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Abstract: Arterial hypertension is strongly related to overweight and obesity. In obese subjects,
several mechanisms may lead to hypertension such as insulin and leptin resistance, perivascular
adipose tissue dysfunction, renal impairment, renin-angiotensin-aldosterone-system activation and
sympathetic nervous system activity. Weight loss (WL) seems to have positive effects on blood
pressure (BP). The aim of this review was to explain the mechanisms linking obesity and hypertension
and to evaluate the main studies assessing the effect of WL on BP. We analysed studies published in
the last 10 years (13 studies either interventional or observational) showing the effect of WL on BP.
Different WL strategies were taken into account—diet and lifestyle modification, pharmacological
intervention and bariatric surgery. Although a positive effect of WL could be identified in each
study, the main difference seems to be the magnitude and the durability of BP reduction over time.
Nevertheless, further follow-up data are needed: there is still a lack of evidence about long term
effects of WL on hypertension. Hence, given the significant results obtained in several recent studies,
weight management should always be pursued in obese patients with hypertension.
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1. Introduction

Arterial hypertension is considered one of the most important cardiovascular (CV) risk factors
and its connection to overweight and obesity has been extensively proved [1,2]. The prevalence of
hypertension among obese patients may range from 60% to 77%, increasing with body–mass index
(BMI), in all age groups [3] and it is significantly higher compared to the 34% found in normal
weight subjects [3]. These percentages are relevant even when compared to high blood pressure (BP)
prevalence in the general population: in 2015, the global age-standardized prevalence was 24.1%
(21.4–27.1) in men and 20.1% (17.8–22.5) in women [4]. As shown from the Framingham Heart Study [5],
weight gain is responsible for a large percentage of hypertension and it is associated with higher risk
of having high BP, even when occurring late in life [6].

The latest definition of hypertension, provided by European Guidelines, is focused on the level of
BP (considering office BP, as measured during medical evaluation) at which the benefits of treatment
offset its risk, as documented by clinical trials [7]. BP ranges are also defined: the last classification
identifies three grades of hypertension (beginning from grade 1, with systolic BP 140–159 mmHg and
diastolic BP 90–99 mmHg, followed by grade 2, with SBP 160–179 mmHg and DBP 100–109 mmHg
and grade 3, with SBP ≥ 180 mmHg and DBP ≥ 110 mmHg) and isolated systolic hypertension
(SBP ≥ 140 and DBP lower than 90 mmHg) [7]. Regardless of the grade, treatment, either with lifestyle
interventions or drugs [7], is indicated.

Both obesity and hypertension are considered CV risk factors, therefore their combined
management is of utmost importance [8]. It has been shown that moderate weight loss (WL)
has a BP lowering effect in both hypertensive and non-hypertensive patients [9]. Furthermore, the
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magnitude of WL correlates with better results in terms of CV risk reduction [10]. In obese patients with
metabolic syndrome, a moderate WL improves renal function [11] and may lead to a 15% reduction of
all-cause mortality [12].

Both the latest American and European hypertension guidelines underline the effect of lifestyle
modification [7,13] as the first step to be considered in all patients with hypertension and of course in
overweight and obese patients. According to the European Society of Cardiology, weight reduction
and WL maintenance are mandatory lifestyle changes [7]. American Heart Association highlights that
among obese patients, reducing body weight (BW) can lower the risk of developing hypertension to the
level of those patients who have never been obese [13]. Moreover, American obesity guidelines report a
dose-response effect of the magnitude of WL on BP reduction [14]. Given the strong connection between
obesity, overweight and BP and the strong evidence of the possible benefits that can be obtained
through weight reduction, the underlying mechanisms and WL strategies should be further explained.

2. Mechanisms Linking Obesity to Hypertension

The pathophysiology of hypertension in obese subjects should be considered as a complex
phenomenon. The cardiovascular system is affected by structural, functional and hemodynamical
changes [15] which can directly increase hypertension risk. The consequences of these changes will
not be discussed in the following paragraphs, since they are beyond the purpose of this review. Our
attention is focused on the role of different kinds of adipose tissue. The role of Renin Angiotensin
Aldosterone System (RAAS) and sympathetic nervous system activation is also considered.

2.1. Visceral Adipose Tissue

Fat distribution has been shown to be strongly related to cardiovascular morbidity and
mortality [16], independent of the other classical CV risk factors. The distribution of adipose
tissue is one of the factors which links obesity to hypertension, along with age of onset of obesity,
its duration and degree and weight variation across lifespan [17] (Figure 1). Visceral adiposity, in
fact, plays a central role in BP increase, through a greater release of free fatty acid (FFA) in systemic
circulation and a consequent increase in insulin resistance and hyperinsulinemia (Figure 1). These
changes are firmly related to augmented arterial stiffness and a decrease in vasodilation [17]. Although
insulin is a vasodilator hormone, insulin resistance can reduce insulin vasodilation capacity, thereby
reducing the nitric oxide (NO) production by endothelial cells [18,19]. Also, the increased levels of
insulin are responsible for lumbar SNA promotion, through brain receptor pattern activation, which is
directly involved in BP increase [20]. Hyperinsulinemia is found to precede the onset of hypertension
in high risk patients and this corroborates the hypothesis of the effect of insulin resistance on BP
increase [17].

Furthermore, a strong association has been reported between visceral adipose tissue and greater
serum levels of cytokine, such as leptin, interleukin-6, plasminogen activator inhibitor-1, all of which
are related both to endothelial dysfunction and hypertension [21–23]. The inflammation pattern
promoted by cytokines release is involved in an inflammation-dependent aortic stiffening [24] and it
can also lead to left ventricular stiffness and mass increase [24]. This hypothesis is well described in
the clinical model of metabolic syndrome [24]. Moreover, all the components of metabolic syndrome
are shown to be related to augmented carotid-femoral pulse wave velocity [25,26], whereas the same
relation cannot be described with the cardio-ankle vascular index [25].

Even if classical effects of leptin include food intake reduction and increasing energy expenditure
due to leptin’s central action on the hypothalamus, leptin receptors are also located in the vessels and
mainly in the aorta [27], as well as in tunica media and adventitia of arteries and inside atherosclerotic
plaques [28]. Through these receptors, leptin may promote vascular smooth muscle cell proliferation and
migration, contributing to arterial stiffness [29]. Leptin has been shown also to promote angiogenesis
and to activate immune system (both monocytes and T-cell); it is also involved in atherogenesis
onset, by increased platelet aggregation and Radical Oxygen Species (ROS) production [30]. As
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demonstrated in experimental studies in human cells models, leptin also induces endothelial oxidative
stress and reactive oxygen species formation [31,32], mechanisms known to increase the risk to develop
hypertension. The increased level of leptin is often associated with hypoadiponectinemia [33]: visceral
fat, in particular, has also been shown to be negatively associated with adiponectin levels, whose
protective effect on arteries is known [34].
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2.2. Perivascular Adipose Tissue

Perivascular adipose tissue (PVAT) represents adipose tissue (AT) that surrounds blood vessels.
Its main function is to provide mechanical support to vessels and even regulate vascular homeostasis.
In experimental models of angiotensin II-induced hypertension and deoxycorticosterone acetate
(DOCA)-salt hypertension, complement cascade activation is described [35]. In particular, the effector
C5a is recognized to promote macrophage infiltration of PVAT, which is responsible for further
inflammatory activation [35].

It has been widely shown that PVAT releases biologically active adipokines, with paracrine effects
on the vessels [36] (e.g., leptin, adiponectin, omentin, visfatin, resistin, apelin), cytokines/chemokines
(e.g., interleukin-6, IL-6; tumour necrosis factor-α, TNF-α; monocyte chemoattractant protein-1, MCP-1),
NO, prostacyclin, angiotensin-1 to 7 Angiotensin II and reactive oxygen species (ROS) [37–41]. Obesity
leads to a dysfunction of PVAT which releases elevated levels of pro-inflammatory factors adipokines
such as leptin, cytokines and chemokines directly to the vascular wall, contributing to endothelial
dysfunction and inflammation [39].

All these molecules act with different effects on vascular tone regulation. PVAT-derived relaxing
factors (adiponectin, NO, H2S prostacylcin) promote vasodilation and on the other hand PVAT-derived
contractile factors, such as leptin, Ang II and ROS induce vasoconstriction. In obese subjects
PVAT dysfunction results in augmented production of contractile factors, inducing increased arterial
vasoconstriction and greater vascular tone [39,42]. PVAT anticontractile activity is shown to be reduced
in hypertensive patients [41].

Moreover, it has been shown that the expression of factors involved in immune cell infiltration
and even vascular smooth muscle cells (VSMC) proliferation, are increased in obese subjects, which
leads to a general state of inflammation of PVAT and thickening of the arterial wall and probably
contributes to an increased risk of hypertension. It has been observed that during the progression
of hypertension, immune cells accumulate mainly in perivascular fat tissue surrounding both large
and resistance vessels such as the aorta and mesenteric arteries. In particular, one study showed
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that in non-obesity-induced hypertension inflammation is highly pronounced in PVAT, whereas in
non-perivascular visceral fat, immune cell infiltration is less pronounced [42–44].

2.3. Renal Adipose Tissue

In obese subjects, renal-pressure natriuresis may be impaired through mechanical compression
of the kidneys by fat in and around the kidneys [1,45,46]. Increased sodium reabsorption caused
by adipose renal tissue mechanical compression could indirectly contribute to renal vasodilation,
glomerular hyperfiltration and stimulate increased renin secretion in obese subjects. Moreover, ectopic
fat accumulation in and around kidneys seems to have “lipotoxic” effects on kidneys through increased
oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress [47].

Furthermore, natriuresis can be also affected by the activation of the renin-angiotensin-aldosterone
system and increased sympathetic nervous system activity, especially by the renal sympathetic nerve
activity. (Figure 1). A neural pathway has been hypothesized between renal fat and sympathetic
activation [48]. A study by Shi et al. showed an increase in renal sympathetic outflow following
enhanced afferent signals from adipose tissue, leading to increased arterial BP in rats. The authors
called this reflex the “adipose afferent reflex” (AAR) [49].

Moreover, it has been demonstrated that intra-adipose administration of capsaicin, bradykinin,
adenosine or leptin can activate the afferent nerves and consequent AAR [50–52], showing a greater
enhancement in hypertensive rats compared to normotensive ones. These data seem to show that AAR
might be a contributing factor in the pathogenesis of obesity-related hypertension. Altered activities of
the adipose-innervating sensory neurons could regulate the cardiovascular system via neural reflex
and enhanced hypertension. Nevertheless, more studies are needed to confirm the role of perirenal
AAR activation in hypertension pathogenesis, since the anatomical distribution and function of the
primary afferent neurons innervating perirenal fat still remains unclear.

2.4. Renin Angiotensin Aldosterone System

An important role explaining the increased risk of hypertension in obese patients is surely played
by the activation of the renin angiotensin aldosterone system (RAAS) [53–55]. In obese subjects,
increased renal adipose tissue activates the RAAS through mechanical compression in the kidney.
Also, the RAAS can be activated by the increased Sympathetic Nervous System (SNS) activity of obese
subjects. (Figure 1). Interestingly, it has been hypothesized that angiotensinogen, produced even
by adipocytes, may play a role in determining increased BP in obesity [20,53], even if there is a lack
of studies showing a direct effect of angiotensinogen or angiotensin II on BP regulation in obesity.
Furthermore, there is evidence that adipocytes can synthesize aldosterone and it may be involved in a
paracrine control of vascular function [20].

2.5. Sympathetic Nervous System Activation

Several studies showed an increased sympathetic activity in obese subjects, as assessed by direct
recordings of muscle sympathetic nerve activity (MSNA) [56–60]. Grassi et al. showed that both
heart rate and MSNA baroreflex changes were attenuated in hypertensive obese subjects compared
to normotensive subjects. They concluded that the association between obesity and hypertension
triggers sympathetic activation together with baroreflex cardiovascular control, which could contribute
to the increased incidence of hypertension in obese subjects. Finally, increased levels of leptin, together
with the increased levels of pro-inflammatory cytokines, activate the SNS, leading to a BP increase in
obese subjects.

Figure 1 describes the complex network which links obesity to arterial hypertension. The effect of
different kinds of adipose tissue is shown—PVAT directly promotes local inflammation and contributes
to endothelial dysfunction. Visceral AT can induce leptin and insulin resistance, which increase both
systemic vasoconstriction and endothelial dysfunction. Moreover, visceral adipose tissue can directly
activate the sympathetic nervous system. Perirenal adipose tissue, through mechanical compression, is
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involved in the RAAS activation and in renal sympathetic system activity. All these pathways, widely
interrelated among each other, lead to increased arterial BP in obese subjects.

3. Weight Loss and Blood Pressure

Several studies showed that WL may reduce BP: we analysed the studies looking at the effect
of WL on BP in the last 10 years; we found 13 studies (either interventional or observational) that
showed an association between WL and BP decrease (Table 1). Different WL strategies were taken into
account: diet and lifestyle modification, pharmacological intervention and bariatric surgery. Although
a positive effect of WL could be identified in each study, the main difference seems to be the magnitude
and the durability of BP reduction over time. Some of these results were also corroborated by the
evidence of 8 reviews published in the last ten years.

Interestingly, all the studies providing specific WL strategies in obese hypertensive patients
showed a significant improvement either in BP decrease and or in body weight reduction. On the
contrary, an observational study led by Ho et al., on 2906 obese subjects who developed incident
hypertension and achieved BP control within 12 months after diagnosis, showed that the majority of
patients did not achieve a significant WL [8]. Therefore, combined management should be pursued.

Table 1. This table summarizes selected studies from the last 10 years, showing a positive effect of
weight loss (WL) on blood pressure (BP), achieved by diet and lifestyle modifications, pharmacological
intervention and bariatric surgery. The table includes only studies with available data regarding
number of participants, WL strategies, quantifiable mean WL and mean BP decrease, median follow-up
time. * mean values referred to patients who achieved the major waist circumference reduction.

Author, Year Number of
Participants WL Intervention Mean WL

∆BW (Kg) ∆BMI (kg/m2)

Mean BP
Reduction
(mmHg)

Median
Follow up

Diet and Lifestyle modification

Blumenthal,
2010

(ENCORE
study)

144
DASH diet alone −0.3 11.2 (SBP)

7.5 (DBP) 4 months

DASH diet plus
weight management −8.7 16.1 (SBP)

9.9 (DBP)

Rocha-Goldberg,
2010 17 behavioral

intervention 1.5 ± 3.2 lb 10.4 ± 10.6
(SBP) 6 weeks

Rothberg, 2017 344 behavioral
intervention −6 ± 3 8 (SBP) * 6 months

170 behavioral
intervention −5 ± 4 8 (SBP) * 2 years

Straznicky, 2011 59
dietary and

moderate-intensity
aerobic exercise

−7.1 ± 0.6
(dietary)

−2.4 ± 0.2
(dietary) 10±2 (SBP) 12 weeks

−8.4 ± 1.0
(dietary +
exercise)

−2.8± 0.3
(dietary +
exercise)

Wing, 2011
(look AHEAD

study)
5154

intensive
lifestyle

intervention or
diabetes support

and education

−4.8 ± 7.6 2.40 (DBP)
4.76 (SBP) 1 year
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Table 1. Cont.

Author, Year Number of
Participants WL Intervention Mean WL

∆BW (Kg) ∆BMI (kg/m2)

Mean BP
Reduction
(mmHg)

Median
Follow up

Pharmacological intervention

Marso, 2016 9340
Pharmacologic
(liraglutide vs

placebo)

2.3 kg higher
in Liraglutide

group

1.2 (SBP)
lower in

Liraglutide
group

36 weeks

Wijkman, 2019 124
Pharmacologic
(liraglutide vs

placebo)
>3% 9.2 (SBP) 24 weeks

Bariatric Surgery

Ghanim, 2018 15 Surgery
(RYGB) −11.7 11 (SBP) 6 months

Hallersund,
2013

(SOS study)

2473
(277 gastric

bypass, 1064
purely

restricted
proedures,

1132 control)

Surgery
(GBP, VBG/B)

−10.1
(GBP group)

−5.1 (SBP)
−5.6 (DBP)

(GBP group)
10 years

Seravalle, 2014
20

(10 surgery +
10 control)

Surgery
(vertical sleeve
gastrectomy)

−9.1 ± 1.4 10.2 ± 4.5
(SBP) 6 months

−10.8 ± 1.6 13.9 ± 5.0
(SBP) 1 year

3.1. Diet and Lifestyle Modification

According to published guidelines [7,13], diet and lifestyle modifications aimed at BW reduction
are the first step in treating hypertension (COR I, LOE A) [13]. Weight reduction may reduce blood
pressure and delay the need of pharmacological antihypertensive therapy [7] and it is also recommended
in order to control other associated metabolic risk factors [7]. Straznicky et al. evaluated whether energy
restriction could reduce BP in a group of 59 patients affected by obesity. Subjects were treated with
dietary intervention or dietary intervention with moderate-intensity aerobic exercise or no treatment,
for a period of 12 weeks. In both groups, BW reduction was associated with a significant systolic BP
decrease and sympathetic neural activity downregulation [11].

Rothberg et al. enrolled obese patients in a 2-year, intensive, behavioural, weight management
program [61] and showed that waist circumference (WC) reduction was related to metabolic syndrome
component improvement. After subdividing the study population according to the amount of WC
reduction, they observed higher systolic BP reduction in subjects with greater WC decrease, both at the
6-month and 2-year follow-up.

The Look AHEAD study [10,62], an intensive behavioural lifestyle intervention, evaluated the
effect of BW loss on CV mortality and morbidity, in a study sample of 5154 patients with type 2 diabetes
and overweight or obesity. Patients were randomized to diabetes support and education or to an
intensive lifestyle intervention. The average WL was different in the two groups and the magnitude
of WL was positively related to improvements in both BP and cardiovascular risk. Subjects who lost
5% to 10% of their initial BW were more likely to show a greater improvement in BP. Moreover, at
1 year, both systolic and diastolic BP declined in those patients who underwent an intensive lifestyle
intervention, as compared to those who received only diabetes support and education. Only systolic
BP maintained a decreased trend throughout the following progression of the study [62].

Behavioural intervention was also studied in another selected sub-population and its feasibility
has been proved—in Hispanics/Latinos, for example, Rocha Goldberg et al. showed the effectiveness of
educational lifestyle intervention on BW and BP control [63]; WL was observed along with a decrease
in systolic BP. The ENCORE study, a large randomized controlled trial, was conducted on 144 obese or
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overweight hypertensive patients: subjects were randomized to a low-calorie Dietary Approach to
Stop Hypertension (DASH diet) or DASH diet alone or usual diet. After four months, the subgroup
assigned to DASH diet combined with a weight management program achieved both WL and a greater
and significant reduction of BP [13,64,65].

3.2. Pharmacological Intervention

Wijkman et al. recently conducted a double-blind, placebo-controlled parallel group trial in
overweight and obese patients with type 2 diabetes, randomized to receive liraglutide or placebo
for 24 weeks. Compared to the placebo group, subjects who received liraglutide presented greater
reduction of both BW and BP, 33% had a BP decrease of more than 5 mmHg (versus only 15% in
the placebo group, (p < 0.01), 35% lost more than 3% in BW (vs just 3% of patients with placebo,
p < 0.0001) and 22% of patients decreased both WL and BP versus 2% of patients in the placebo
group [66]. Furthermore, the SCALE Obesity and Prediabetes trial provided evidence that overweight
or obese patients, randomized to liraglutide for a period of three years, had a significant decrease in
BMI, WC, systolic and diastolic BP as compared with placebo (p < 0.001 for all) [67]. In a multicentre,
double-blind, placebo-controlled trial, Marso et al. confirmed these findings—the liraglutide group
had a greater decrease in WL, as well in systolic but not in diastolic BP, than in the control group [68].

Beside the WL, other mechanisms explaining the effect of Liraglutide on BP has been
hypothesized. Liraglutide treatment has been shown to increase natriuresis through a raise of
natriuretic peptides [69]. Another study found increased levels of cyclic guanyl monophosphate
(cGMP) and cyclic adenyl monophosphate (cAMP) which are two vasodilators and reduced plasma
concentrations of angiotensinogen, renin and angiotensin after GLP-1 receptors therapy [70]. Moreover,
as GLP 1 receptors are expressed in endothelial cells [71], it has been hypothesized that GLP-1 receptor
agonists may improve endothelial dysfunction contributing to lower BP levels.

A review by Siebenhofer et al., of nine randomized controlled trials conducted for at least 24 weeks
in hypertensive adult patients, comparing different weight reducing drugs (orlistat, sibutramine
or phentermine/topiramate) to placebo, showed that treatment with orlistat is associated with WL
and a significant drop in BP [72]. Sibutramine, instead, was responsible for diastolic BP increase.
Phentermine/topiramate was associated to BP lowering but only one study was considered [69]. The
Joint statement of the European Association for the Study of Obesity and the European Society of
Hypertension confirms the positive effect of orlistat: compared to placebo, it improved both WL
(more 2.7 kg) and diastolic BP, which resulted 2.2 mmHg lower [73].

3.3. Bariatric Surgery

In obese patients of any age, bariatric surgery has been shown to provide, together with WL,
consistent improvement in systolic BP [74]. A very high number of patients treated by laparoscopic
adjustable gastric banding discontinued anti-hypertensive medication or needed a lower medication
dose [74,75]. Furthermore, six months after vertical sleeve gastrectomy, Seravalle et al. observed a
significant reduction both in systolic BP and in sympathetic nerve conduction; interestingly, BP decline
was also found to be persistent together with sympathetic inhibition 12 months after the surgical
intervention [76].

As compared to lifestyle intervention, a surgical approach seems to give much more persistent
and durable results [77]. In a large prospective controlled study, the Swedish Obese Subjects (SOS)
study, patients were assigned to medical therapy or to different surgical procedures. A total of 4047
obese subjects were initially recruited. Surgically treated patients were matched to control subjects,
who underwent a lifestyle intervention or even no treatment [78]. After a median follow-up of ten
years, gastric bypass was associated with significant WL, WL maintenance and greater BP decrease, as
compared both to non-surgical controls and to purely restrictive procedures such as vertical banded
gastroplasty or gastric banding [79].
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Nevertheless, a wide Cochrane meta-analysis by Colquitt and colleagues compared different
surgical procedures, such as laparoscopic gastric bypass and laparoscopic duodenojejunal bypass
with sleeve gastrectomy: however, no statistically significant differences were observed in terms of
hypertension remission [80] among the different surgical procedures. In a systematic review of RCTs
of bariatric surgery, Chang et al. described a 75% remission of hypertension (95% CI 62–86%) [81]
independent of the type of procedure.

Considering the end organ effects of hypertension in obese patients, improvements are described
after bariatric surgery. In a large review which considered CV risk factors and CV imaging in patients
undergoing bariatric surgery, Vest et al. reported an echocardiographic reduction of left ventricular
mass and an improvement in diastolic function, measured by E/A ratio [82]. A reduction in proteinuria,
renal function decline and end stage renal disease [83] have been also observed in a recent review of
observational studies by Cohen.

In a recent study by Ghanim et al., diabetic obese patients have been evaluated before and six
months after Roux-en-Y gastric bypass. At the follow-up analysis, together with a significant decrease
in BW and BP, a significant reduction was found in circulating vasoconstrictors (neprilysin, renin,
angiotensinogen, angiotensin II and endothelin 1), whereas the vasodilator atrial natriuretic peptide
(ANP) was increased [84]. Taken together, these studies show that bariatric surgery may partially
explain the mechanisms of the long-term benefits of gastric bypass on BP.

4. Possible Mechanisms Involved in BP Reduction after Weight Loss

The explanation of the BP lowering effect of WL interventions may be identified in adipose
tissue decrease. These changes may reverse the complex network of mechanisms linking obesity
and hypertension (Figure 1). Visceral adipose tissue reduction, which is directly related to waist
circumference reduction [61,67], may attenuate the inflammation pathway and arterial and ventricular
stiffening may improve [24]. Moreover, it is well known that a visceral AT decrease, even due to a
decrease of FFA release, is related to insulin resistance improvement (as also shown by the positive
effect of WL, on diabetes management [10,62,66]) and a lower level of insulin may reduce systemic
vasoconstriction that is partially responsible for arterial hypertension. Leptin [30] and adiponectin [34]
pathways are also improved.

Since PVAT dysfunction is strongly related to obesity, it is possible to hypothesize that WL may
improve PVAT functioning, by reducing the vasoconstriction effect. A reduction in vasoconstriction
has been shown also after bariatric surgery [85], along with an improvement of RAAS functioning
too. Weight loss may reduce renal adipose tissue as well and benefits may be found in natriuresis and
sympathetic activation [45,46,49] and BP levels should consequentially lower. Unfortunately, only a
few laboratory-based studies on the effect of weight loss on hypertension in the past decade have been
published and new future studies are necessary to confirm possible mechanisms linking WL to the
improvement of obesity-related hypertension

5. Conclusions

Lifestyle intervention, including weight loss, should be considered the first step in all patients
with hypertension, especially if overweight and obese. All together studies aimed to show that WL
induced by dietary intervention alone or associated with physical exercise or even with drugs or
bariatric surgery, demonstrates a beneficial effect of WL on BP. However, the effect on BP seems to
depend on the amount of WL.

Some considerations must be made. Most lifestyle intervention and pharmacological studies
regarding WL and BP have been conducted on relatively small number of participants and have
different follow-up lengths too. Only one study had 2 years’ follow-up [61], whereas the others had
a maximum a 1-year follow-up. The only interventional study showing a long follow-up (10 years)
with a persistent WL and BP reduction was the SOS study [79] but it regarded the surgical approach.
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Thus, studies with a longer follow-up in wider populations are needed to support these findings and
to explain better the mechanisms related to the improvement of BP in obese subjects losing weight.

Funding: This research received no external funding.
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