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Abstract: There are various important factors in reducing the risk of cancer development and
progression; these factors may correct an unbalanced intake of nutrients to maintain the living body’s
homeostasis, detoxify toxic materials, acting as an external factor, and maintain and strengthen the
body’s immune function. In a normal cell environment, nutrients, such as carbohydrates, lipids,
proteins, vitamins, and minerals, are properly digested and absorbed into the body, and, as a result,
an environment in which cancer can develop and progress is prevented. It is necessary to prevent
toxic materials from entering the body and to detoxify poisons in the body. If these processes occur
correctly, cells work normally, and genes cannot be damaged. The most important factor in the fight
against cancer and prevention of the development and progression of cancer is the immune system.
This requires a nutritional state in which the immune system works well, allowing the intestinal
microbiome to carry out all of its roles. In order to grow intestinal microbiota, the consumption of
prebiotics, such as organic vegetables, fruits, and dietary fiber, and probiotics of effective intestinal
microbiota, such as fermented foods and supplements, is required. Symbiosis, in which these
organisms work together, is an effective means of reducing the risk of cancer. In addition, fecal
microbiota transplantation (FMT) using ultrafine bubble water, produced specially by the Association
for Clinical Research of Fecal Microbiota Transplantation Japan, is also useful for improving the
nutritional condition and reducing the risk of cancer.

Keywords: cancer; nutrition; intestinal microbiome; fecal microbiota transplantation; ultrafine bubble
water; probiotics; prebiotics; symbiotics; immunity

1. Introduction

The initiation and development of cancer are related to the deterioration of the cellular
environment as a result of an imbalance in nutrient intake and contact with toxic substances.
Dysbiosis (the alteration and simplification of the intestinal microbiota composition) can
induce abnormal functioning of the immune system and chronic inflammation, and can also
cause carcinogenesis and the promotion of cancer processes. Therefore, it is necessary to
recognize the importance of intestinal microbiota and of the improvement of the intestinal
environment in the prevention of carcinogenesis and ongoing cancer processes.
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Recently, metagenomics analysis through high-depth next-generation sequencing of
bacterial 16S ribosomal RNA has enabled the identification and relative quantification of
vast numbers of organisms in the intestinal microbiome. The human intestine contains
approximately 1000 different species of known bacteria, with the largest number of bacteria
(more than 100 trillion) equivalent in weight to the liver at 1.5 kg [1]. The number of genes
in this microbiome is approximately a thousand times that of human gene content. The
intestinal microbiome controls human metabolism, the production of nutrients, immune
function, and communication with the other organs. The balance of intestinal microbiota
is strongly linked to human diet, mental and physical stress, environment, and lifestyle,
and this microbiome maintains a symbiotic relationship with the body. The failure of this
symbiotic relationship induces various diseases, such as many types of cancer [2], diabetes
mellitus, cardiovascular disease, autoimmune diseases, and neuropsychological diseases.

In the development and promotion of cancer, oral bacteria, particularly periodontal
bacteria [3], are closely connected with intestinal microbiota, considering the involvement
of Fusobacterium nucleatum in colorectal and esophageal cancer [4,5] and Neisseria enlogata
and Streptococcus mitis in pancreatic cancer [6]. The carcinogenesis of hepatic cancer is
related to Clostridium cluster XI and XIVa in a high-fat diet [7–9].

In this review, we focus on the prevention of various cancers from the viewpoint of the
intestinal microbiome. We then introduce clinical studies on the use of prebiotics, probiotics,
and FMT (especially our method using ultrafine bubble water) with nutrition [10–19].

2. Mechanism of Onset and Progression of Cancer

Figure 1 shows that the onset and progression of cancers cause worsening of the
cellular environment.
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2.1. Deterioration of the Cellular Environment

Imbalance of minerals: The blood concentrations of zinc, magnesium, selenium, iron,
manganese, and molybdenum are lower in cancer patients. Conversely, the concentrations
of copper, aluminum, and lead are increased in cancer patients [20].

Exposure to carcinogens and toxic substances: Exposure to mold aflatoxin, tobacco
tar, heavy metals, such as asbestos and mercury, and endogenous carcinogens, such as sex
hormones, reduces the ability to scavenge active oxygen [21].

Overeating and obesity: Overeating reduces the control of carbohydrates and fat
metabolism and relatively increases the levels of saturated fat. As a result, it becomes a
trigger of chronic inflammation [22].

Lack of exercise and the lowering of lymph flow: The promotion of chronic inflamma-
tion occurs when toxic and metabolic substances stay in the body for long periods [23].

Lack of diversity in intestinal microbiota is related to an increased production of toxic
substances from the overconsumption of high-protein and high-fat diets such as meats.
Undecomposed toxic substances, the proliferation of harmful bacteria, and the breakdown
of the balance of intestinal microbiota induce abnormalities within the immune system.

2.2. Endoplasmic Reticulum STRESS

The excess accumulation of protein, particularly animal protein, an increase in abnor-
mal protein, and the deterioration of the fluidity of the endoplasmic reticulum membrane
due to excessive saturated fat induce endoplasmic stress.

In such cases, the endoplasmic reticulum may be processed by autophagy to avoid
stress. However, if endoplasmic reticulum stress is not relieved, cells are programmed to
undergo apoptosis, which is executed through commands from mitochondria. However,
when mitochondrial dysfunction occurs, autophagy and apoptosis do not occur properly,
and cells become cancerous [24–27].

2.3. Hypofunction of Mitochondria

Mitochondrial dysfunction—that is, mitochondrial aging—may be caused by a de-
crease in energy utilization, a lack of vitamins related to metabolism, an excess of cellular
calcium and a lack of cellular magnesium, continuous ischemia and hypoxia, radiation
exposure, ultraviolet superoxide and mutagenic substances, and infection by bacteria such
as Helicobacter pylori.

Much of the body’s active oxygen is generated from aged mitochondria, which dam-
ages intracellular proteins, changes the lipid portion of phospholipids, which are cell
constituents, into lipid peroxides and damages DNA. If such a state continues, cell aging
will progress, and cancer will develop [28–30].

When the above three factors occur for an extended period of time, they can cause
carcinogenesis and induce chromosomal abnormality and gene mutation. After this, if
the immune function is normal, cancer cells induce apoptosis via attack from cytotoxic T
lymphocytes and natural killer cells.

It is also known that the sympathetic/parasympathetic nervous system, associated
with mental and physical stress, is involved in carcinogenesis. It is speculated that changes
in lymphocyte dynamics associated with continuous excitement of the sympathetic ner-
vous system due to chronic stress act to weaken the acquired immune response. That
is, when the sympathetic nerve is excited, effector T cells cannot move from the lymph
nodes to the tumor tissue and cannot participate in the process of eliminating tumor
cells. Furthermore, stimulation of the β2 adrenaline receptors expressed on dendritic cells
(tumor-antigen-presenting cells for T cells) reduces the cells’ antigen-presenting ability and
the cytokine-producing ability, resulting in dendritic cells with high sympathetic nervous
system activity. Therefore, it is thought that the activation of T cells by dendritic cells is im-
paired. If the sympathetic nerve systems are exposed to long-term excessive mental stress,
cancer develops due to immune hypofunction, such as decreased lymphocytes [31–36].
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Chronic inflammation is caused by an imbalance of nutrients, and the intake and
accumulation of toxic substances and abnormality in the immune system are the most
important factors in carcinogenesis and the progression of cancer mechanisms. The intesti-
nal microbiome is connected to all of these mechanisms. Therefore, the optimization of
microbiota is important in preventing the onset and development of cancer.

3. The Role of the Intestinal Microbiome

The diversity and compositional balance of the intestinal microbiome are important to
human health, and they change depending on factors, such as diet, age, living environment,
and physical and mental stress (dysbiosis). Additionally, the intestinal microbiome is
involved in the development and progression of cancer.

The main functions of the intestinal microbiome are metabolic control, production of
useful materials, immune control, and communication with other organs. In particular,
immune control is the most important in carcinogenesis.

3.1. Control of the Metabolism

Carbohydrate metabolism [37], lipid metabolism [38], and decomposition of dietary
fiber [39] are performed by the intestinal microbiota. In particular, in carbohydrate
metabolism, polysaccharides and oligosaccharides are absorbed partly in the small in-
testine as glucose by digestive enzymes. The remaining carbohydrates are digested by
the enzymes of the intestinal microbiota and become the energy source of bacteria via
anaerobic metabolism. Finally, organic acids or short-chain fatty acids (SCFAs), which are
metabolic substances of the microbiota, are absorbed and used in the large intestine [40–42].

3.2. Production of Valuable Substances

Intestinal microbiota produce organic acids, such as SCFAs (butyric acid, propionic
acid, and acetic acid), equol (from daidzein, a kind of soybean isoflavone) [43], ingredients
of neurotransmitters (such as dopamine and serotonin) [44–46], various vitamins [47], and
intravital hydrogen (Ruminococcus, Roseburia, Clostridium, and Bacteroides) [48].

In particular, the SCFA butyric acid is an energy source of colon epithelial cells,
producing ATP in those cells. Butyric acid suppresses dysbiosis via the provision of an
anaerobic environment to obligate anaerobes. Moreover, it is difficult in this environment
to produce harmful secondary bile acid, making the surroundings in the colon weakly
acidic and working to protect against colorectal cancer. Furthermore, butyric acid has
the function of promotion of the redifferentiation from cancer cells to normal tissue cells
by accelerating apoptosis, as well as having the ability to cure colorectal cancer. It has
been reported that propionic acid suppresses the proliferation of hepatic cancer cells via
the SCFA receptor hepatic cancer cells. Additionally, SCFA is related to the production
of regulatory T cells, the differentiation of the anti-inflammatory M2 macrophage, and
antibody formation by B cells. It can be estimated that the formation of cancer is connected
with chronic inflammation, and digestible dietary fiber is hardly required in the production
of SCFAs [49,50].

3.3. Control of Immunity

The intestinal microbiota in intestinal epithelial cells work to support the immune
cells (regulatory T cells: CD4 + CD25 + Foxp3, Th17, and IgA) in the lamina propria. For
example, Bacteroides fragilis induces the differentiation of Th17 and is related to the onset of
colorectal cancer by way of the tumor proliferation of IL-22. Moreover, the differentiation
of regulatory T cells by Clostoridium induces immune tolerance for the suppression of
autoimmune diseases and inflammatory bowel diseases, and at the same time inhibits the
attack against cancer by cytotoxic T cells [51].
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3.4. Communication with Other Organs

Gut microbiota communicate with other organs, e.g., brain–gut interaction [52,53],
gut–kidney linkage [54], and insulin secretion in the pancreas [55].

Homeostasis is maintained by activating the hypothalamic–pituitary–adrenal (HPA)
axis and sympathetic nervous system when exposed to harmful stress. It has been reported
that the intestinal flora affect these biological reactions, and it has become clear that signal
transduction is performed via the microbiota–gut–brain axis [56].

D-amino acid (D-serine), produced by intestinal bacteria, has a nephroprotective
effect [57,58]. Dietary phosphatidylcholine is converted to trimethylamine by intestinal
bacteria and metabolized to trimethylamine oxide in the liver, making it a toxic substance
for the kidneys, heart, and blood vessels [59].

4. Enterotype

Intestinal microbiota are broadly classified into three categories by their effect in daily
dietary life, classified by the balance of nutrient intake, such as carbohydrates, fat, protein,
and dietary fiber [60].

Type 1 (B1 and B2): Bacteroides is dominant. This type is related to the secretion of
SCFAs, the prevention of obesity, and the onset of carcinoma scapegoating opportunistically
according to the intestinal environment.

Type 2 (P): Prevotella is dominant. This type has a strong dietary fiber-degrading
enzyme and is related to the habit of eating more starch and dietary fiber. It raises the risk
of the onset of cardiovascular diseases.

Type 3 (R): Ruminococcus is dominant. This type accelerates the absorption of carbo-
hydrates and the accumulation of fat and induces obesity as a result. It raises the risk of
cardiovascular diseases, such as cerebral infarction and myocardial infarction.

The main intestinal microbiota associated with cancer are as follows:

(1) Bifidobacterium: This genus has catalytic activity of cyclic lactic acid and the effect of
the prevention of cancer development. It neutralizes waste products, such as bile acid,
and is immunity-strengthening, aids mental stability, and complements the activity of
other microbiota in carbohydrate and lipid metabolism [61].

(2) Lactobacillus: This genus has catalytic activity of cyclic lactic acid and the effect of
prevention of cancer development. It controls gene restoration and cell regeneration,
is immunity-strengthening, aids mental stability, and complements the activity of
other microbiota in carbohydrate and lipid metabolism [62].

(3) Clostridium: This genus promotes the secretion of regulatory T cells and has useful
effects on allergic diseases, autoimmune diseases, and chronic inflammatory diseases
via the secretion of SCFAs [63].

Cluster XVIII: Involved in suppression of carcinogenesis and overreaction of the
immune system.
Cluster XV: Involved in activation of macrophages and induction of apoptosis.
Cluster IX Involved in gene restoration and induction of apoptosis.
Cluster IV: Involved in induction of regulatory T cells.

(4) Akkermansia muciniphila: Involved in regulation of the effect of immune checkpoint
inhibitors [64,65].

(5) Clostridium cluster Blautia: Involved in the restoration of inflammatory tissues and
mutated cells, and control of immunity [66].

(6) Faecalibacterium prausnitzii: Involved in suppression of obesity and the onset of diabetes
mellitus, and in induction of regulatory T cells via the production of butyric acid [67].

(7) Clostridium butyricum: Involved in prevention of diseases via abnormal prolifera-
tion of resistant microbes, such as Clostridium difficile. It is a butyric acid-producing
bacterium [68].
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5. Improvement of Dysbiosis

In order to prevent the onset and development of cancer, it is important to control
intestinal microbiota. Prebiotics, probiotics, and symbiotics that integrate these can be used
to support the proliferation of useful microbiota and the suppression of harmful microbiota.
However, if dysbiosis does not improve, a fecal microbiota transplantation (FMT) from a
healthy donor patient should be performed.

5.1. Prebiotics

Prebiotics are hardly digestible food ingredients that have a beneficial effect on the
host by selectively multiplying useful bacteria in the intestine and suppressing harmful
bacteria [69]. Additionally, they are not hydrolyzed or absorbed in the upper part of the
digestive tract. A prebiotic is a selective substrate for one or a limited number of beneficial
bacteria (such as Bifidobacterium) that coexist in the large intestine, promoting the growth
of those bacteria or activating their metabolism. The intestinal microbiota of the large
intestine can be modified to favor a healthy composition, inducing systemic effects that
are beneficial to the health of the host. Dietary fiber can be categorized as water-soluble
or -insoluble [70–75], with the former including pectin (contained in fruits, potatoes, and
vegetables), alginic acid (seaweeds), gums (soybeans, barley, and limewood), and gluco-
mannan (konjac), and the latter including cellulose (soybeans, gobo, wheat bran, grains,
and beans), hemicellulose (wheat bran, soybeans, grains, and gobo), lignin (wheat bran,
grains, vegetables, beans, and cocoa), and chitin (classified as a kind of shell, including
mushrooms). Indigestible oligosaccharides, such as fructooligosaccharide (FOS) [76] and
galactooligosaccharide (GOS) [77], also act to maintain intestinal immunity by promoting
IgA secretion into the gastrointestinal tract. α-Glucan, which is one of the glucose poly-
mers, is digested by digestive enzymes in saliva and pancreatic juices and is ultimately
decomposed into glucose and maltose, which are then absorbed in the small intestine
and can be used as an energy source. However, these dietary fibers do not only adsorb
and remove harmful substances; some examples of their other roles include benefiting the
host by synthesizing and supplying vitamins and β-glucan, such as cellulose, as well as
metabolism of indigestible carbohydrates by the indigestible bacteria that live in the colon
and ensuring their bioavailability. In addition, SCFAs, which are tumor metabolites, act
on the nervous system, the endocrine system, the immune system, etc., through various
physiological actions, such as ligand activity and enzyme inhibitory activity, contributing
to biological defense and metabolic homeostasis. SCFAs create an intestinal tight junction
protective effect and also prevent the generation of inflammation-inducing substances,
such as lipopolysaccharides (LPS) and toxic substances and harmful bacteria invasion [78].
Additionally, glucobrassicin from cruciferous vegetables (such as broccoli and cauliflower)
is hydrolyzed, and indole-3-carbinol is produced. This is converted to diindolylmethane
(DIM) by intestinal bacteria, which suppresses carcinogenesis and proliferation of can-
cer cells, and causes suppression of infiltration and metastasis [79]. DIM inhibits colon
cancer by activating AhR (aryl hydrocarbon receptor), as well as inhibiting breast cancer,
ovarian cancer, uterine cancer, and lung adenocarcinoma by normalizing the sex hormone
metabolism [80,81]. Glycoside sugars from umbelliferae vegetables (carrots, celery, and
parsley) remove sugars via intestinal bacteria and become apigenin and luteolin, which
have anticancer effects.

Promotion of the production of hydrogen in the large intestine by indigestible sugars
such as dietary fiber contributes to a reduction in oxidative stress and the suppression of
oxidative damage.

In an unpublished study, we measured the urinary indoxyl sulfate (indican) concen-
tration by giving capsules containing an Si-based agent [82,83] and dietary fiber to six
cancer patients for one month and estimated how the intestinal environment was changed
(Table 1).
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Table 1. The change in urinary indoxyl sulfate concentration (µM/g creatinine) after oral administration of capsules
containing a Si-based agent and water-soluble dietary fiber in cancer patients after one month.

Profile (Age, Sex, Cancer, Stage) Before (µM/g Creatinine) After (µM/g Creatinine)

1 42, F, ovarian, I 333 278

2 70, F, breast, II 622 489

3 73, M, oropharyngeal, III 326 482

4 58, F, colorectal, III 350 180

5 50, F, melanoma, III 405 367

6 43, F, breast, III 247 350

Indole is synthesized from dietary-protein-derived tryptophan in the intestine by
dysbiotic bacteria, converted to indoxyl sulfate (indican) in the liver, and then excreted in
the urine, and dysbiosis can be evaluated by measuring it [84,85].

In addition, the Si-based agent continuously produced hydrogen in the gastrointestinal
tract for 24 h or more (Institute of Scientific and Industrial Research, Osaka University,
Osaka, Japan).

Four out of the six cancer patients showed an improvement in their intestinal environ-
ment for the short period of one month.

5.2. Probiotics

Probiotics refer to living microorganisms that produce healthy beneficial effects
for the host by improving the flora balance in the intestine when administered in ad-
equate amounts.

Sufficient safety is guaranteed. Probiotics are originally members of the intestinal flora,
able to withstand gastric juice, bile, etc., and to reach the intestines alive. Probiotics can
adhere to the insides of the intestines and grow while maintaining the form of food for an
effective number of bacteria. They are easy to handle and are inexpensive. Probiotics need
to meet these previous requirements to be considered effective. Examples of probiotics
include supplements such as yogurt, natto, miso, lactic acid bacteria, and bifidobacteria.
They are often used in diseases, such as infectious diarrhea (travelers’ diarrhea), antibiotic-
associated diarrhea, Helicobacter pylori infection, constipation, irritable bowel syndrome,
hepatic encephalopathy, Crohn’s disease, and ulcerative colitis [86–89].

We present a case of a cancer patient that confirms the effect of a probiotic supplement
in which six lactic acid bacteria were combined (Figure 2).

5.2.1. Background

She presented to our clinic and chose not to receive standard treatment (surgery, anti-
cancer agent, or radiation therapy) right away. We convinced her that standard treatment
was the best option for treating her condition. However, she said that she would accept
standard treatment if she did not improve after taking probiotics for three months.

5.2.2. Materials and Methods

She signed an informed consent form before the treatment.
She took encapsulated Lactobacillus supplements (Lactobacillus helveticus, Lactobacil-

lus reuteri, Lactobacillus fermentum, Lactobacillus delbrueckii, Lactobacillus rhamnosus,
and Lactobacillus plantarum) for approximately three months, after which her intestinal
flora balance, immune function, etc., were tested. It was recommended that milk and
dairy products be avoided and that a diet of brown rice, soy foods, organic vegetables, and
dietary fiber be consumed.
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Figure 2. The change in the balance of intestinal microbiota by original profiling of 16SrRNA sequencing before and
after the oral administration of probiotic capsules over three months. Forty-seven years old, female, breast cancer (left C
region), T2N3aM0, stage IIIc, ER100% PgR40% HR2(3+) Ki67:50%. She took encapsulated Lactobacillus supplements for
approximately three months. No adverse events were observed while taking encapsulated Lactobacillus supplements. After
FMT, the diversity of intestinal bacteria increased. Akkermansia proliferated and immune cells may have been fortified.
Lactobacillus increased, and may have progressed tissue repair and reconstructed tissue after destroying breast cancer. The
size of her breast cancer remained unchanged, so she agreed to receive standard treatment. One year after the operation,
she is in good general condition and is receiving hormone therapy. Clostridia (C).

5.2.3. Results

Before: There were more bacteria (Clostridia cluster XI) promoting inflammation to
boost immunity. Clostridia cluster IV increases immune tolerance so that it does not come
under attack itself. Clostridia Blautia is aggressively powerful, and Clostridia cluster IV and
Equolifaciens (equol-producing bacteria) repair tissue. There was almost no Lactobacillus, and
immunity could not be guaranteed as a whole. By increasing the number of Lactobacillus,
inflammation was suppressed, and the balance with Treg (suppressive T cells) improved.
There was almost no Prevotella, and increasing the number of lactobacilli improved the
glucose metabolism.

After: Diversity increased. Akkermansia proliferated and immune cells may have
been fortified. In addition, Lactobacillus increased and may have progressed tissue repair
and reconstructed tissue after destroying breast cancer. If Lactobacillus + Bifidobacterium +
Akkermansia increase to 15–20% (50% with Bacteroides added), the cancer may become
smaller.

In fluorescence-activated cell sorting after three months, the proportion of regulatory
T lymphocytes had decreased, the cytotoxic T lymphocyte/regulatory T lymphocyte ratio
increased, and the aggression toward cancer increased.

No adverse events were observed while taking encapsulated Lactobacillus supplements.
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Three months later, her intestinal flora had improved. Clinically, however, the size of
her breast cancer remained unchanged, so she agreed to receive standard treatment. One
year after the operation, she is in good general condition and is receiving hormone therapy.

5.3. Fecal Microbiota Transplantation (FMT)

The effects of prebiotics, probiotics, or symbiotics in severe cases are uncertain. FMT
is a treatment method that enables dramatic changes in the intestinal environment and
exerts a therapeutic effect. FMT is a method of administering the intestinal microorganisms
contained in a healthy person’s stool to a patient with a disease. FMT has been shown to
be useful in many diseases, such as relapsed and refractory Clostridium difficile infection
(CDI), irritable bowel syndrome (IBS), inflammatory bowel disease, such as ulcerative
colitis, autism spectrum (ASD), neuropsychiatric issues, such as depression, and allergic
conditions, such as atopic dermatitis. Furthermore, management with FMT has also
been used to treat the onset and progression of cancer, which is associated with immune
disorders and chronic inflammation [90–97].

We performed FMT using characteristic methods: administration method, administra-
tion route, preparation of a bacterial solution, number of administrations, and selection of
donors were conducted differently from standard protocol. Without using an endoscope,
250 mL of donor feces dissolved in a special bacterial solution was directly injected into the
rectum via a catheter enema. The injection was completed in approximately 5–10 min. After
this, the posture was changed, and vital signs before and after injection were observed. To
date, we have treated about 400 patients, and in each case, the treatment was completed
without any side effects. The stool used for transplantation was a safe stool from a healthy
volunteer donor enrolled in Japanbiome who had passed a strict examination. Regarding
the method for adjusting the bacterial solution, physiological saline is often used, but in
previous work by our study group, NanoGAS® water (WIPO: WO/2019/168034) was
developed by combining a rotary shear method with physical shearing by a hollow thread
filter and then applying a magnetic field to perform electrical rectification. Ultrafine bubble
water was used to enhance the colonization of bacteria [98].

NanoGAS® water is negatively charged. The bacteria cannot come into contact with
one another, and the bacteria do not overgrow. It also inhibits the formation of biofilms, so
it is an extremely useful bacterial adjusting solution (Figure 3). Figure 4 shows that it was
measured using an instrument from Beckman Coulter, Inc. (Brea, CA, USA). There were
6,738,560,000 particles in 1 mL, and particles smaller than 0.2 µm were stable for a long
period of time.

We present a case of a cancer patient that confirms the effect of FMT using the bacterial
solution adjusted with NanoGAS® water (Figure 5).

5.3.1. Background

He had received no anticancer drug treatment, nor had he received any other treat-
ment, such as immunotherapy. His general condition was so poor that he was advised
to move to palliative care (best supportive care). Before FMT treatment, he had difficulty
walking independently and had difficulty breathing, so he wore an oxygen mask and
continued to inhale oxygen.

5.3.2. Materials and Methods

He was signed an informed consent form before the practice.
The bacterial solution for FMT was adjusted with NanoGAS® water. He received FMT

once a week for six months, and an intestinal flora balance test was performed before and
after FMT.
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Figure 5. The change in the balance of intestinal microbiota by original profiling of 16SrRNA sequencing before and after
FMT in six months. Sixty-six years old, male, lung adenocarcinoma, Stage IV. He received FMT using the bacterial solution
adjusted with NanoGAS® water once a week for six months. No adverse events were observed during the FMT procedure.
After FMT, the diversity of intestinal bacteria increased, cluster IX:XIVa improved to 1:2, and immunity was reinforced,
resulting in acquisition of tissue repair ability, improvement of glucose, and lipid metabolism. As a result, his QoL and
prognosis improved. He survived approximately one year after six months of FMT. Clostridia (C.).

5.3.3. Result

Before: C. cluster IX:XIVa was 1:1, and immunity was weakened. The parasympathetic
nervous system was dominant. Prevotella abnormally proliferated, and it was used as
energy for tumor cells with a high sugar metabolism.

After: C. cluster IX:XIVa improved to 1:2 and immunity was reinforced, resulting in
acquisition of tissue repair ability, improvement of glucose, and lipid metabolism.

No adverse events were observed during the FMT procedure.
After FMT, he was able to walk on his own and demonstrated improved appetite and

improved QoL. He was told by his doctor that he had a prognosis of three months, but he
survived approximately one year after six months of FMT.

6. Discussion

Chronic inflammation as a result of deterioration of the cellular environment due to
nutrient intake and the accompanying imbalance of immune function is deeply involved
in the onset and progression of cancer. At the same time, the intestinal flora, which has
a symbiotic relationship with humans, is deeply involved in the chronic inflammation.
When a positive symbiotic relationship breaks down, various chronic diseases develop,
such as cancer, inflammatory bowel disease (ulcerative colitis and Crohn’s disease), au-
toimmune disease, allergic disease, neuropsychiatric disease (autism, depression, ADHD,
and dementia), arteriosclerotic disease, diabetes mellitus, and various chronic diseases,
such as chronic kidney disease, obesity, and NAFLD. In this review, we discuss the deep
involvement of nutrients and intestinal bacteria in the development and progression of can-
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cer [99,100]. In order to improve outcomes, we introduced prebiotics that support nutrient
intake, probiotics that contain intestinal bacteria themselves, and FMT. In particular, our
FMT process is a method of increasing the colonization of the transplanted patient using
micro-nano bubble (ultrafine bubble) water (NanoGAS® water). Conventional intestinal
flora transplantation techniques (with saline) are thought to require several days for the
transplanted microorganisms derived from a living body to colonize in a live state in
another living body. Accordingly, it is thought that most of the transplanted intestinal
flora is excreted over those several days; as a result, this causes a lack of retention of the
transplanted intestinal flora in the body of the patient. Moreover, it has been reported
that the colonization ratio (engraft ratio) of the microorganisms derived from a living
body after transplantation is no more than 20–30% despite various attempts. As a result,
the effect on the final goal of the treatment of diseases is not as great as expected. We
developed an apparatus for generating nanobubbles with a diameter smaller than 1 µm
(NanoGAS®). By generating a bacterial solution using NanoGAS® water, we improved the
technology for engrafting bacteria. FMT is easily performed during outpatient treatment
via the catheter enema method without using an endoscope. Fecal microorganisms can be
wrapped in bubbles and guided to the inner mucous layer, making it easier for them to
engraft. We implemented this method with 347 patients, and the improvement rate was
77.8%. Although the study had a small number of cancer patients (19 cases), improvement
of symptoms, QoL, and prognosis were observed following FMT.

Approximately 1700 years ago, Ge Hong recorded the use of feces to treat food
poisoning and severe diarrhea. The Human Microbiome Project, which was started in the
USA in 2007, is being promoted as a joint project between the USA, EU, Japan, and China
and is attracting attention similar to the Human Genome Project. In 2013, FMT became used
for Clostridium difficile infectious enteritis, and applied research for its use in other diseases
has begun. The precision medicine initiative (PMI) that began in the USA in 2015 provided
momentum and, with the progress of technological development for practical use, FMT is
currently positioned as a “pharmaceutical product consisting of bacterial preparations”.
Expectations are rising for early approval as a “first-in-class”. In the USA, it has already
been developed and sold as an enema preparation, an oral preparation, and an oral capsule
preparation by the NPO “OpenBiome” established in 2013. More recently, technological
improvements in the development of bacterial transplantation without using feces have
been made. Strain consortia consisting of multiple strains (2–12 strains), single strains,
synthetic molecules, such as glycans, that change the distribution of bacterial flora, bacterial
secretions, and selective elimination of target bacteria, have begun to be developed as
next-generation drugs for bacterial preparations. Approximately 13% of the projects under
consideration using the current bacterial preparations are in the field of oncology [101,102].

In the future, nutrition-based intestinal microbiota diseases such as cancer will be
studied in association, and it is expected that treatment options for diseases such as cancer
will be expanded by treatment methods that control intestinal microbiota.
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