fibroblast growth factor receptor 4 (FGFR4) was
not linked to liver fat content or insulin sensitivity in 170 subjects with overweight/obesity
at baseline, but it was associated with less decrease in liver fat accumulation and insulin
sensitivity under healthy dietary conditions [74]. On the other hand, the presence of the
STAT3 rs2293152 G genotype was associated with more beneficial changes after 24-week
Mediterranean diet in an open-label study including 44 patients with NAFLD [75].

Thus, although further research is needed, some genetic variants associated with
NAFLD development, severity and risk of progression may also confer an enhanced re-
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sponse to dietary intervention, and personalized dietary treatment depending on the pres-
ence of specific genetic polymorphism may constitute an attractive approach for NAFLD
management. Furthermore, nutritional strategies based on the nutrient-induced insulin out-
put ratio (NIOR) could help to select sensitive SNPs associated with fat and carbohydrate
metabolism and design individualized nutrition plans for patients with NAFLD [76].

3.2. The Role of Omega-3 PUFA

Omega-3 PUFA supplementation might reduce liver fat, although well designed
randomized controlled trials are required to assess their potential role in NAFLD [77,78].
In the last few years, dietary omega-3 PUFA and/or PUFA supplementation has also been
related to NAFLD outcomes in the presence of some genetic determinants with mixed
results (Table 1). On the one hand, Nobili et al., reported that I148M variant of PNPLA3 led
to a decreased response to docosahexaenoic acid (DHA) supplementation in 60 children
with NAFLD [79]. Moreover, in the WELCOME trial, the PNPLA3 148M/M genotype
was associated with higher liver fat percentage and lower DHA tissue enrichment after
4 g DHA + eicosapentaenoic acid (EPA) supplementation for 15–18 months, although
the TM6F2 E167K variant did not show significant associations [80]. Recently, an open-
label study showed that short-term omega 3 PUFA intervention (DHA + EPA) did not
change liver fat content regardless of the PNPLA3 148M variant [81]. In the EFFECT-I
trial, PNPLA3 I148M did not influence the effects of omega-3 PUFA or fenofibrate on liver
proton density fat fraction [82]. By contrast, a low omega-6 to omega-3 PUFA ratio diet
reduced hepatic fat fraction in a significant higher percentage in the carriers of PNPLA3
148M/M genotype [83], and these results were concordant with those previously reported
by Santoro et al. [33]. These findings may be explained by PNPLA3 rs738409 I148M-derived
protein decreased ability in hydrolyzing omega-9 PUFA from glycerolipids; being omega-9
PUFA synthetized from omega-6 PUFA, omega-6 overload would increase intrahepatic
triglyceride content [84]. Hence, further investigation is needed to elucidate the role of the
interaction between omega-3 PUFA and PNPLA3 rs738409 in NAFLD and the study of
alternative SNPs may help to find new relationships.

Table 1. Clinical studies assessing the role of the interaction between omega-3 PUFA and PNPLA3 rs738409 in NAFLD.

Study Design
(Sample Size) Intervention (Time) Result

Santoro et al., 2012 [47] Cross-sectional
study (127) - Higher HFF% and ALT levels in 148M/M variant

presenting high dietary n-6/n-3 PUFA consumption

Nobili et al., 2013 [79] RCT (60) DHA 250–500 mg/day
(24 months) Lower response (steatosis) in I148M variant

Scorletti et al., 2015 [80] RCT (85) DHA + EPA 4 g/day
(15–18 months)

Increased end of study liver fat % in
148M/M variant

Eriksson et al., 2018 [85] RCT (84)

10 mg
dapagliflozin/4 g n-3

PUFA/both
(12 weeks)

Combined treatment induced greater response
(PDFF) in I148M variant; n-3 PUFA treatment

induced decreased response (PDFF) in I148M variant

Oscarsson et al., 2018 [82] RCT (78) 200 mg fenofibrate/4 g
n-3 PUFA (12 weeks)

No influence of I148M on the effects of n-3 PUFA
supplementation (PDFF)

Kuttner et al., 2019 [81] Open-label trial
(20) 4 g n-3 PUFA (4 weeks)

No changes in transient elastography (CAP used to
quantify liver fat) neither in the control group nor

I148M

Van Name et al., 2020 [83] Single-arm
unblinded trial (20)

Low n-6/n-3 PUFA
ratio (4:1)

normocaloric diet
(12 weeks)

Significant HFF% reduction in the 148M/M group

HFF%: hepatic fat fraction (%); ALT: alanine aminotransferase; n-6/n-3: omega-6/omega-3 ratio; PUFA: polyunsaturated fatty acids; RCT:
randomized clinical trial; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; PDFF: proton density fat fraction; CAP: controlled
attenuation parameter.
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3.3. Specific Nutrients

There is a growing interest in the potential benefits of natural supplements in the
therapeutic landscape for NAFLD [86] and nutrigenetic approaches in this field may con-
stitute an attractive option. In this sense, Mastiha, a natural product of the Mediterranean
basin extracted from the Pistacia lentiscus tree, may reduce NASH and fibrosis via its anti-
inflammatory, antioxidant and lipid-lowering properties, as well as the restoration of gut
microbiota diversity [87,88]. The recent randomized trial MAST4HEALTH assessed the
role of nutrigenetic interactions in the modulation of the anti-inflammatory and antioxidant
effects of 6-months Mastiha supplementation on NAFLD [89]. In this study, several gene-
by-Mastiha interactions were identified, and these associations were linked to levels of
cytokines and antioxidant biomarkers after Mastiha treatment, some of them closely related
to NAFLD pathogenesis [89]. Silymarin could also be effective in reducing transaminase
levels in patients with NAFLD [90], however this effect may be attenuated in PNPLA3
G-allele carriers [91]. On the contrary, although Chia (Salvia hispanica), a source of omega-3
PUFA, antioxidants and fiber, may ameliorate NAFLD, no differences in response to this
treatment have been found among PNPLA3 different SNPs [92]. In addition, in a pilot
trial in subjects with obesity, supplementation with licorice (Glycyrrhiza glabra) resulted
in significant changes in anthropometric parameters and insulin sensitivity only in those
patients with the Pro/Pro SNP of the peroxisome proliferator-activated receptor gamma-2
(PPARγ2) [93]. Thus, given the potential benefits of licorice in NAFLD [94], genetic de-
terminants may explain the variability in response to this nutrient. Folate serum levels
may correlate with NASH severity [95], and folic acid supplementation has demonstrated
to attenuate hepatic lipid accumulation and inflammation through the restoration of per-
oxisome proliferator-activated receptor alpha (PPARα), among other mechanisms [96].
Furthermore, the supplementation with folic acid in individuals with the high-risk variant
MTHFD 1958A could attenuate signs of choline deficiency [61]. On the other hand, there
are a number of nutraceuticals that could exert positive effects on NAFLD; however, their
interaction with NAFLD-related SNPs is yet to be studied. In this regard, coenzyme Q10,
as an activator of adenosin 5′ monophosphate activated protein kinase (AMPK), has been
shown to alleviate NAFLD through the inhibition of lipogenesis and activation of fatty acid
oxidation [97]. Paeoniflorin, a peony root component, improved biochemical and histologi-
cal changes in NAFLD in animal models via insulin-sensitizing and antioxidant effects [98].
Resveratrol, a non-flavonoid phenol derived from grape skins, can attenuate insulin resis-
tance and hepatic oxidative stress in NAFLD [42] and these effects may be mediated by
changes in the gut microbiota, an essential component in NAFLD pathophysiology [99].
Supplementation with curcumin, extracted from Curcuma longa root, was associated with
benefits on NAFLD through the amelioration of insulin resistance and lipid metabolism in
both preclinical and clinical studies [100,101]. Berberine, an extract from the genus Berberis
species, has a role on hepatic lipid metabolism and has been reported to be effective in
NAFLD and related metabolic disorders [102]. In view of the foregoing, additional studies
including gene-natural antioxidants/food supplements interaction might shed light on
NAFLD personalized therapy.

3.4. Physical Activity

Physical exercise is one of the cornerstones of NAFLD therapy [103], however avail-
able data regarding potential interactions with gene polymorphisms remain scarce. In a
case-control study conducted in 1027 Chinese children, physical activity was demonstrated
to modulate the effect of PNPLA3 rs738409 variant: proportions of NAFLD increased
with the presence of the G-allele only in participants with insufficient physical activ-
ity/sedentary behavior [104], and Muto et al., found similar results in a retrospective
longitudinal study [105]. With regard to patients with NAFLD, some studies evaluated
the impact of lifestyle intervention, including dietary modifications along with physi-
cal exercise recommendations [71,72,74] with different results, but the specific physical
activity-gene interactions have not been evaluated to date.
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4. Future Perspectives in NAFLD Treatment: Toward Personalized Therapies?
4.1. Bariatric Surgery and NAFLD

BS is considered the most effective treatment to achieve substantial weight loss, thus
it constitutes an important therapeutic option for obesity and related comorbidities, in-
cluding NAFLD [106]. In fact, BS is associated with NASH and fibrosis resolution in a
significant number of patients, however a percentage of individuals do not experience
enough histopathological improvement after this procedure [12]. Considerably, nutritional
genomics play an essential part in personalized bariatric approaches, and the complex
crosstalk between these two matters can generate reciprocal influences [107]. Different
SNPs involved in the metabolic homeostasis are closely related to BS outcomes and, at
the same time, BS induces both genetic and epigenetic modifications that have a major
influence on metabolic pathways [108,109].

In this context, there is limited evidence with regard to the impact of gene poly-
morphism on BS outcomes in patients with NAFLD. In a prospective study including
84 individuals with obesity that underwent BS, PNPLA3 148M variant was associated with
increased intrahepatic lipid accumulation before BS, but also with higher reduction of
hepatic fat content and weight loss 12 months after the intervention [110]. Conversely,
neither TM6F2 nor MBOAT7 showed significant associations [110]. Interestingly, several
SNPs have been associated with lower hunger feelings and increased weight loss after
BS, while other genetic determinants such as mitochondrial UCP2 have been proved to
induce greater energy and carbohydrate intake after Roux-En-Y gastric bypass [111,112].
Hence, genetic determinants for predicting weight loss/regain after BS could be a useful
tool to determine the success of this procedure, and NAFLD-related outcomes may be also
affected by these SNPs.

4.2. Other Therapies

Glucose-lowering agents may be an effective treatment for NAFLD in patients with
and without T2DM [62]. Among them, thiazolidinediones have shown several bene-
fits, even in patients with advanced stages of NAFLD [113]. Remarkably, a substudy of
55 participants from a clinical trial to assess long-term efficacy of pioglitazone in NASH,
identified SNPs associations with pioglitazone histologic response, including adenosine
A1 receptor (ADORA1) rs903361, ATP binding cassette subfamily A member 1 (ABCA1)
rs2230806, potassium voltage-gated channel subfamily Q member 1 (KCNQ1) rs2237895,
PPARγ rs4135275 and PPARγ rs17817276, among others, and a genetic response score was
designed based on the sum of response-associated alleles [114]. In the EFFECT-II study,
84 patients with T2DM and NAFLD were randomly assigned to 10 mg dapagliflozin/4 g
omega-3 PUFA/a combination of both/placebo, and an interaction between PNPLA3
I184M (C/C vs. C/G + G/G) and reduction in liver fat content assessed by MRI was
found across the active treatment groups [85] (Table 1). Moreover, the G allele carriers had
an enhanced response to treatment only in the combined arm, what suggests synergistic
effects between therapies in this genotype [85]. Additionally, in a retrospective study with
41 patients with NAFLD and T2DM the response to the dipeptidyl peptidase-4 inhibitor
alogliptin was greater in PNPLA3 G-allele carriers [115], albeit in small study conducted
in patients with T2DM, PNPLA3 GG genotype was linked to a diminished response to
the glucagon-like peptide 1(GLP-1) receptor agonist exenatide in terms of reducing liver
fat content [116].

SNPs may also regulate response to Vitamin E treatment in NAFLD. Gene poly-
morphism of cytochrome P450 4F2 might affect Vitamin E pharmacokinetics and could
determine variability in its efficacy, as demonstrated a study with data from the PIVENS
and TONIC clinical trials [117]. However, a retrospective study showed that liver stiffness
reduction in patients with NAFLD taking Vitamin E was not influenced by PNPLA3 geno-
types [118]. On the other hand, several genetic predictors of response to obeticholic acid in
patients with NASH were identified in a pilot GWAS study, with the CELA3B rs75508464
variant with the most significant effect on NASH resolution [119].
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Finally, the restoration of gut microbiota through the use of probiotics/symbiotics may
constitute an interesting therapeutic approach in NAFLD [120]. Gut microbiota dysbiosis
has a central role in NAFLD pathogenesis [121] and microbiota-derived metabolites (bile
acids, short-chain fatty acids, branched-chain amino acids, etc.) are also important modula-
tors of the disease [122]. Gut microbiome based metagenomic signature could be useful for
the diagnosis of advanced stages of NAFLD [123], and gut microbiota-miRNA interactions
have been reported to impact on NAFLD pathophysiology [124]. In animal models, the
combination of blueberry juice and probiotics has been proved to improve NASH via
increasing PPARα and reducing the levels of SREBP-1 and PNPLA3 [125]. Nevertheless, the
potential interactions between probiotics/symbiotics and specific SNPs remain unknown.

5. Concluding Remarks

NAFLD is the most common cause of chronic liver disease globally and involves im-
portant clinical and socioeconomic implications. Gene polymorphism-nutrient interaction
plays a central role in NAFLD pathogenesis and the effectiveness of lifestyle interven-
tions, including dietary modifications, seems to be also modulated by different genetic
determinants. In this review, a number of SNPs closely related to pathways involved in
NAFLD (e.g., mitochondrial dysfunction, oxidative stress, lipid metabolism) and their
interaction with both proven effective dietary patterns/food components and promising
novel nutraceuticals for the treatment of NAFLD have been described. Since the variability
in response to therapy in NAFLD may be explained by this fact, the assessment of key
NAFLD-related SNPs in interventional studies should be considered. Moreover, gene-
based personalized diet therapy may constitute a helpful option for the management of
NAFLD, although more well-conducted large-scale, long-term trials assessing the influence
of SNPs on the response to specific dietary approaches (e.g., Mediterranean diet, low-
carbohydrate diet, intermittent fasting) and single nutrients are needed. Furthermore, these
effects should be also evaluated in advanced stages of NAFLD. Finally, this review includes
an integrative view of the emerging therapies and targets for NAFLD, pointing out the
potential interplay between nutritional genomics, physical exercise, BS, pharmacotherapy
and the gut microbiota in this pathology. Although recent studies have shown promising
results in this regard, further investigation is warranted to determine its impact.
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