## **SUPPLEMENTARY DATA**

## **SUPPLEMENTARY FIGURES**



**Figure S1.** Gene expression change after 6 h and 24 h supplementation. Aggregate bar plots illustrating log<sub>2</sub> fold change (FC) in the expression of genes assigned to the induced (green) and repressed (red) clusters with 6 (saturated color) and 24 hours (pale color) bioactive supplementation.



Figure S2. Comparison of transcriptional effects of 6 h exposure to DHA, PRO and PCA on genes involved in steroid biosynthesis (3-hydroxy-3-methylglutaryl-CoA synthase 1, HMGCS1; 3-hydroxy-3-methylglutaryl-CoA reductase, HMGCR; isopentenyl-diphosphate  $\Delta$  isomerase 1, IDI1; squalene epoxidase, SQLE; cytochrome P450 family 51 subfamily A polypeptide 1, CYP51A1; methylsterol monooxygenase 1, MSMO1) mapped by RNA-seq and RT-qPCR. Data are represented as the mean fold change of relative expression compared to Ctrl cells. Statistical analysis was carried out using one-way ANOVA followed by Tukey's HSD test. Different letters indicate statistical significance (p<0.05).



**Figure S3.** Comparison of transcriptional effects on genes involved in fatty acid biosynthesis (acetyl-CoA carboxylase 1, *ACACA*; fatty acid synthase, *FASN*; stearoyl-CoA desaturase 1, *SCD1*; acyl-coenzyme A synthetase short-chain family member 2, *ACSS2*; ATP citrate lyase, *ACLY*) of bioactives on HepG2 cells mapped by RNA-seq. Bar plots representing gene expression in Ctrl and supplemented cells after 24 h of supplementation. Data are represented as the mean fold change of relative expression compared to Ctrl cells. Statistical analysis was carried out using one-way ANOVA followed by Tukey's HSD test. Different letters indicate statistical significance (p<0.05).



**Figure S4.** Intracellular triglyceride content in control (Ctrl) and supplemented cells after 6 h and 24 h supplementation. Data are expressed as the percentage of the value obtained in control cells (assigned as 100%). Statistical analysis was carried out using one-way ANOVA followed by Tukey's HSD test. Different letters indicate statistical significance (p<0.05).

## SUPPLEMENTARY TABLES

**Table S1.** Primers used for RT-qPCR.

| Gene name                                    | GenBank accession<br>number | Primer sequence            |  |  |  |
|----------------------------------------------|-----------------------------|----------------------------|--|--|--|
| Reference genes                              |                             |                            |  |  |  |
| ACTB                                         | N.C. 007002.1               | F: ATGTGGCCGAGGACTTTGATT   |  |  |  |
| β-actin                                      | NG_007992.1                 | R: AGTGGGGTGGCTTTTAGGATG   |  |  |  |
| GAPDH                                        | NIC 007072.2                | F: AAGGTGAAGGTCGGAGTCAA    |  |  |  |
| glyceraldehyde-3-phosphate dehydrogenase     | NG_007073.2                 | R: AATGAAGGGGTCATTGATGG    |  |  |  |
| HMBS                                         | NIC 000002 1                | F: ACCAAGGAGCTTGAACATGC    |  |  |  |
| hydroxymethylbilane synthase                 | NG_008093.1                 | R: GAAAGACAACAGCATCATGAG   |  |  |  |
| SDHA                                         |                             | F: TGGGAACAAGAGGGCATCTG    |  |  |  |
| subunit A of succinate dehydrogenase         | NG_012339.1                 | R: CCACCACTGCATCAAATTCATG  |  |  |  |
| complex                                      |                             | n. cencencrocarreamarream  |  |  |  |
| Target genes                                 |                             |                            |  |  |  |
| CYP51A1                                      |                             | F: CCTTTGCCTAGTTTCAGACGC   |  |  |  |
| cytochrome P450 family 51 subfamily A        | NG_007968.1                 | R: GACTGTCTGCGTTTCTGGATTG  |  |  |  |
| member 1                                     |                             |                            |  |  |  |
| HMGCR                                        | NG_011449.1                 | F: TGTCAGGGGTACGTCAGCTT    |  |  |  |
| 3-hydroxy-3-methylglutaryl-CoA reductase     | 110_011447.1                | R: AGGACACACAAGCTGGGAAG    |  |  |  |
| HMGCS1                                       | N.C. 00000E 10              | F: CCAGTGGCAGAAAGAGGGAA    |  |  |  |
| 3-hydroxy-3-methylglutaryl-CoA synthase 1    | NC_000005.10                | R: GTCATTCAGCAACATCCGAGC   |  |  |  |
| IDI1                                         | N.C. 000010.11              | F: ACTAACCACCTCGACAAGCAA   |  |  |  |
| isopentenyl-diphosphate $\Delta$ isomerase 1 | NC_000010.11                | R: TCCTTTCTCAATGTTCTCGTTCA |  |  |  |
| MSMO1                                        | NIC 042200 1                | F: TCCAGCTGCCTTTGATTTGTG   |  |  |  |
| methylsterol monooxygenase 1                 | NG_042288.1                 | R: CAATGACTGCACAACCAAAGC   |  |  |  |
| SQLE                                         | NC 000000 11                | F: AGGCGCAGAAAAGGAACCAA    |  |  |  |
| squalene epoxidase                           | NC_000008.11                | R: GCCAGCTCCCACGATGATAA    |  |  |  |

Table S2. Fatty acid (FA) composition of HepG2 cells (a) after 6 h and (b) after 24 h supplementation.

(a)

| FA      | Ctrl                   | 50 μM DHA               | 70 μM PRO              | 50 μM DHA<br>+70 μM PRO  | 20 μM PCA              | 50 μM DHA<br>+20 μM PCA  |
|---------|------------------------|-------------------------|------------------------|--------------------------|------------------------|--------------------------|
| 3:0     | 0.10±0.13a             | 0.10±0.11ª              | 0.19±0.14ª             | 0.03±0.07ª               | 0.05±0.05a             | 0.04±0.05a               |
| 14:0    | 1.94±0.58a             | 2.33±0.72a              | 1.53±0.77a             | 1.96±0.26a               | 1.70±0.77a             | 2.14±0.17 <sup>a</sup>   |
| 16:0    | 33.54±2.71a            | 31.99±0.84a             | 32.29±0.59a            | 31.51±0.93a              | 32.32±1.13a            | 31.33±0.16 <sup>a</sup>  |
| 16:1n-7 | 2.55±0.57 <sup>a</sup> | 2.70±0.56 <sup>a</sup>  | 2.71±0.75a             | 2.59±0.27 <sup>a</sup>   | 2.97±0.43a             | 2.93±0.17 <sup>a</sup>   |
| 18:0    | 29.45±4.32a            | 25.66±2.54 <sup>a</sup> | 28.23±2.16a            | 25.93±1.42a              | 27.19±1.17a            | 25.38±2.39a              |
| 18:1n-9 | 9.49±3.33ª             | 10.13±1.76a             | 10.72±1.72a            | 8.74±0.90a               | 10.27±1.67a            | 9.03±1.34a               |
| 18:1n-7 | 10.55±1.11a,b,c        | 8.32±0.83°              | 11.18±0.96a,b          | 8.91±0.97 <sup>b,c</sup> | 11.52±1.17a            | 9.07±1.12 <sup>b,c</sup> |
| 18:2n-6 | 0.40±0.13a             | 0.43±0.22a              | $0.42 \pm 0.17^{a}$    | $0.39\pm0.05^{a}$        | 0.41±0.07 <sup>a</sup> | $0.37\pm0.07^{a}$        |
| 18:3n-3 | 0.55±0.12a             | $0.67 \pm 0.15^{a}$     | 0.52±0.26ª             | 0.51±0.04 <sup>a</sup>   | 0.48±0.21a             | $0.49\pm0.05^{a}$        |
| 20:4n-6 | 9.72±2.43a             | 9.02±1.43a              | 10.97±0.99a            | 10.66±1.41ª              | 11.65±1.54a            | 10.48±1.36a              |
| 20:5n-3 | 0.38±0.03a             | $0.40\pm0.08^{a}$       | $0.37 \pm 0.05^{a}$    | 0.66±0.72a               | 0.42±0.27a             | 0.32±0.03a               |
| 22:6n-3 | 1.34±0.45 <sup>b</sup> | 8.25±1.17ª              | 0.86±0.39 <sup>b</sup> | 8.11±1.39ª               | 1.02±0.28 <sup>b</sup> | 8.41±0.03 <sup>a</sup>   |

(b)

| FA      | Ctrl                    | 50 μM DHA               | 70 μM PRO               | 50 μM DHA<br>+70 μM PRO | 20 μM PCA               | 50 μM DHA<br>+20 μM PCA  |
|---------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| 3:0     | 0.68±0.30a              | 1.12±1.15ª              | 0.66±0.19ª              | 1.18±1.48a              | 1.17±1.24 <sup>a</sup>  | 0.71±0.48 <sup>a</sup>   |
| 14:0    | 3.11±0.15 <sup>a</sup>  | 3.37±0.82a              | 3.54±0.98ª              | 3.85±0.36ª              | 3.76±0.66a              | $3.68 \pm 0.40^{a}$      |
| 16:0    | 29.85±1.18 <sup>a</sup> | 28.45±2.13a             | 29.06±1.89a             | 28.09±1.02a             | 29.62±0.99a             | 28.34±0.52 <sup>a</sup>  |
| 16:1n-7 | 4.62±0.83a,b,c          | 3.89±0.43°              | 5.70±1.050a             | 4.24±0.21a,b,c          | 5.62±1.01a,b            | 4.05±0.32 <sup>b,c</sup> |
| 18:0    | 27.10±5.36a             | 21.60±3.97a,b           | 18.15±3.63 <sup>b</sup> | 17.65±2.40b             | 17.48±1.72 <sup>b</sup> | 17.40±3.49 <sup>b</sup>  |
| 18:1n-9 | 17.16±2.47 <sup>b</sup> | 14.48±1.25 <sup>b</sup> | 21.41±0.80a             | 15.53±0.80 <sup>b</sup> | 21.08±0.83a             | 15.45±1.04 <sup>b</sup>  |
| 18:1n-7 | 10.88±1.63 <sup>b</sup> | 7.78±0.94°              | 13.63±0.24a             | 8.42±0.47°              | 13.68±0.43a             | 8.20±0.60 <sup>c</sup>   |
| 18:2n-6 | $0.82 \pm 0.18^a$       | $0.41 \pm 0.05^{b}$     | $0.96 \pm 0.08^a$       | $0.44 \pm 0.02^{b}$     | 0.94±0.13a              | $0.41 \pm 0.02^{b}$      |
| 18:3n-3 | $0.86 \pm 0.16^{a,b}$   | $0.66\pm0.06^{b}$       | 1.05±0.09a              | $0.68 \pm 0.05^{b}$     | 1.06±0.11a              | $0.70\pm0.06^{b}$        |
| 20:4n-6 | 1.60±0.26a              | 1.39±0.39a              | 2.15±0.79a              | 1.87±0.36a              | 2.12±0.11 <sup>a</sup>  | 1.98±0.46a               |
| 20:5n-3 | 0.69±0.60a              | 0.38±0.44a              | $0.71 \pm 0.84^{a}$     | 0.25±0.42a              | $0.64\pm0.82^{a}$       | $0.63 \pm 0.48^a$        |
| 22:6n-3 | 2.62±0.81 <sup>b</sup>  | 16.48±3.01a             | 2.99±0.96 <sup>b</sup>  | 17.81±1.11 <sup>a</sup> | 2.83±0.75 <sup>b</sup>  | 18.44±0.82ª              |

Data are expressed as mol % and are means  $\pm$  SD of four samples in each group derived from two independent experiments. Statistical analysis was by the one-way ANOVA followed by Tukey's HSD test. Different letters in the same row indicate statistical significance (p<0.05).

Table S3. Total FA, PUFA, and DHA content in control (Ctrl) and supplemented cells after 24 h supplementation.

| FA content<br>(μg/10 <sup>6</sup> cells) | Ctrl                    | 50 μM DHA               | 50 μM DHA<br>+70 μM PRO  | 50 μM DHA<br>+20 μM PCA  |
|------------------------------------------|-------------------------|-------------------------|--------------------------|--------------------------|
| Total FAs<br>other than DHA              | 51.47±7.28 <sup>a</sup> | 42.81±7.25 <sup>a</sup> | 41.32±6.56ª              | 46.44±10.36 <sup>a</sup> |
| Total PUFAs other than DHA               | 2.07±0.26a              | 1.43±0.09 <sup>b</sup>  | 1.61±0.16 <sup>a,b</sup> | 2.10±0.41 <sup>a</sup>   |

Data are means ± SD of four samples in each group derived from two independent experiments and are calculated from previously published values [20]. Statistical analysis was carried out using one-way ANOVA followed by Tukey's HSD test.

Different letters in the same row indicate statistical significance (p<0.05).

## References

20. Ghini, V.; Di Nunzio, M.; Tenori, L.; Valli, V.; Danesi, F.; Capozzi, F.; Luchinat, C.; Bordoni, A., Evidence of a DHA signature in the lipidome and metabolome of human hepatocytes. *Int J Mol Sci* **2017**, *18*, 359.