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Abstract: In a previous study, we demonstrated that women enjoyed and tolerated lower meal
loads than men. Hence, we hypothesized that with the same meal load, their postprandial response
is more pronounced than in men. We performed a randomized parallel trial in 12 women and
12 men comparing the postprandial responses to a palatable comfort meal. We measured homeostatic
sensations (hunger/satiety, fullness) and hedonic sensations (digestive well-being, mood) on 10 cm
scales, vagal tone by heart ratio variability and the metabolomic profile before and after meal ingestion.
Gender differences were analyzed by repeated measures ANCOVA. Overall (n = 24), ingestion of the
probe meal induced satiation, fullness, digestive well-being and improved mood (main time-effect
p ≤ 0.005 for all). Women exhibited a more intense sensory experience, specially more postprandial
fullness, than men [main gender-effect F (1, 21) = 7.14; p = 0.014]; hedonic responses in women also
tended to be stronger than in men. Women exhibited more pronounced effects on vagal tone [main
gender-effect F (1, 21) = 5.5; p = 0.029] and a different lipoprotein response than men. In conclusion,
our data indicate that gender influences the responses to meal ingestion, and these differences may
explain the predisposition and higher incidence in women of meal-related functional disorders.

Keywords: meal ingestion; gender differences; postprandial sensations; hedonic response;
homeostatic response; metabolomic response

1. Introduction

Meals induce a biological response that determines the ingestive/digestive process [1].
The response to meal ingestion depends on the characteristics of the meal and the responsiveness
of the eater. The weight of gender in this context is not fully understood despite that this is key to
individualized planning of diets, ranging from pure gastronomy, to health strategies and feeding of
patients under various clinical conditions.

In a previous study we evaluated the responses to a meal administered stepwise up to full satiation,
and demonstrated that women enjoyed and tolerated lower meal loads than men [2]. However, the
study design precluded gender comparisons of the postprandial response, due to the different meal
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loads administered. Furthermore, participants consumed the meal up to full satiation, whereas in
normal conditions other factors determine meal consumption: people stop eating when the food is all
gone (availability) or when food stops tasting good (hedonic factor) [3].

Since women enjoyed and tolerated lower meal loads, we hypothesized that with the same meal
their postprandial response is more pronounced than in men. Hence, we compared the postprandial
responses to a standard meal in women and men. Based on previous data [2], the meal load was
established to induce a consistent homeostatic response with a positive hedonic dimension. To this
purpose, we used an assorted, attractive meal at a load well below the level of tolerance previously
established in both women and men [2]. Different parameters of the biological response to meal
ingestion were measured, including sensations, physiological variables and circulating metabolites.

2. Material and Methods

2.1. Participants

Twenty-four healthy, non-obese, non-dieting and weight-stable subjects (12 women, 12 men)
without history of gastrointestinal symptoms were recruited by public advertising to participate in
the study. Age was matched across gender groups; body mass index in women and men was within
the respective normal range. Exclusion criteria were chronic health conditions, prior obesity, use of
medications (except occasional use of NSAIDs and antihistamines), history of anosmia and ageusia,
current dieting or any pattern of selective eating such as vegetarianism, alcohol abuse and use of
recreational drugs. Smokers were not excluded, but participants were instructed to refrain from
smoking on the study day. Absence of current digestive symptoms was verified using a standard
abdominal symptom questionnaire (no symptom > 2 on a 0–10 scale). Psychological and eating
disorders were excluded using the following tests: Hospital Anxiety and Depression scale (HAD),
Dutch Eating Behavior Questionnaire (DEBQ - Emotional eating, External eating, Restrained eating),
and Physical Anhedonia Scale (PAS). Candidates were asked whether they liked the test meals to be
tested (see below) and those who did not were not included. As in previous studies, women were
studied during the follicular phase of the menstrual cycle (days 5–15), in order to reduce potential
variations in gut function related to the menstrual cycle [2,4].

The research was conducted according to the Declaration of Helsinki. The protocol for the study
had been previously approved by the Institutional Review Board of the University Hospital Vall
d’Hebron, and all participants gave written informed consent.

2.2. Experimental Design

This study was a single-center, parallel randomized study performed between June and September
2018. The study investigated the effect of gender on the responses to meal ingestion. The primary
outcome was fullness sensation in response to the test meal. Men and women were studied in random
order determined by a computer-generated randomization list. The study protocol was registered
with the ClinicalTrials.gov NCT03758482. All co-authors had access to the study data and reviewed
and approved the final manuscript.

2.3. General Procedure

Each participant was studied once. Participants were instructed to refrain from strenuous physical
activity the day prior to the study, to consume only a standard breakfast (coffee with semi-skimmed
milk and biscuits; 181 Kcal, 5 g lipids, 27 g carbohydrate, 7 g protein) at home after overnight fast and
to report to the laboratory, where the probe meal was administered 4 h after breakfast. Studies were
conducted with participants sitting alone with one investigator in a quiet, isolated room. Perception
was measured before, during and after meal ingestion. Heart rate variability (see below) and blood
pressure (M6AC, Omron, Kyoto, Japan) were measured during baseline, early postprandial period
and 30 min and 60 min after ingestion. Body temperature was measured using a digital thermometer
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(DT-502EC, A&D Instruments, Oxford, UK) before and 60 min after ingestion. Venous blood samples
were taken immediately before and 30 min after the probe meal.

2.4. Probe Meal and Procedure

The probe meal consisted of: 50 g duck fatty liver (Foie Gras Entero de Pato «Mi-cuit», El Corte
Inglés, Larrabezua, Spain), 15 g toasts (Mini Tostas, Bimbo, Barcelona, Spain), 50 g cheese (Queso
Emmental, El Corte Inglés, Madrid, Spain), 25 g potato chips (Patatas Fritas Clásicas, LAY’S, Vitoria,
Spain), 10 g salted peanuts (Cacahuetes Fritos, Borges, Tarragona, Spain) and 140 mL soft drink
(Coca-Cola Clásica, Coca-Cola, Madrid, Spain) (Table 1). The ingestion rate was standardized in three
steps: (1) 10 g duck fatty liver, 3 g toast and 10 g peanut in 2 min; (2) 40 g duck fatty liver, 12 g toast
and 25 g potato chips in 6 min; (3) 50 g cheese in 2 min; soft drink (140 mL) was drunk at demand
during the ingestion period (total 10 min). The eating rate was decided based on preliminary studies
searching for a pleasant rate.

Table 1. Probe meal.

Total (g) Total (kcal) FAT (g) PROT (g) CHO (g)

Fatty liver duck * 50 265.5 27.5 4.0 0.5
Toast 15 60.7 0.7 1.8 11.4

Cheese 50 173.5 13.5 13.0 0.0
Potato chips 25 127.7 7.8 1.5 12.3

Peanuts 10 63.8 5.3 2.8 1.0
Drink 140 58.8 0.0 0.0 14.8

Probe meal 290 750.0 54.8 23.1 40.0

PROT: proteins, CHO: carbohydrates. * Foie gras mi-cuit.

2.5. Perception Measurements

Five 10 cm scales graded from −5 to +5 were used to measure: (a) meal wanting (negative/eager),
(b) meal liking (very disagreeable/very agreeable, (c) hunger/satiety (extremely hungry/completely
satiated), (d) digestive well-being (extremely unpleasant sensation/extremely pleasant sensation) and
(e) mood (negative/positive); two additional 10 cm scales graded from 0 (not at all) to 10 (very much)
were used to measure: (f) abdominal bloating-fullness, and (g) discomfort-pain. Subjects received
standard instructions on how to fill-out scales [5]. The wanting scale was only scored at presentation
of meal. The liking scale was only scored at the end of ingestion. The rest of the scales, were scored at
5 min intervals 10 min before and 20 min after ingestion and at 10 min intervals up to 60 min after the
probe meal.

2.6. Assessment of Heart Rate Variability

Continuous cardiac interbeat intervals (IBI) for each subject were recorded using a lightweight
device (Bittium Faros 360◦, Mega Electronics, Kuopio, Finland) from 5 surface electrodes at 500 Hz
sampling rate. Heart rate variability (HRV) was assessed over 5 min recording periods during baseline,
early postprandial period and 30 min and 60 min after ingestion.

HRV analysis of the exported data was performed on computer using dedicated HRV software
(Kubios Premium ver. 3.1.0) as previously described [6]. Prior to HRV computation all IBI data were
visually inspected for correctness and then underwent automatic artifact correction. HRV spectra were
calculated by autoregressive transformation. High-frequency power data (0.15–0.40 Hz) are reported
as normalized units [7,8]. Respiratory rate was calculated using an ECG-derived respiration software
within the HRV analysis package [9].



Nutrients 2019, 11, 702 4 of 11

2.7. Analytical Procedures

Once extracted, venous blood samples were immediately placed in ice. After completing the
study, the samples were centrifuged for 15 min at 4 ◦C at 1500× g to separate blood components. Using
1 mL pipettes, samples of plasma and serum were placed in Eppendorf tubes and stored at −40 ◦C.

Routine laboratory techniques were used to measure insulin (AU5800 Spectrophotometry,
Beckman Coulter, Brea, CA, USA), cortisol (Advia Centaur XP Immunoassay, Siemens, Tarrytown, NY,
USA) and ACTH levels (Liaison CLIA, Diasorin, Saluggia, Italy).

The metabolomic analysis was performed using nuclear magnetic resonance (NMR), as previously
described [10,11]. In brief, the concentration of the three different classes of lipoproteins (VLDL, LDL,
and HDL), and their composition (content of cholesterol, triglycerides and large, medium and small
particles) were determined [12]. A target set of 14 low molecular weight metabolites (LMWMs)
was identified and quantified in the 1D Carr-Purcell-Meiboom-Gill spectra using Dolphin [13].
Each metabolite was identified by checking for all its resonances along the spectra and then quantified
using line-shape fitting methods on one of its signals [14]. Validation of metabolite identification was
assisted by STOCSY [15].

2.8. Statistical Analysis

Statistical analysis was performed using the Stata Software for Windows, (StataCorp. 2017. Stata
Statistical Software: Release 15. College Station, TX: StataCorp LLC) and MetaboAnalyst 4.0 [16].

Based on previous data [2], it was estimated that a sample size of 10 subjects per group would allow
to detect gender differences in postprandial fullness with 80% power and 5% significant threshold.

In each group, means and SE of the measured variables were calculated. The Kolmogorov-Smirnov
test was used to check the normality of data distribution. Parametric normally distributed data were
compared by Student’s t-test for paired or unpaired data; otherwise, the Wilcoxon signed rank test
was used for paired data, and the Mann-Whitney U test was used for unpaired data. The association
of parameters was evaluated using the linear regression analysis.

Temporal responses to meal ingestion were analyzed using one-way ANOVA for repeated
measurements (10 min pre and 60 min postprandial period); when the ANOVA was significant,
post hoc comparisons between time-points were performed applying the Sidak multiple comparison
correction procedure. Comparison between groups (men vs. women) were performed with a repeated
measures ANCOVA (dependent variable: postprandial sensations scores; between and within subject’s
factors: gender and time, respectively; covariate: premeal scores) [17].

Multivariate discriminant analysis of metabolomic data (standardized concentrations) was
performed using an unsupervised classification by Principal Component Analysis (PCA) and
supervised orthogonal partial least squares discriminant analysis (OPLS-DA).

Differences were considered significant at a p-value < 0.05.

3. Results

3.1. Demographics

Participants were 21–36 years age range without differences between women and men. Body
weight and height were 57 ± 2 kg and 165 ± 1 cm in women, and 77 ± 2 kg and 180 ± 2 cm,
respectively, in men (p < 0.001 for both). Body mass index range was 18.5–23.9 kg/m2 in women and
21.2–24.9 kg/m2 in men. All participants had normal bowel habit and scored HAD, PAS and DEBQ
within the normal range. No significant difference in the proportion of smokers was detected between
groups (3/12 in women and 5/12 in men; p = 0.667). All participants completed the studies and were
included for analysis.
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3.2. Baseline Conditions

Before the probe meal (baseline fasting period), participants reported hunger with no symptoms
(fullness/bloating, discomfort/pain) and positive mood (Figure 1).
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postprandial period. Postprandial satiety scores were high in both groups, and hence, no gender 
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Figure 1. Postprandial experience in women and men. Main gender-effect by repeated measures
ANCOVA shown; dependent variable: postprandial scores; covariate: pre-meal scores. Temporal
responses to meal ingestion analyzed by one-way ANOVA for repeated measures; asterisks indicate
significant differences from premeal values by post-hoc comparisons (p < 0.05 applying the Sidak
correction procedure for multiple comparisons). Postprandial sensations tended to be higher in women
than in men, but the differences in satiety and digestive well-being were blurred because the scores
were near the top of the scales in both groups.

3.3. Sensory Responses to Meal Ingestion

The probe meal resulted attractive and before ingestion participants reported positive wanting
score (2.7 ± 0.3 score in women and 3.7 ± 0.2 score in men; p = 0.008). All participants finished the
meal at the same ingestion rate. Participants liked the probe meal and at the end of ingestion reported
positive liking scores (2.3 ± 0.4 score in women and 2.9 ± 0.2 score in men; p = 0.126).

Overall (n = 24), ingestion of the probe meal induced satiation, fullness, digestive well-being
and improved mood (main time-effect p ≤ 0.005 for all); these sensations gradually decayed during
the postprandial period. Postprandial satiety scores were high in both groups, and hence, no gender
differences were detectable (main gender-effect F (1, 21) = 0.0; p = 0.963) (Figure 1). However, a clear
difference in fullness sensations was observed: fullness sensation was mild and transient in men, but
significantly higher and more persistent in women (main gender-effect F (1, 21) = 7.14; p = 0.014).



Nutrients 2019, 11, 702 6 of 11

By multiple linear regression analysis, fullness sensation correlated with gender (β = −0.83; p = 0.006)
but not with body weight (β = 0.17; p = 0.539).

Well-being scores were somewhat higher in women than in men (Figure 1); similarly to satiety,
meal ingestion induced strong and persistent effects on digestive well-being that blurred gender
differences: the difference was detected comparing the area under the curve (p = 0.020) but not by
ANCOVA (main gender-effect F (1, 21) = 2.25; p = 0.148). In both groups the effect of meal ingestion
on mood was mild, but significantly higher in women than in men (main gender-effect F (1, 21) = 4.8;
p = 0.040).

3.4. Physiological Responses

Overall (n = 24), meal ingestion was associated with changes in diastolic blood pressure (main
time-effect p = 0.004), heart rate (main time-effect p = 0.003), and vagal tone (main time-effect p = 0.004),
without changes in systolic blood pressure (main time-effect p = 0.697) and respiratory frequency
(main time-effect p = 0.253) (Figure 2). Body temperature increased by 0.21 ± 0.09 ◦C (p = 0.044).
As compared to men, women exhibited more pronounced effects on heart rate (main gender-effect F (1,
21) = 13.4; p = 0.007) and vagal tone (main gender-effect F (1, 21) = 5.5; p = 0.029), but no other gender
differences were detected.
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Figure 2. Physiological responses to probe meal. Data are postprandial changes from premeal baseline
(mean ± SE). Overall, meal ingestion was associated with an increase in diastolic blood pressure, heart
rate and vagal tone (main time-effect p ≤ 0.003 for all; n = 24). As compared to men, women exhibited
more pronounced effects on heart rate and vagal tone (by ANCOVA).
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3.5. Hormonal Response

Meal ingestion increased circulating levels of insulin (p < 0.001) and decreased ACTH (p = 0.035)
without changes in cortisol (0.362); no gender differences in the hormonal responses to the probe meal
were detected.

3.6. Metabolomic Response

3.6.1. Low-Molecular Weight Metabolites

Overall (n = 24) meal ingestion induced changes in the profile of circulating metabolites.
Specifically, alanine (p = 0.009), glutamine (p = 0.009), isoleucine (p = 0.007), histidine (p = 0.040)
and valine (p = 0.024) increased and 3-hydroxybutirate decreased (p = 0.029). No gender differences
were observed.

3.6.2. Lipoprotein Profile

Meal ingestion induced a change in the profile of plasma lipoproteins with some differences
between women and men (Figure 3). Using an unsupervised PCA and OPLS-DA model women and
men exhibited different distribution (data not shown).
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4. Discussion

Our study shows gender differences in the biological responses to meal ingestion. Women
exhibited a more profound sensory experience than men, involving both homeostatic and hedonic
sensations, associated to differences in vagal tone and lipid metabolism.

With the same meal, women experienced stronger homeostatic sensations, in particular more
postprandial fullness, than men. No differences in satiety were detected, and this was conceivably
related to a saturation effect, because satiety scores were close to the top of the scales in both groups.
In general, satiation precedes fullness in response to meal ingestion and satiety increases more steeply
as a function of the meal load than fullness [1]. Hence, detection of gender differences depends on the
meal load: a smaller meal would induce less satiety in men uncovering gender differences, whereas a
larger meal would also drive fullness scores to the top of the scales both in women and men blurring
the difference.

Hedonic responses in women also tended to be more pronounced than in men. Previous studies
showed that the relation of homeostatic to hedonic sensations is bimodal: with meal loads in the lower
range homeostatic and hedonic sensations are directly related, and both increase as a function of the
meal load; with larger meal loads the relation becomes inverse, and while homeostatic sensations
steadily increase, hedonic sensations decrease down to a minimum at the level of full satiation [2].
This phenomenon is similar in women and men, but in women the curve is shifted to the left, so that
they experience both the well-being peak (maximal satisfaction), as well as full satiation with lower
meal loads than men [2]. Conceivably, the meal load in the present study was close to the yield point
in women, who experienced strong homeostatic sensations with a potent hedonic dimension, whereas
men would have enjoyed a larger meal load.

Several factors may play a role in these gender differences. In the first place, body weight
in women was smaller than in men. Furthermore, women have lower metabolic rates and energy
requirements than men [18–20] and these differences persist after controlling for body mass [18].
Theoretically, more fullness with the same meal load in women could be related to smaller gastric
capacity, which would seem plausible considering their smaller body size; however, the size of the
stomach is similar in women and men. Indeed, measuring gastric compliance by means of an air-filled
flaccid bag connected to a barostat, it was shown that during basal conditions (empty stomach in the
fasting state) at fixed (standardized) intragastric pressure levels, intraluminal volume (gastric capacity)
was similar in women and men [21]. These studies also measured the sensations induced by gastric
distension, and interestingly, the same pressure (and volume) levels induced more intense perception
in women. These data indicate that despite the similar size, the stomach in women is more sensitive
and they perceive and tolerate smaller intraluminal loads than men. Lower tolerance in women has
been also reported using drink tests that administer water or a nutrient drink at a fixed ingestion rate
up to the level of discomfort [22–24].

The gastric response to a meal is under vagal control [25,26]. During fasting the stomach is
contracted and meal ingestion triggers a vagal reflex that produces a gastric relaxation to accommodate
the meal [27]. Studies using the gastric barostat have shown that despite the lack of differences in
gastric compliance during fasting, the gastric accommodation reflex is more prolonged in women
than in men [21], and this may be related to the more pronounced vagal tone response to the meal in
women observed in our study, although admittedly, measurements of vagal tone based on heart rate
variability are rather unspecific.

In a previous study we normalized the meal load to satiation levels; and in accordance to the
present data, men ate more [2]. Under these conditions they exhibited a more pronounced response
in the low-molecular weight metabolites profile, but it was not clear whether and to what extent this
difference was related to gender or to the meal load [2]. The current study helps to interpret these
data by showing that at the same meal load, low-molecular weight metabolites were similar in both
groups, indicating that the meal load rather than gender determines the differences. Interestingly,
the situation is different in relation to lipid metabolism, where gender differences were apparent
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independently of the meal load. These differences in lipoproteins metabolism are in line with previous
observations [28,29] and may be related to gender-specific metabolic activity patterns [19,20,30].

5. Conclusions

Gender differences in the biological responses to meal ingestion may help to explain the specific
eating behaviour in women and men; indeed, in accordance with our data, it has been previously
shown that women consume less energy per kg lean mass [31,32], and on standard diet adjusted to meet
individual energy requirements, women exhibit less appetite than men [19,20]. From a practical point
of view, gender differences have to be considered when testing the responses to meal ingestion, and
this is particularly important in patients with meal-related symptoms. Furthermore, gender differences
may be involved in the higher predisposition and incidence in women of functional disorders triggered
by meal ingestion [33,34].
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