
nutrients

Review

Anti-Obesity Effect of Carotenoids: Direct Impact on
Adipose Tissue and Adipose Tissue-Driven
Indirect Effects

Lourdes Mounien 1, Franck Tourniaire 1,2 and Jean-Francois Landrier 1,2,*
1 Aix Marseille Univ, INSERM, INRA, C2VN, 13385 Marseille, France
2 CriBioM, criblage biologique Marseille, faculté de Médecine de la Timone, 13256 Marseille, France
* Correspondence: jean-francois.landrier@univ-amu.fr; Tel.: +33-491-324-275

Received: 29 May 2019; Accepted: 7 July 2019; Published: 11 July 2019
����������
�������

Abstract: This review summarizes current knowledge on the biological relevance of carotenoids and
some of their metabolites in obesity management. The relationship between carotenoids and obesity
is considered in clinical studies and in preclinical studies. Adipose tissue is a key organ in obesity
etiology and the main storage site for carotenoids. We thus first describe carotenoid metabolism in
adipocyte and adipose tissue and the effects of carotenoids on biological processes in adipose tissue
that may be linked to obesity management in in vitro and preclinical studies. It is also now well
established that the brain is strongly involved in obesity processes. A section is accordingly devoted
to the potential effect of carotenoids on obesity via their direct and/or adipose tissue-driven indirect
biological effects on the brain.

Keywords: adipocytes; adipose tissue; brain; carotenoids; obesity

1. Obesity, Comorbidities, Adipose Tissue and Brain Dysfunctions

The World Health Organization (WHO) defines obesity and being overweight as abnormal
or excessive fat accumulation that presents a risk to health [1]. The risk is mainly related to
comorbidities strongly linked to obesity such as metabolic inflammation, insulin resistance, liver
steatosis, hypertension, dyslipidemia, certain types of cancer, depression, etc. The WHO states that
in 2016, around 39% of the adult population were overweight, and about 13% of the world’s adult
population were obese [1]. This prefigures a major public health issue in the short term not only in
western countries but also in low- and middle-income countries, where an epidemic of obesity and
being overweight is emerging.

The excess fat mass that characterizes obesity is produced by an expansion of adipose tissue
mediated by hypertrophy and/or hyperplasia of adipocytes [2], which is linked to complex, tightly
regulated adipogenesis. This process has been studied in depth, and both the temporal sequences
and the transcriptional regulators involved have been identified. Among them, the nuclear receptor
peroxisome proliferator-activated receptor gamma (PPARγ) and the CCAAT-enhancer-binding protein
(CEBP) families are considered as transcriptional regulators of adipogenesis [3]. Through this
mechanism, the adipose tissue can participate in energy homeostasis, allowing the storage of excess
energy as triglycerides (lipogenesis) and the release of energy as fatty acids (lipolysis). This balance is
tightly regulated, and dysregulation may result in body weight gain or loss.

Adipose tissue is also regarded as an endocrine tissue producing not only free fatty acids but
also a wide variety of hormones, cytokines, chemokines and miRNA, together with adipokines and
growth factors, acting on many physiological processes. Adipose tissue secretes approximately 50
biologically active proteins acting in an autocrine, paracrine and/or endocrine fashion. Leptin [4] and
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adiponectin [5] are among those most thoroughly studied. Both adipocytes and cells belonging to the
stromal vascular fraction of adipose tissue, especially macrophages, are able to produce and secrete
adipokines. Obesity triggers chronic low-grade inflammation associated with abnormal secretion
of cytokines [6], chemokines [7], miRNA [8,9], acute phase proteins and other mediators of the
immune response together with the activation of inflammatory signaling pathways [6,10]. Adipose
tissue is a major contributor to the chronic inflammatory response. The regulation of substances
secreted by adipose tissue is multifactorial and is linked to several pathophysiological disorders,
including (i) increased levels of circulating free fatty acids, (ii) hypoxia of hypertrophied adipose tissue,
(iii) systemic and local oxidative stress, (iv) endoplasmic reticulum stress and/or (v) the production of
inflammatory cytokines. All these types of stress converge towards signaling pathways involving c-Jun
amino-terminal kinase (JNK) and IκB kinase β (IKKβ) [6,10]. A large part of this inflammatory state is
mediated by the increased number of infiltrated macrophages during expansion of adipose tissue [11].
This infiltration has been positively correlated with adiposity, adipocyte size and insulin resistance [12].
Macrophages interfere with adipocyte function through the production of pro-inflammatory cytokines
such as tumoral necrosis factor α (TNF-α), interleukin (IL) 1β and IL-6. This can lead to insulin
resistance, modified adipokine secretion and an excess of free fatty acid secretion through increased
lipolysis and diminished lipogenesis [13], and therefore help install obesity-associated disorders such
as insulin resistance.

Besides the effect of inflammatory state on adipocyte and adipose tissue function, it has also
been shown that metabolic inflammation is associated with neuro-inflammation. Inflammation at
the central level is widely suspected to be involved in obesity aetiologia via modulation of energy
homeostasis (both at food intake and energy expenditure level) [14]. The control of energy homeostasis
is finely tuned by nervous and endocrine mechanisms that cooperate to balance calorie intake and
energy expenditure [15,16]. The central nervous system (CNS) continuously monitors modifications
in hormones (insulin, leptin and ghrelin) or metabolic parameters (blood glucose or free fatty acids
levels) and elicits adaptive responses, like food intake [15,16]. Among the brain regions involved in
this regulation, the hypothalamus plays a pivotal role through specific neuronal networks [15–18].
In particular, leptin is crucial to maintaining both normal body weight and feeding behavior by action
in the different regions of the hypothalamus such as arcuate, paraventricular or ventromedial nuclei,
and the lateral hypothalamus. More specifically, this peripheral signal is detected by hypothalamic
arcuate neurons expressing the anorexigenic peptide proopiomelanocortin (POMC) or the orexigenic
peptides neuropeptide Y (NPY)/Agouti-related peptide (AgRP). These neurons project to melanocortin
3 and 4 receptor-expressing neurons located in the hypothalamus and other brain structures [16,19].
These neurons are collectively termed the melanocortin pathway, and regulate feeding behavior, energy
expenditure and glucose homeostasis through the activation of the autonomic nervous system and
higher brain structures [15–17]. A defect in the communication between brain and peripheral organs
can affect fat gain and lead to metabolic syndrome.

Obesity leads to increased inflammatory factors and immune cells in peripheral tissues and in the
brain regions that are essential for maintaining energy balance [14]. The production of inflammatory
cytokines by adipose tissue and the activation of astrocytes and microglia (the resident immune cells
of the brain) in the hypothalamus can interfere with leptin signaling and so contribute to hyperphagia
and many other obesity-related diseases [15,16]. In this context, the endocrine function of the adipose
tissue is essential to maintain normal weight and regulate energy homeostasis.

Several strategies have been proposed to fight obesity, including pharmacological approaches,
limitation of fat and sugar consumption, promotion of physical activity and consumption of fruits
and vegetables. Plant-based food is classically associated with weight management not only due
to its macronutrient composition, but also to the presence of micronutrients, such as carotenoids.
These substances correspond to a large family of C40 lipophilic pigments produced by plants, fungi
and bacteria [20]. Carotenoids can be divided into two groups according to their chemical structure:
carotenes, which are hydrocarbons, and xanthophylls, which also contain oxygen and are therefore



Nutrients 2019, 11, 1562 3 of 14

less apolar than carotenes (Figure 1). More than 600 different substances have been identified, of which
50 can be found in the human diet, and of which only about 10 are present in significant amounts in
human plasma [21]. Carotenoids containing an unsubstituted β-ionone ring are termed provitamin A,
as they can be cleaved by animals to release retinal, which can subsequently be converted to retinol [20].
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2. Carotenoids and Obesity in Human Studies

2.1. Observational Studies

Obesity has been associated in many epidemiological and observational studies with low
circulating concentrations of carotenoids [22,23]. Strong inverse correlations between body mass index
(BMI) and all measured carotenoids in plasma, except lycopene, were highlighted in the CARDIA
study [24]. In addition, many obesity-associated disorders, such as low-grade inflammation or insulin
resistance, are also strongly inversely associated with serum carotenoid concentrations [25–27].

2.2. Intervention Studies

Several trials have been conducted to study how carotenoids might be used in obesity management.
Most of these studies used mixtures of carotenoids and vitamins in a natural matrix, such as fruit juices
or plant extracts (reviewed by Bonet et al. [28]), making interpretation of the specific contribution of
carotenoids difficult. To our knowledge, only two randomized double-blind placebo-controlled clinical
trials have investigated the effect of pure carotenoid or xanthophyll supplementation. Canas et al. [29]
reported a decrease in BMI z-score, waist-to-height ratio and subcutaneous adipose tissue in children
given a mixture of carotenoids (β-carotene, α-carotene, lutein, zeaxanthin, lycopene, astaxanthin and
γ-tocopherol) for 6 months. These beneficial effects were strongly associated with an increase in plasma
β-carotene concentration in children [29]. Another study used a mixture of paprika xanthophylls
and carotenoids, administered for 12 weeks to healthy overweight volunteers. This supplementation
reduced visceral fat area, subcutaneous fat area and total fat area, along with BMI in the treated group
compared to a placebo group [30].

3. Carotenoids and/or Metabolites are Involved in Body Weight Management and Limitation of
Obesity Comorbidities in Preclinical Studies

Significant research has been devoted to studying the impact of β-carotene on energy metabolism
and its outcome on obesity [31]. Its anti-obesity effect was subsequently demonstrated to be linked to a
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provitamin A effect [32,33], since β-carotene 15, 15′-monooxygenase (BCO) null mice did not display
adipose tissue weight modification. This effect was found to be linked to decreased expression of PPARγ
in adipose tissue and the involvement of retinoid X receptor (RAR) signaling in this regulation [34].

Astaxanthin prevented obesity in mice fed a high fat diet [35], via the limitation of adipose tissue
expansion. Similar anti-obesity effects have been documented in mice fed a high fat and high fructose
diet [36], where insulin sensitivity and inflammation were also improved by astaxanthin. Preventive
effects of astaxanthin were found for hepatic steatosis [37] and inflammation and fibrosis in the liver in
a non alcoholic steato hepatitis NASH and diet induced obesity (DIO) mice model [38].

Anti-adiposity properties have also been reported for β-cryptoxanthin [39], but their mechanism
is still unknown. In addition, β-cryptoxanthin reversed liver steatosis and insulin resistance in DIO
mice; this effect may be related to the anti-inflammatory effect of this carotenoid in the liver [40].

The potential of fucoxanthin for weight management has been extensively studied and
reviewed [41]. This carotenoid limited weight gain and hyperglycemia, and inhibited the expression
of several pro-inflammatory cytokines in adipose tissue of KK-a(y) mice [42]. Similar effects have
been described in DIO mice, possibly through modulation of lipogenesis, adiponectin production and
inflammation in adipose tissue [43], but also via browning of white adipose tissue [41].

Zeaxanthin inhibited obesity in high fat fed mice, presumably by inducing AMP-activated protein
kinase (AMPK) activation, and inhibiting lipogenesis in adipose tissue [44].

The anti-obesity effect of lycopene was demonstrated in mice fed a high fat diet, where adiposity
was reduced after supplementation. Several comorbidities were concomitantly reduced, such as
glucose tolerance, insulin sensitivity and steatosis [45]. We and others have confirmed this beneficial
effect of lycopene and/or tomato powder rich in lycopene in a DIO mice model on adiposity, glucose
homeostasis, adipose tissue and liver inflammation and steatosis [46–49].

It is also clear that some of the effects of carotenoids (pro-vitamin A or other) are due to the vitamin
A effect and are mediated by RAR. Such effects have been extensively reviewed elsewhere [28,31,50]
and so will not be detailed here.

Most of these findings not only support the beneficial effect of several carotenoids on obesity
management, but also strongly suggest that carotenoids may act on adipocyte/adipose tissue biology
to modify several parameters linked to obesity and/or associated comorbidities. This hypothesis
is strongly supported by the fact that carotenoids are stored and metabolized and are bioactive in
adipocytes and in adipose tissue.

4. Carotenoids and Adipocyte/Adipose Tissue Metabolism

4.1. Carotenoids Are Stored in Adipocytes and Adipose Tissue

It has long been known that carotenoids are notably stored in adipose tissue [51–55]. Lycopene
and β-carotene are the predominant carotenoids in human adipose tissue [53,56]. More precisely,
Chung et al. identified lycopene as the most abundant carotenoid in adipose tissue (more than 1/2),
followed by β-carotene (approx. 1/3 of total carotenoids), lutein + zeaxanthin, β-cryptoxanthin and
α-carotene [54].

Total carotenoid concentration appears to be site-specific, with abdomen concentration higher
than in the buttocks or thigh [54]. Adipose tissue concentrations of carotenoids are similar in men and
women [54]. Interestingly, plasma levels of most carotenoids are inversely correlated to fat mass and to
both general and central adiposity [54,57], suggesting that during obesity, carotenoids are sequestered
in adipose tissue. Conversely, weight loss is associated with an increase in lutein and zeaxanthin
serum concentration [58]. In the case of β-carotene, it is noteworthy that even if its adipose tissue
concentration is lower in obese people, the total pool of β-carotene is similar in obese and non-obese
when taking into account total fat mass [59].

Factors governing adipose tissue carotenoid uptake, distribution and turnover are poorly
understood. However, we recently reported that carotenoid uptake by adipose tissue was independent
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of the carotenoid’s physical and chemical properties [60], suggesting the involvement of putative
transporters or facilitators. Consistent with this, we demonstrated the involvement of a cluster of
differentiation 36 (CD36) in lycopene and lutein uptake by adipose tissue and adipocytes [61]. We also
showed that lycopene was mainly stored in lipid droplets in adipocytes, but was also present in plasma
and nuclear membranes [62].

Adipose tissue carotenoid content is usually considered as a good long-term indicator of
dietary intake of carotenoids [63]. β-Carotene concentration in adipose tissue increased 5 days
after consumption of a large oral dose [64]. Lutein and zeaxanthin levels in adipose tissue significantly
increased after spinach and corn supplementation in healthy subjects, with a maximum at 8 weeks
of intervention [65]. Finally, tomato-oleoresin supplementation significantly increased lycopene
concentration in adipose tissue [66]. Dietary carotenoid intakes were strongly correlated with abdomen
adipose tissue concentration (a lower correlation was found for buttock or thigh adipose tissue)
for α- and β-carotene, β-cryptoxanthin, cis-lycopene and total carotenoids [54]. However, these
correlations vary widely and are strongly sex-related. Notably, El-Sohemy et al. reported correlation in
women between intake and concentration in adipose tissues of α-, β-carotene, β-cryptoxanthin and
lutein/zeaxanthin (CC 0.25, 0.29, 0.44 and 0.17, respectively), but not in men (CC 0.04, 0.07, 0.23 and
0.06, respectively) [67]. The origin of this discrepancy is presently unknown, but suggests that adipose
tissue carotenoid concentration may be affected by factors other than intake, or that carotenoid intake
is not appropriately estimated.

Adipose tissue carotenoid content is not only correlated with dietary intake, but also with other
tissue concentrations. Thus, lutein adipose tissue content has also been reported to be positively
correlated with macular pigment density in men, but not in women [68]. In addition, total carotenoid
content in adipose tissue is strongly associated with serum levels [54], except for lycopene and lutein +

zeaxanthin. β-Carotene content in adipose tissue is correlated with plasma level, with a correlation
coefficient of 0.20 [63,69]. Similarly, breast adipose tissue carotenoid content correlates with plasma
levels, except for β-cryptoxanthin [70].

4.2. Carotenoids Are Metabolized in Adipocytes and Adipose Tissue

BCO1, involved in centric cleavage of carotenoids and β-carotene 9′, 10′-dioxygenase (BCO2),
involved in eccentric cleavage of carotenoids, are expressed in adipocytes [71], raising the possibility
that carotenoid cleavage products, including retinal, derivatives and apocarotenoids, could be found in
adipocytes [31,32,72]. In agreement, retinal [73] and free retinol have been identified in the adipocyte
fraction of adipose tissue [74]. Several isomers of retinol, including all-trans, 9-cis and 13-cis isomers,
were also quantified in white adipose tissue [74–76], together with several isomers of retinoic acid,
except for 9-cis retinoic acid [75,77,78]. Adipocytes express BCO1 and BCO2, together with the enzymes
necessary for vitamin A metabolism, suggesting that part of the effect of provitamin A carotenoids is
mediated via vitamin A production. This topic will not be dealt with here; the reader is referred to the
excellent review of Dr. Blaner [50].

Besides these retinoids, β-10′-apocarotenal has been identified in adipose tissue [32]. It is highly
probable that other apocarotenoids are produced in adipose tissue, but their function in adipocyte
biology needs further research.

4.3. Carotenoids Regulate Gene Expression in Adipocytes and Adipose Tissue

Several molecular mechanisms mediating the effects of carotenoids on gene expression have
been described and may be related to the impact of carotenoids on adipocyte biology. In the case
of provitamin A carotenoids, leading to retinoic acid synthesis, RARs and retinoid X receptors
(RXRs), they constitute specific signaling targets. Two families of receptors mediate the effects of
retinoids [79,80]. Three subtypes of each have been described (RARα RARβ, RARγ, RXRα, RXRβ and
RXRγ). These receptors work as ligand-dependent transcriptional regulators by binding specific DNA
sequences—retinoic acid response element (RARE) or retinoid X response element (RXRE)—found in
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the promoter region of retinoid target genes either as RAR-RXR or RXR-RXR dimers. RAR and RXR
subtypes are found in every cell type. Furthermore, RXRs are dimerization partners for other nuclear
receptors such as peroxisome proliferator activated receptors (PPARs), liver X receptor (LXR), farnesoid
X receptor (FXR), pregnane X receptor (PXR), RARs, thyroid hormone receptor (TR) and vitamin D
receptor (VDR), which are involved in the regulation of a huge number of genes. In addition, several
other transcription factors and signaling pathways are modulated by retinoic acid [81], including
PPARβ ([82]. Lycopene [83] and apo-10′-lycopenoic acid [84] are also able to activate RAR. Many
carotenoids regulate gene expression via ubiquitous signaling pathways such as nuclear factor-kappa
B (NF-κB) and mitogen activated proteins (MAP) kinases [85,86], or via transcription factors involved
in detoxification such as aryl hydrocarbon receptor (AhR), nuclear factor erythroid-2-related factor 2
(NRF2) or PXR [87,88].

5. Carotenoids and/or Metabolites Impact Adipocyte Biology In Vitro Studies

The impact of some carotenoids has been documented in adipogenesis (Figure 2), which could
help obesity management via a limitation of lipid accumulation in adipocytes. Most of the reported
effects inhibited adipocyte differentiation [89] by interfering with nuclear receptors such as RAR,
RXR or PPAR. β-Carotene inhibited adipogenesis through the production of β-apo-14′-carotenal and
repression of PPARα, PPARγ and RXR activation [90], but also through the production of all-trans
retinoic acid [34]. Similarly, β-cryptoxanthin suppressed adipogenesis via activation of RAR [91], and
astaxanthin inhibited rosiglitazone-induced adipocyte differentiation by antagonizing transcriptional
activity of PPARγ [92]. Zeaxanthin [44] and fucoxanthin [93,94] exhibited anti-adipogenic effects
via a down-regulation of adipogenic transcription factors C/EBPα and PPARγ, which blunted lipid
accumulation. Conversely, lycopene (unpublished personal data) and apo-10′-lycopenoic acid [84]
showed no effect on adipogenesis. Besides these effects, there is evidence that some effects of provitamin
A carotenoids are mediated through retinol and its metabolite production, which are known to regulate
adipogenesis [50].
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tissue–brain crosstalk.

Substances with anti-inflammatory effects are assumed to limit the risk of obesity-associated
disorders, including insulin resistance. Such anti-inflammatory effects of β-carotene in 3T3-L1
adipocytes were suggested to arise through limitation of the TNFα-mediated down-regulation of genes
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linked to adipocyte biology [95]. β-Carotene also counteracted oxidative stress-mediated dysregulation
of adiponectin secretion, chemokine expression and NF-κB activation in 3T3-L1 adipocytes [96].
Fucoxanthin blunted TNFα-mediated induction of pro-inflammatory cytokines in adipocytes [42] and
in adipocyte/macrophage coculture systems [97]. The most thoroughly studied anti-inflammatory
carotenoid is lycopene (all-trans), and we demonstrated its ability to inhibit proinflammatory cytokine
and chemokine expression in vitro (in murine and human adipocytes) [98]. These data were also
reproduced ex vivo on adipose tissue explants from mice fed a high fat diet (characterized by low-grade
inflammation). The molecular mechanism was investigated and the involvement of NF-κB was
confirmed. Similar results (inhibition of cytokine and chemokine expression in various in vitro and ex
vivo models) were obtained with apo-10′-lycopenoic acid, a metabolite of lycopene [84]. Lycopene
also attenuated LPS-mediated induction of TNFα in macrophages via NF-κB and JNK [99], as well
as macrophage migration in vitro. Consequently, lycopene decreased macrophage-induced cytokine,
acute phase protein and chemokine mRNA in adipocytes. Interestingly, all-trans and 5-cis lycopene, the
two main isoforms of lycopene found in vivo, displayed similar effects in terms of inflammation control
and glucose uptake in adipocytes [100]. A few studies have shown that retinoids, like carotenoids,
have positive effects by decreasing the expression of adipocyte-derived inflammatory mediators such
as adipsin [101] and resistin [102]. Our group has also shown that all-trans retinoic acid (ATRA) blunts
TNF-α mediated cytokine expression in 3T3-L1 cells [84]. More recently, we demonstrated that ATRA
limits the expression of a large range of chemokines in vivo and in vitro. This anti-inflammatory effect of
ATRA was associated with a reduction in the phosphorylation levels of IκB and p65, probably mediated
by peroxisome proliferator-activated receptor gamma coactivator 1 α (PGC1α) expression [103].

The browning of white adipose tissue has been proposed as a putative mechanism controlling
energy homeostasis and insulin sensitivity [104]. Recently, an AMPK-mediated effect on adipocyte
browning and mitochondrial biogenesis was demonstrated for zeaxanthin [105] and for lycopene [49].
We reported similar mitochondrial biogenesis, induction of oxidative phosphorylation (OXPHOS) and
adipocyte browning in adipocytes incubated with ATRA [106], whereas fucoxanthin and its metabolite
fucoxanthinol were inefficient in inducing adipocyte browning [107].

Taken together, these findings suggest that carotenoids impact several adipocyte metabolic
pathways, which may in turn explain, at least in part, their anti-obesity effects (Figure 2).

6. Impact of Carotenoids on the Control of Energy Homeostasis by the Brain

As stated above, carotenoids can affect the biology of the adipose tissue and modulate the
production of leptin and the inflammatory cytokines [55]. They may consequently have an indirect
effect on brain function (Figure 2). However, several food components, including carotenoids, could
reach the hypothalamus directly [108], where they could regulate leptin signaling pathways. To support
this hypothesis, several carotenoids have been detected in several parts of the adult brain [109,110].
In the study of Johnson et al., lycopene (37 +/− 9 pmol/g), lutein (145 +/− 22 pmol/g), β-carotene
(77.6 +/− 10.5 pmol/g) and zeaxanthin (45 +/− 7.5 pmol/g) have been quantified in different structures
(cerebellum, frontal, occipital and temporal cortices). More specifically, they could either cross the
blood brain barrier or pass through the fenestrated capillaries of circumventricular organs and target
the arcuate nucleus neurons. In the context of the central control of feeding behavior, it is important
to note that other structures such as the hippocampus play an important role and that they could be
targeted by carotenoids as indicated below.

It is presently not clear whether carotenoids act indirectly via adipose tissue or directly on the
brain, but several studies suggest involvement of the brain in body weight management under the
effect of carotenoids. Continuous intake of lycopene-rich food and intraperitoneal administration of
lycopene increased neuronal activity in the paraventricular and ventromedial nuclei, as shown by
the immunoreactivity of c-fos, a marker of neuronal activity [111]. This study suggests that lycopene
may have some influence on feeding behavior. In support of this hypothesis, the group of Dr. Bishnoi
showed that lycopene prevented weight gain and adiposity in mice in a DIO model [45]. Interestingly,
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this effect was associated with a modulation of hypothalamic anorexigenic and orexigenic gene
expression. To date, the direct effect of lycopene on neuronal activity is unclear, and more research
is needed to thoroughly understand this mechanism. As stated above, lycopene can impact brain
function by limiting peripheral inflammation. In support of this hypothesis, Kuhad et al. showed
that chronic treatment with lycopene significantly and dose-dependently attenuated cognitive deficit
associated with inflammation in diabetic rats [112].

Interestingly, recent work by Zhao et al. suggests that fucoxanthin may modulate
neuroinflammation [113]. In this work, fucoxanthin increased NRF-2 activation in lipopolysaccharide
(LPS)-activated microglia. This interesting effect needs to be studied in an in vivo model and especially
in brain structures involved in feeding behavior (i.e., hypothalamus or hippocampus). In the same
line, a recent paper reported that fucoxanthin treatment reversed LPS-induced defect in body weight
and food intake in mice [114]. The authors also showed that fucoxanthin inhibited LPS-induced
overexpression of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in the hippocampus and
hypothalamus, via the modulation of the AMPK-NF-κB signaling pathway. Interestingly, current
studies have shown that the activation of the AMPK pathway is essential to maintaining energy
homeostasis, as it is involved in the anorexigenic effect of leptin [115].

7. Conclusions

In vitro and preclinical studies clearly indicate beneficial effects of carotenoid consumption
on obesity and associated pathophysiological disorders including metabolic inflammation, insulin
resistance and hepatic steatosis. Molecular mechanisms are now better known, although it is not
always clear whether carotenoids are active in their native form or after cleavage and metabolization,
and adipose tissue appears as a major target of these substances. Nevertheless, recent though limited
data suggest that carotenoids or metabolites might also act at the central level, probably by preventing
or decreasing obesity-associated neuro-inflammation and comorbidities. Randomized clinical trials
using pure carotenoids are urgently needed to support preclinical and observational evidence.
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