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Abstract: Magnesium is a vital mineral that takes part in hundreds of enzymatic reactions in the
human body. In the past several years, new information emerged in regard to the antibacterial effect
of magnesium. Here we elaborate on the recent knowledge of its antibacterial effect with emphasis
on its ability to impair bacterial adherence and formation complex community of bacterial cells
called biofilm. We further talk about its ability to impair biofilm formation in milk that provides
opportunity for developing safer and qualitative dairy products. Finally, we describe the pronounced
advantages of enrichment of food with magnesium ions, which result in healthier and more efficient
food products.

Keywords: healthy food; biofilm; magnesium ions; microbial development; dairy food

1. Introduction

Magnesium represents an essential element for life and is ubiquitously found in all organisms.
This important cation plays crucial roles as an enzymatic co-factor, as well as it is involved in cellular
signaling, and in stabilizing cellular components [1,2]. It is not surprising that magnesium salts are
typically associated with positive effects on microbial cells. However, it appears that at elevated doses,
for instance at milimolar concentrations, magnesium ions become harmful for prokaryotic cell and
therefore may negatively affect important cellular processes [3–7]. Although, some progress has been
made in investigating the effect of magnesium ions in different microorganisms, it is still not clear how
these vital ions affect the cellular processes in microbial cell. Moreover, the mode of antimicrobial
action of magnesium ions remains largely unknown. In the past several years, more information
emerged concerning the effect of magnesium on bacterial cells. Consequently, in this mini-review,
we summarize recent advances in understanding the antimicrobial properties of magnesium ions with
an emphasis on their effect on biofilm formation, which became the biggest microbiological problem in
clinical as well as industrial settings. We further discuss the antimicrobial potential of magnesium
ions in developing novel approaches towards improving food safety and quality. Finally, we describe
new perspectives in developing healthier food for human consumption by its enrichment based on
magnesium ions.

2. The Antimicrobial Properties of Magnesium

Historically, back in 1915, Professor Pierre Delbet was looking for a solution to cleanse wounds
that would replace the traditional antiseptics that damage tissues. After testing several solutions,
he found MgCl2 solution to be most effective as it had two main advantages—it was not harmful for
the tissue and it highly increased leucocyte activity and phagocytosis. Later, he found this solution to
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be an efficient therapy for various diseases, including diseases related to microorganisms [8]. In the
past several years, new interest on this cation arose due to its antimicrobial properties. In several
studies, antibiotic activity in the presence of Mg2+ ions was found to be more efficient [9,10]. It has been
hypothesized that the divalent ions affect the membranes of bacterial cells. One study suggested that the
curvature of the bacterial membrane is affected, and eventually the bacteria become more vulnerable,
and the antibiotics are more efficient [11]. A different study showed that these cations permeabilize
the membranes and cause them to be leakier [5]. Other studies tested the potential antimicrobial
effect of coating different surfaces with magnesium or magnesium compounds. These surfaces were
found as effective in prevention of bacteria adherence as well as biofilm formation. Some of these
compounds were suggested to disrupt the membrane potential, again strengthening the idea that
magnesium permeabilizes membranes and eventually cause the bacteria to be more sensitive [6,12–14].
Moreover, metal oxide nanoparticles of MgO were tested as antibacterial agents as well [3,6]. Indeed,
these particles were found to be effective against yeast and planktonic bacteria as well as against
biofilms [3]. In addition, these nanoparticles were found to be of low cytotoxicity and relatively
safe. Since biofilm formation is considered as a major problem in the food industry as well as in the
biomedical field, a lot of effort is put into dealing with this phenomenon [15,16]. Therefore, the effect
of magnesium ions was also tested recently as a potential solution for the biofilm problem.

2.1. The Effect of Magnesium on Bacterial Survival and Biofilm Formation

Biofilms are highly structured multicellular communities [17–19]. Biofilm formation is a
multistage process in which bacterial cells adhere to a surface and/or to each other through
production of an extracellular matrix that is typically composed of exopolymeric substances (EPS)
such as polysaccharides, proteins, and nucleic acids, which surround and may protect the enclosed
bacteria [19–21]. They form highly structured multicellular communities that are capable of coordinated
and collective behavior [17,18,22]. Bacterial cells in biofilms are characterized by increased resistance
to unfavorable environmental conditions, antimicrobial agents, and cleaning chemicals [19,23,24].
It appears that the major source of the contamination of food products is often associated with biofilms
on the surfaces of food processing equipment [15,25,26]. Therefore, biofilm formation is considered as
a major problem in the food industry [15,26,27].

Several approaches were suggested to deal with biofilm formation in the food industry [15,26].
Environmental factors such as electrolyte concentrations and medium composition were shown to have
important impact on biofilm formation [28]. Divalent cations can influence biofilm formation directly
through their effect on electro-static interactions and indirectly via physiology-dependent attachment
processes by acting as important cellular cations and enzyme cofactors [28–31]. Due to its potentially
important role, the effect of Mg2+ ions on biofilm formation has been tested. These ions are crucial for
the physiology of bacterial cells, although their excess can be harmful for them. Bacterial cells maintain
the tolerable concentrations of Mg2+ ions by influx and efflux strategies based on their availability.
Bacteria overcome limitations in those ions or respond to excess levels, and this helps to maintain
the metal homeostasis within the cell. It appears that Mg2+ ions are vital for membrane stabilization
and function as a cofactor for diverse enzymatic reactions. Bacteria achieve Mg2+ homeostasis by
regulating the Mg2+ transporters and sensors that coordinate the influx and efflux of Mg2+ from
the bacterial cell. The Gram-negative bacterium Salmonella enterica serovar Typhimurium is one of
the best-understood models for explaining the Mg2+ homeostasis [32,33]. In Staphylococcus aureus,
Mg2+ was shown to increase the rigidity of cell wall by binding to teichoic acids (TA). TA, bind the
positively charged Mg2+ ions to mitigate the electrostatic repulsive interactions between the negatively
charged neighboring phosphates. In addition, the Mg2+ ions start a signaling cascade, which results
in expression of biofilm related genes [34]. Furthermore, studies have shown that Mg2+ ions have
varying effects on bacterial adhesion and biofilm formation [4,28,35–37] (Table 1), which could be
explained by differences in bacterial species and Mg2+ concentrations used in the various studies. Since
EPS possesses an anionic nature, it was proposed previously that certain Mg2+ concentration might
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contribute to an increase in exopolysaccharide (EPS) production and biofilm stabilization [38]. It was
also reported that Mg2+ limitation is an important environmental trigger of Pseudomonas aeruginosa
biofilm development [39]. However, it was found that biofilm formation decreased with increasing
concentration of Mg2+ in Enterobacter cloacae [40]. Moreover, another recent study demonstrated how
Mg2+ ions affected Bacillus subtilis biofilm formation by down-regulating the expression of extracellular
matrix genes by more than 10-fold [4]. Taken together, the literatures up to now suggest that, in low
concentrations, Mg2+ ions seem to induce adherence of bacteria to surfaces and subsequent biofilm
formation, while higher concentrations seem to reduce the biofilm formation.

Table 1. Varying effects of magnesium ions on bacterial adhesion and biofilm formation.

Bacteria Influence of Magnesium Ions Reference

Staphylococcus aureus
High concentrations of magnesium bind TA,

which increases cell wall rigidity and results in
better adherence.

[30]

Pseudomonas aeruginosa

Adherence of two of three tested P. aeruginosa strains
was enhanced by magnesium ions [32]

Magnesium ions limitation represses the expression
of retS which leads to increased aggregation,

exopolysaccharide (EPS) production and biofilm
formation

[36]

Diverse effect of divalent ions on
Pseudomonas aeruginosa strains of various origins [38]

Staphylococcus epidermidis Adherence of all tested strains was enhanced in low
concentrations of magnesium [31]

Group b streptococci Magnesium had no effect on adherence at
physiologic concentrations [33]

Pseudomonas fluorescens Magnesium ions increased initial attachment and
altered subsequent biofilm formation and structure [24]

Bacillus species

Magnesium ions are significantly inhibited biofilm
formation of Bacillus species at 50 mM concentration
and higher. The expression of the two matrix operons
was reduced drastically in response to magnesium

ions

[34]

Fortification of milk with magnesium mitigated
biofilm formation by Bacillus species [39]

Enterobacter cloacae Biofilm formation decreased with increasing
concentration of magnesium ions [37]

Arthrobacter sp. Mg2+ induced biofilm development through the
removal of toxic hexavalent chromium

[40,41]

Thus, magnesium ions have a reasonable potential in affecting the food associated biofilm
formation and by this preventing food spoilage and losses in the food industry. The exact mechanism
as to how exactly the magnesium ions operate and delay biofilm formation remains unclear, yet several
suggestions arise [5,11,41,42] (Figure 1). They could directly interact with the membrane and in some
way prevent biofilm formation. Alternatively, they could also directly or indirectly influence the
regulation of biofilm formation and delay biofilm formation. Due to the promising results obtained
with magnesium ions in prevention of biofilm formation, the effect of Mg2+ ions on biofilm formation
in the context of food matrices has also been recently studied.
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Figure 1. Possible mechanisms for the influence of Mg2+ ions on biofilm formation. A: Mg2+ can
affect the membranes curvature, which results in a more sensitive bacterial population. B: Elevation
of c-di-GMP levels leads to inhibition of the swarming motility and increased biofilm formation.
The activity of PdeH, the enzyme that degrades c-di-GMP, is Mg2+ dependent. Therefore, Mg2+ ions
could possibly enhance c-di-GMP degradation and hence decrease biofilm formation that results in heat
sensitive bacteria. C: A third possible explanation is that the Mg2+ ions directly regulate the pathway
leading to biofilm formation, which would again result in heat sensitive bacteria.

2.2. The Effect of Magnesium on Microbiological and Technological Properties of Milk

Milk is highly nutritious as it contains abundant water and nutrients, such as lactose, proteins,
and lipids, and has a nearly neutral pH. This makes it an ideal medium for the growth of different
microorganisms. Since microorganisms in milk may hold spoilage and health risks, milk manufacturing
is subject to extremely stringent regulations. These regulations include pasteurization at high
temperatures, which kills most bacteria, and milk storage at low temperatures, which limits the growth
of many bacteria. It has been shown that in several Bacillus strains, milk triggers the formation of
biofilm [43], and this might make the bacteria more resistant to pasteurization. A recent study has
shown that supplementation of milk by 5mM MgCl2 and above is capable of impairment of biofilm
formation [44]. The impairment of the biofilm eventually results in about a two-log reduction in
survival rate of bacterial cells once exposed to heat-pasteurization [44]. Accordingly, enrichment of
milk and its products with magnesium would eventually result in safer dairy products as well as this
would enable a longer shelf life of the products. In addition, enrichment of food with Mg2+ ions may
also influence its technological properties as well [44,45]. It was also suggested that in the presence of
Mg2+ ions the milk clotting starts significantly earlier, and the obtained curd is notably firmer [44].
This finding indicates that the curdling process appears to be improved in the presence of Mg2+ ions;
i.e., in order to obtain cheeses in a desired hardness, the curdling process in the presence of Mg2+ ions
is shorter. In another study in which magnesium lactate was added to fat free milk to produce yogurts,
the hardness of the yogurts was increased [45]. Moreover, it was also demonstrated that fortified cheeses
with Mg2+ ions had higher protein quantity [44]. Therefore, enrichment of milk with magnesium
not only makes the dairy products healthier, but also improves their technological properties and
increases potential availability of this essential mineral for absorption from the magnesium-enriched
products. Taking into account also the antimicrobial effect of magnesium, which results in longer shelf
life, enrichment of food with magnesium would result in healthier and inexpensive food (Figure 2).
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Figure 2. Enrichment of food products, for instance, dairy products, with magnesium would provide
pronounced advantages and eventually result in healthier and efficient food products.

3. The Existing Need for the Enrichment of Food with Magnesium

Magnesium is a vital mineral that takes part in hundreds of enzymatic activities, and consumption
of a sufficient amount magnesium is highly important for human health. This vital cation also
plays important roles in the physiological functioning of the brain, heart, and skeletal muscles and
has anti-inflammatory properties. Low levels of magnesium are associated with a wide range of
diseases such as migraine, Alzheimer’s disease, hypertension, insulin resistance, pre-eclampsia and
cardiovascular diseases [1,46]. The recommended daily allowance of Mg2+ according to the US Food
and Nutrition Board is 420 mg for men and 320 mg for women. However, it is estimated that most
people do not consume the recommended daily allowance of magnesium [2,47,48], and about 10% to
30% of a given population are in a condition of Mg2+ deficiency (MGD) [49]. MGD as a result of low
intake of magnesium could potentially increase risks for various diseases. Hence, finding new means
to supply magnesium to humans is essential. According to [44] an evaluation of the bioavailability
potential of magnesium in milk enriched with 5–10 mM MgCl2, is ~75–90 mg/L. Hence, one needs
to consume over 3.5 L of fortified milk to reach the lower limit of the recommended daily allowance.
Nevertheless, consumption of milk fortified with Mg2+ will enable to increase the daily consumption
of magnesium. Enrichment of food products with magnesium may provide a novel mean to deliver
this important mineral to humans and other mammals [50].

4. Discussion

As mentioned above, magnesium plays a vital role as a cofactor in numerous enzymatic reactions
in the cell [1,2,51]. These include phosphorylation and catalytic reactions, carbohydrate metabolism,
lipid metabolism, as well as protein and nucleic acid synthesis. It also plays a role in the active transport
of calcium and potassium ions across cell membranes. This vital cation is highly important for the
human health [2,52,53]. Here, we elaborated on magnesium in the aspect of its antimicrobial effects.
At high concentrations, magnesium ions decrease adherence of bacteria to surfaces and impair biofilm
assembly. This makes the bacterial cells more sensitive to heat treatments. In dairy products, lower
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concentrations (~5mM) are required, maybe due to additional antimicrobial molecules found in the
milk. Therefore, addition of magnesium ions to food and especially to dairy products would result
in safer food with a longer shelf-life. Moreover, the magnesium ions also improve the technological
properties of the products, which eventually results in cheaper production costs. Most importantly,
enrichment of food products with magnesium ions would enable a new efficient source of consumption
of this important mineral.

5. Conclusions

Magnesium is a vital mineral, which is not consumed to a sufficient quantity. Addition of
magnesium to food matrices, for instance, to dairy products has several added benefits. First,
the antibacterial effect of Mg2+ ions enables development of the safer and healthier food. Second,
improvements in the technological properties of the magnesium supplemented food enables shorter
production time and high protein content of the food products. Finally, enrichment of the food with
Mg2+ ions provides a new source for the delivery of this vital mineral to humans.
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