
nutrients

Article

Temporal Progression of Fatty Acids in Preterm and
Term Human Milk of Mothers from Switzerland

Sagar K. Thakkar 1, Carlos Antonio De Castro 2, Lydie Beauport 3, Jean-François Tolsa 3,
Céline J. Fischer Fumeaux 3, Michael Affolter 4 and Francesca Giuffrida 4,*

1 Nestlé Institute of Health Sciences, Nestlé Research, Lausanne 1000, Switzerland;
Sagar.Thakkar@rd.nestle.com

2 Clinical Development Unit, Nestlé Research Asia, Singapore 138567, Singapore;
CarlosAntonio.DeCastro@rdsg.nestle.com

3 Clinic of Neonatology, Department Woman Mother Child, University Hospital of Lausanne, Lausanne 1011,
Switzerland; Lydie.Beauport@chuv.ch (L.B.); Jean-Francois.Tolsa@chuv.ch (J.-F.T.);
Celine-Julie.Fischer@chuv.ch (C.J.F.F.)

4 Nestlé Institute of Food Safety & Analytical Science, Nestlé Research, Lausanne 1000, Switzerland;
Michael.Affolter@rdls.nestle.com

* Correspondence: Francesca.Giuffrida@rdls.nestle.com; Tel.: +41-21-785-8084

Received: 22 November 2018; Accepted: 25 December 2018; Published: 8 January 2019
����������
�������

Abstract: We longitudinally compared fatty acids (FA) from human milk (HM) of mothers delivering
term and preterm infants. HM was collected for 4 months postpartum at 12 time points for preterm
and for 2 months postpartum at 8 time points for term group. Samples were collected from the first
feed of the morning, and single breast was fully expressed. FA were analyzed by gas chromatography
coupled with flame ionization detector. Oleic, palmitic and linoleic acids were the most abundant
FA across lactation and in both groups. Preterm colostrum contained significantly (p < 0.05) higher
8:0, 10:0, 12:0, sum medium chain fatty acids (MCFA), 18:3 n-3 FA compared to term counterparts.
Preterm mature milk contained significantly higher 12:0, 14:0, 18:2 n-6, sum saturated fatty acids
(SFA), and sum MCFA. We did not observe any significant differences between the preterm and
term groups for docosahexaenoic acid, arachidonic acid and eicosapentaenoic acid at any stage of
lactation. Overall, preterm milk was higher for SFA with a major contribution from MCFA and higher
in 18:2 n-6. These observational differences needs to be studied further for their implications on
preterm developmental outcomes and on fortification strategies of either mothers’ own milk or donor
human milk.

Keywords: human milk; preterm; term; infants; lipids; fatty acids; human milk fortification;
docosahexaenoic acid (DHA); mothers’ own milk; donor human milk; arachidonic acid (ARA);
eicosapentaenoic acid (EPA)

1. Introduction

Given the documented short- and long-term advantages of breastfeeding for both the mother
and the infant, it is no surprise that breastfeeding and human milk (HM) feeding are considered
as normative standards by health care professionals and organizations such as the World Health
Organization (WHO), American Academy of Pediatrics and European Commission [1]. WHO
recommends exclusive breastfeeding for the first six months of infant life followed by introduction of
complementary foods and continued breastfeeding for up to two years of life, and even beyond until
mutually agreeable by the mother-infant dyad [2]. Indeed, it has been stated that HM feeding during
this early stage of life is able to meet the nutritional demands of not only growth and development,
but also imparts the immune factors and protects from later in life metabolic abnormalities of apparently
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healthy term infants [3]. For preterm infants, HM confers additional benefits, while reducing morbidity
and mortality and enhancing neurodevelopment of this vulnerable population [4]. However, feeding a
preterm infant requires special considerations to meet the nutritional demands to allow for mimicking
growth that would otherwise take place in-utero.

Understanding the roles of nutrition in general and of lipids in particular, developmental outcomes
of preterm infants has been a subject of much research in an effort to define their nutritional needs [5–9].
Since HM feeding is well tolerated and reduces the risk of co-morbidities such as necrotizing
enterocolitis and sepsis in preterm infants, it is important that feeding HM to preterm infants has
become the primary choice of nutritional source [10]. Furthermore, strategies have also been developed
to supplement mothers’ own milk (MOM) with either multi-nutrient or single nutrient human milk
fortifiers (HMF) based on bed-side analyses of MOM [11]. Nevertheless, the bedside analyses of
MOM has been focused on macronutrients (total proteins, total lipids, total lactose and calculated
total energy) often using mid-infrared spectroscopic methods and not on their detailed profile or other
micronutrients that may also contribute to growth and development [12].

Lipids in unfortified HM/MOM provide approximately 50% of the total energy to its consumers
and the majority (90–95%) of lipids are present in the form of triacylglycerol (TAG), a glycerol molecule
bound to three fatty acids (FA). These FA range from medium chain to very long chain and may be
saturated, mono-unsaturated or polyunsaturated. Additionally, essential FA as well as non-nutritive
bioactive FA are also part of the FA pool supplied via HM. Conventional data suggests that FA in HM
may be modified by the maternal dietary or nutritional supplement intake but not the quantity or
concentration of total lipids [13]. The concentration of HM lipids increases with advancing stages of
lactation [14–16]. In fact, HM composition may be impacted by a multitude of factors ranging from
maternal to infant parameters and even including the physiological and behavioral aspects observed
in the mother-infant dyad. These parameters have been recently reviewed and summarized by Fields
and colleagues [17]. Certainly one of those parameters that may influence the HM composition is the
gestational age at the birth of infants. Mothers of preterm infants have a higher risk of delayed onset
of lactogenesis II and potentially the mammary tissues may not be developed to the extent of their
term mother counterparts [18]. Undoubtedly, more research is needed in this area to understand the
impact of delayed milk production on the mother and the infant.

A handful of reports already exists on comparison of HM from mothers of term and preterm
infants. However, they have either focused on selective FA such as arachidonic acid (ARA) or
docosahexaenoic acid (DHA) [19,20], or focused only on transitional and mature milk [21]. Therefore,
in this study we aimed to explore and compare the composition of FA in HM produced by mothers
delivering a preterm infant to that of a term infant from colostrum, transitional and mature milk.

2. Materials and Methods

2.1. Ethical and Legal Considerations

This study was conducted according to the guidelines of the Declaration of Helsinki. The study
protocol with all procedures involving human subjects was approved by the Ethical Board (Commission
cantonal d’éthique de la recherché sur l’être humain) of the Canton de Vaud, Switzerland (Protocol
69/13, clinical study 11.39.NRC; April 9, 2013). Written consent was obtained from all participating
subjects of the study. The study was registered at ClinicalTrials.gov with the identifier NCT02052245.

2.2. Study Settings and Subjects

The study was conducted between October 2013 and July 2014 at the neonatal intensive care unit
(NICU) of the University Hospital (CHUV) in Lausanne, Switzerland. A longitudinal HM sampling
from lactating mothers was performed for HM characterization. Subjects were recruited at the hospital
within 2–3 days after giving birth (preterm and term births) by a single dedicated lactation nurse who
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managed all interactions with subjects from start to finish of the study. A total of 61 mothers were
recruited for the study, out of which 27 had preterm deliveries and 34 had term deliveries.

2.3. Inclusion and Exclusion Criteria

Eligibility criteria for this study included women older than 18 years of age giving (1) preterm
birth (between gestational ages 28 0/7 and 32 6/7 weeks) or (2) term birth (>37 0/7 and not above
41 6/7 weeks) with mothers’ intention to exclusively or partially breastfeed at least until 4 month
post-partum. Exclusion criteria included gestational and pre-gestational diabetes (type I or II), alcohol
or illicit drug consumption and insufficient skills to understand study questionnaire. Availability of
refrigerator/freezer at home for storage of collected human milk samples was required.

2.4. Data Collection

After the subjects were enrolled and their signature obtained on the informed consent form,
the following information was collected for (a) mothers: age, height, weight before pregnancy and at
delivery, and (b) for the infants: date of birth, sex, gestational age, delivery method, weight, and head
circumference and sibling related data. The dedicated study nurse conducted data collection in
face-to-face interviews with the subjects.

2.5. Human Milk Sampling, Handling, and Storage

HM from mothers of preterm infants were sampled weekly for eight weeks post-partum and then
once every two weeks for eight more weeks totaling 12 longitudinal samples. HM from mothers of term
infants were sampled weekly for eight weeks post-partum totaling eight longitudinal samples. Various
aspects of HM sampling were standardized for all subjects. Milk was collected between 06h00 and
12h00 using an electric breast pump (Symphony®, Medela, Baar, Switzerland) allowing the mothers
flexibility to express at home or at the NICU. The side of the breast selected by the mother was kept the
same during the entire study and the mothers were requested to empty the breast in the previous feed
or the pumping session. Single full breast was sampled and an aliquot of 10 mL HM for each time point
(or 1–3 mL for the first two sampling time points in the preterm group) was reserved for biochemical
characterization. The remainder of the HM was returned to the mother for feeding to the infant at a
later time point, if so required. Each sample was transferred to freezing tubes, labelled with subject
number and collection information, stored at −18 ◦C in the home freezer, transferred to the hospital
(storage at −80 ◦C) and then shipped to the Nestlé Research Centre (Lausanne, Switzerland) where it
was stored at −80 ◦C until analysis. The frozen HM samples were thawed once for aliquoting into
15 individual small volume fractions (min 0.2 mL to max 2 mL) in separate polypropylene Eppendorf
tubes dedicated to the different analyses. The aliquoting approach was implemented to avoid repeated
thawing-freezing cycles and to adapt the required volumes to the specific needs of the individual
analytical methods.

2.6. Quantification of Total Lipids in Human Milk

Total lipid content was measured in HM samples by a human milk analyzer (HMA). The device
employed for analyses was a HMA generation 3 (Miris AB, Uppsala, Sweden) using the XMA-SW
software version 2.87 (Miris AB, Uppsala, Sweden). This HMA is based on semi-solid middle infrared
(MIR) transmission spectroscopy. The wavebands used are specific for the functional carbonyl groups
(5.7 µm) for fat determination, amide groups (6.5 µm) for protein determination, and hydroxyl groups
(9.6 µm) for carbohydrate determination. Prior to analysis, a daily calibration check was performed
using the calibration solution provided by the supplier. All samples were homogenized for 3 × 10 s
using the MIRIS sonicator (MIRIS AB, Uppsala, Sweden) as recommended by MIRIS and were kept
in a water bath at 40 ◦C prior to measurement. Homogenized samples (1 mL) were injected into the
flow cell and measured within a minute. Once the analysis was completed, the built-in cell and all
lines were rinsed with deionized water. After five milk samples, the system was cleaned with the
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recommended MIRIS detergent. An in-house control sample as well as a calibration standard provided
by the manufacturer were analyzed after every tenth measurement for quality control purposes.

2.7. Direct Method Procedure to Prepare Fatty Acid Methyl Esters (FAME) from Human Milk

Fatty acids were quantified in HM as described by Cruz-Hernandez et al. [22]. Acid FAME were
prepared using HCl/Methanol (3N) as a catalyst. The methylation procedure was as follows: In a
15 mL test tube equipped with Teflon-lined screw caps, 250 µL of HM was added followed by 300 µL
of internal standard FAME 11:0 and 300 µL of internal standard TAG 13:0, 2 mL of methanol, 2 mL
of methanol/HCL (3N) and 1 mL of n-hexane. Test tubes were firmly capped and shaken vigorously
and heated at 100 ◦C for 60 min, with occasional shaking. Care was taken to fit the cap tightly with
cap liner to avoid leaks when tubes are heated at 100 ◦C. After cooling down to room temperature,
2 mL water was added and shaken vigorously for centrifugation at 1200× g for 5 min followed by
transfer of the upper phase (hexane) into gas chromatography vials. Analyses were performed on a
7890A gas-chromatograph (Agilent Technologies, Palo Alto, CA, USA) equipped with a fused-silica
CP-Sil 88 capillary column (100% cyanopropylpolysiloxane; 100 m, 0.25 mm id, 0.25 µm film thickness;
Agilent, Palo Alto, CA, USA) have been used with a split injector (1:25 ratio) heated at 250 ◦C and
a flame-ionization detector operated at 300 ◦C. Oven temperature programming used was 60 ◦C
isothermal for 5 min, increased to 165 ◦C at 15 ◦C/min, isothermal for 1 min at this temperature,
and then increased to 195 ◦C at 2 ◦C/min and held isothermal for 14 min and then increased to 215 ◦C
at 5 ◦C/min and held isothermal for 8 min at 215 ◦C. Hydrogen was used as carrier gas under constant
flow mode at 1.5 mL/min.

2.8. Statistics

The scarcity of quantitative data on the fatty acid content in preterm HM precluded a power
calculation in this exploratory study. Sample size was initially set at n = 20 subjects per group (preterm
and term groups), according to the estimated recruitment feasibility at the study center within a one
year period. The longitudinal evolution of fatty acid content was compared in preterm and term
HM postpartum age (categorized by lactation stages: colostrum (≤1 week postpartum), transitional
(>1 week and ≤2 weeks post-partum) and mature (>2 weeks and ≤16 weeks)). No aggregation
was done for observations from the same participant within each lactation stage (i.e., colostrum
has 1 observation, transitional milk has 1 observation and mature milk has 4 observations per
participant). Mixed linear models were used to estimate the differences between preterm and term
HM. The models used age (colostrum, transitional milk and mature milk stages), term/preterm birth
status, and interaction between age and term/preterm status and delivery mode. Within subject
variability was accounted by declaring the subject ID as a random effect. Logarithmic transformation
was applied to the FA as they are generally skewed. Only the ratios (n-6 to n-3 ratio and ARA to DHA
ratio) were assumed to be normally distributed, therefore no transformation was applied. Contrast
estimates of the model were calculated by comparing preterm and term HM groups at each time point.
No imputation method was applied for missing data (both in between visits and loss to follow up)
as the method used does not require a complete data set. A conventional 2-sided 5% error rate was
used without adjusting for multiplicity. A similar analysis was done separating term and preterm
infants but looking at the age differences (colostrum vs. transitional milk, transitional milk vs. mature
milk and colostrum vs. mature milk). Statistical analyses were done with SAS 9.3 (SAS Institute Inc.,
Cary, NC, USA) and R 3.2.1. (R Foundation, Vienna, Austria) Differences were considered statistically
significant when p values were <0.05.
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3. Results

3.1. Subject Characteristics

This study included convenient sampling of 27 mothers who delivered 33 preterm infants and
34 mothers who delivered 34 term infants at CHUV neonatal unit in Lausanne, Switzerland. Multiple
deliveries (twins) were frequent (36%) in the preterm group, but absent in the term group. Figure 1
displays the study flow chart. Two out of 27 (7.4%) preterm infant mothers and 6 out of 34 (17.6%)
term infant mothers were lost to follow-up. No adverse events were reported along the study period.
In total, 498 HM samples, 279 from preterm and 219 from full term infant mothers, were available for
fatty acid analyses. Table 1 reports mother, infant demographic, and baseline anthropometric data.
Maternal characteristics were comparable among groups. Caesarean delivery was more frequent in
the preterm group. Preterm and full term infants significantly differed in all parameters except for
gender distribution.
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Table 1. Maternal and infant characteristics of the study population.

Study Population Preterm Term p-value

Maternal n = 27 n = 34

Age (years), mean ± SD 32.4 ± 5.6 31.2 ± 4.2 0.3173
Height (cm), mean ± SD 165.2 ± 7.1 166.8 ± 6.6 0.3601

Weight before pregnancy (kg), mean ± SD 62.1 ± 9.5 64.3 ± 12.0 0.4479
Weight at birth (kg), mean ± SD 70.3 ± 10.6 74.5 ± 11.3 0.1426

BMI before pregnancy (kg/m2), mean ± SD 22.8 ± 3.4 23.2 ± 4.9 0.6990
BMI at birth (kg/m2), mean ± SD 25.8 ± 3.7 26.9 ± 4.7 0.3141

Caesarean delivery, % 63.0 23.5 0.0019

Infant n = 33 n = 34

Gestational age at birth (weeks), mean ± SD 30.8 ± 1.4 39.5 ± 1.0 <0.0001
Males, % 54.5 52.9 0.8952
Twins, % 36.4 0.0 0.0001

Height (cm), mean ± SD 40.4 ± 3.2 49.4 ± 1.7 <0.0001
Weight (g), mean ± SD 1421.4 ± 372.8 3277.6 ± 353.6 <0.0001

Head circumference (cm), mean ± SD 27.8 ± 2.1 34.4 ± 1.5 <0.0001

3.2. Total Lipids in Preterm and Term Human Milk

Total lipids was measured by MIRIS® HMA as previously described by Giuffrida et al. [23] and
results are listed in Table 2. Total lipids content increased from colostrum (2.4 and 1.7 g/100 mL
preterm and term HM, respectively) to mature milk (3.1 and 3.6 g/100 mL in preterm and term HM,
respectively). Significant differences in total lipid content were observed between preterm and term
groups but only in mature milk (Figure 2).

Table 2. Fatty acid (FA) composition of human milk (HM) expressed by mothers who delivered either
preterm or term infant(s).

Fatty Acids
Colostrum Transitional Milk Mature Milk

Preterm Term Preterm Term Preterm Term

total lipids (g/100 mL) 2.40 (1.25) 1.70 (1.35) 3.05 (1.35) 3.10 (0.95) 3.10 c (1.40) 3.60 c (1.95)
8:0 (caprylic acid) 0.08 a (0.08) 0.03 a (0.05) 0.20 (0.09) 0.22 (0.04) 0.21 (0.08) 0.22 (0.06)
10:0 (capric acid) 0.60 a (0.44) 0.29 a (0.3) 1.58 (0.58) 1.64 (0.47) 1.48 (0.47) 1.46 (0.38)
12:0 (lauric acid) 3.14 a (2.22) 2.24 a (1.28) 6.76 (2.41) 6.33 (2.02) 5.91 c (2.44) 5.26 c (2.10)

14:0 (myristic acid) 6.20 (1.52) 5.83 (1.77) 7.86 (3.35) 7.62 (1.8) 7.36 c (2.9) 6.27 c (1.93)
16:0 (palmitic acid) 24.02 (1.97) 25.68 (2.83) 22.75 (4.86) 23.49 (3.11) 23.10 (3.46) 23.29 (3.31)

16:1 n-7 (palmitoleic acid) 2.34 (0.88) 2.18 (0.51) 1.96 (1.24) 2.34 (0.74) 2.17 c (0.82) 2.44 c (0.77)
18:0 (stearic acid) 6.30 (1.55) 6.79 (1.51) 6.27 (1.86) 6.23 (1.03) 7.03 (2.06) 6.75 (1.69)

18:1 n-9 (oleic acid) 37.64 (2.73) 39.36 (3.02) 34.62 (5.77) 35.85 (4.06) 35.22 c (5.16) 37.67 c (4.82)
18:1 n-7 (vaccenic acid) 2.62 (0.62) 2.67 (0.48) 2.06 (0.44) 2.13 (0.4) 1.83 c (0.45) 1.96 c (0.38)

18:1 trans fatty acids 0.70 (0.28) 0.75 (0.19) 0.68 (0.3) 0.75 (0.31) 0.71 c (0.42) 0.82 c (0.36)
18:2 n-6 (linoleic acid) 9.61 (2.19) 7.92 (1.17) 9.55 b (2.98) 8.70 b (2.23) 10.21 c (3.64) 9.35 c (2.90)

18:3 n-3 (α-linolenic acid) 0.77 a (0.25) 0.51 a (0.15) 0.72 (0.28) 0.67 (0.26) 0.75 (0.43) 0.74 (0.30)
18:3 n-6 (γ-linolenic acid) 0.03 (0.02) 0.03 (0.02) 0.05 (0.03) 0.08 (0.04) 0.09 (0.04) 0.10 (0.06)

20:0 (arachidic acid) 0.21 a (0.05) 0.27 a (0.09) 0.20 (0.06) 0.21 (0.04) 0.20 (0.07) 0.20 (0.04)
20:1 n-9 (eicosenoic acid) 0.76 (0.23) 0.99 (0.20) 0.60 b (0.17) 0.54 b (0.09) 0.47 (0.14) 0.45 (0.12)

20:2 n-6 (eicosadienoic acid) 0.52 (0.22) 0.58 (0.16) 0.42 b (0.12) 0.34 b (0.06) 0.29 (0.12) 0.26 (0.07)
20:3 n-6 (dihomo-γ-linolenic acid) 0.51 a (0.17) 0.66 a (0.35) 0.41 (0.10) 0.48 (0.18) 0.35 (0.12) 0.38 (0.13)

20:5 n-3 (EPA) 0.07 (0.07) 0.07 (0.03) 0.06 (0.05) 0.07 (0.03) 0.06 (0.04) 0.06 (0.04)
22:1 n-9 (erucic acid) 0.19 a (0.06) 0.25 a (0.06) 0.12 (0.06) 0.12 (0.02) 0.09 (0.03) 0.08 (0.03)

20:4 n-6 (ARA) 0.71 (0.36) 0.78 (0.32) 0.55 (0.19) 0.53 (0.11) 0.40 (0.12) 0.42 (0.12)
24:0 (lignoceric acid) 0.19 (0.05) 0.23 (0.1) 0.14 (0.05) 0.12 (0.04) 0.08 (0.04) 0.08 (0.03)

24:1 n-9 (nervonic acid) 0.30 a (0.09) 0.39 a (0.14) 0.13 (0.09) 0.13 (0.03) 0.07 (0.04) 0.07 (0.03)
22:6 n-3 (DHA) 0.61 (0.41) 0.64 (0.28) 0.35 (0.19) 0.42 (0.15) 0.27 (0.16) 0.28 (0.17)

Sum SFA 43.49 (7.03) 42.03 (2.84) 47.14(7.76) 46.08 (6.37) 45.88 c (7.45) 43.86 c (5.93)
Sum MUFA 44.59 (2.90) 46.51 (3.72) 40.65 (6.19) 42.12 (4.88) 40.44 c (5.6) 43.84 c (4.96)

Sum MCFA (< 14:0) 3.95 a (2.52) 2.51 a (1.65) 8.52 (2.67) 7.93 (2.66) 7.63 c (2.89) 6.94 c (2.38)
Sum PUFA 12.90 (2.95) 11.33 (1.95) 12.19 (3.05) 11.29 (2.03) 12.76 (4.00) 11.77 (3.43)

Sum PUFA n-3 1.48 (0.91) 1.16 (0.36) 1.24 (0.54) 1.15 (0.23) 1.15 (0.62) 1.11 (0.36)
Sum PUFA n-6 10.16 (2.68) 9.92 (1.66) 10.88 (2.96) 10.20 (2.22) 11.37 (3.82) 10.61 (3.17)
n-6 to n-3 ratio 7.29 (2.49) 8.67 (2.24) 8.68 (4.56) 8.58 (1.93) 9.72 (4.94) 9.58 (3.31)

ARA to DHA ratio 1.36 a (0.71) 1.40 a (0.53) 1.52 (0.59) 1.40 (0.41) 1.77 (1.15) 1.51 (0.68)

The data expressed in this table are medians (and interquartile range in parentheses) expressed as g/100 g FA except
total lipids which is expressed in g/100 mL of human milk and ratios. Values within a row with a letter (a, b, c) indicate
statistically significant differences (p < 0.05) between preterm and term HM for colostrum, transitional and mature
milk, respectively. SFA—Saturated Fatty Acids, MUFA—Mono-Unsaturated Fatty Acids, PUFA—Poly-Unsaturated
Fatty Acids, MCFA—Medium Chain Fatty Acids, ARA—Arachidonic Acid, DHA—Docosahexaenoic Acid,
EPA—Eicosapentaenoic Acid.
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22:6 n-3 (DHA) 0.61 (0.41) 0.64 (0.28) 0.35 (0.19) 0.42 (0.15) 0.27 (0.16) 0.28 (0.17) 

Sum SFA 43.49 (7.03) 42.03 (2.84) 47.14(7.76) 46.08 (6.37) 45.88 c (7.45) 43.86 c (5.93) 
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Figure 2. Total lipids content (g/100 mL) in colostrum, transitional and mature milk in preterm and
term groups.

3.3. Fatty Acids in Preterm and Term Human Milk

FA were measured by gas chromatography—flame ionization detection (GC-FID), and the results
are enumerated in Table 2.

The sum of saturated fatty acid (SFA) content increased significantly from colostrum (43.49 and
42.03% sum of FA in preterm and term HM, respectively) to mature milk (45.88 and 43.86% sum of FA
in preterm and term HM, respectively). The sum of SFA content was significantly higher in preterm
than in term mature milk. Palmitic acid (16:0) was the most abundant SFA and overall second most
abundant FA in preterm and term HM in this study. In spite of increases in total SFA, palmitic acid
content significantly decreased from colostrum (24.02 and 25.68% sum of FA in preterm and term HM,
respectively) to mature milk (23.10 and 23.29% sum of FA in preterm and term HM, respectively).
Stearic acid (18:0) increased significantly only in preterm milk (6.30% in colostrum and 7.03% in
mature milk). Furthermore, short (SC; 8:0) and medium chain (MC; 10:0 and 12:0) FA content was
significantly low in colostrum (3.95 and 2.51% sum of FA in preterm and term HM, respectively)
compared to transitional (8.52 and 7.93% sum of FA in preterm and term HM, respectively) and mature
milk (7.63 and 6.94% sum of FA in preterm and term HM, respectively). Significant differences were
observed between preterm and term colostrum for caprylic (8:0), capric (10:0) and lauric (12:0) being
higher in preterm than in term. In mature HM, lauric and myristic (14:0) acids were significantly
higher in preterm than in term. Figure 3 shows capric and lauric acid concentration in colostrum,
transitional and mature milk and differences between preterm and term. Arachidic acid (20:0) was
lower in preterm milk but only for the colostrum stage of lactation.
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The sum of MUFA in HM decreased significantly from colostrum (44.59 and 46.51% of sum of FA
in preterm and term HM, respectively) to mature milk (40.44 and 43.84% of sum of FA in preterm and
term HM, respectively). Oleic acid (18:1 n-9), the most abundant FA, decreased significantly along the
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lactation (from 37.64 to 35.22 % of total FA in preterm HM and from 39.36 to 37.67% of total FA in term
HM) (Figure 4). Other MUFA (i.e., 18:1 n-7, 20:1 n-9, 22:1 n-9 and 24:1 n-9) also decreased significantly
over lactation. The only exception was 16:1 n-7 for which no significant trend was observed. The total
MUFA content was significantly higher in term than in preterm mature milk. However, significant
differences were observed between preterm and term colostrum with 22:1 n-9 and 24:1 n-9 being
significantly lower in preterm and in mature milk for 18:1 n-9 being significantly lower in preterm HM.Nutrients 2018, 10, x FOR PEER REVIEW  9 of 13 
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Among poly-unsaturated fatty acids (PUFA), n-6 linoleic acid (LA; 18:2 n-6) was the most
abundant FA and it increased significantly from colostrum (9.61 and 7.92% sum of FA in preterm
and term HM, respectively) to mature milk (10.21 and 9.35% sum of FA in preterm and term HM,
respectively). ARA (20:4 n-6) content decreased significantly from colostrum to mature milk in both
preterm and term HM. No significant differences on PUFA n-6 content were observed between preterm
and term in colostrum, transitional milk and mature milk (Figure 5). Among PUFA, n-3 alpha-linolenic
acid (ALA; 18:3 n-3) was the most abundant FA and it increased significantly in term from colostrum
(0.51% of total FA) to mature milk (0.74% of total FA) but it was stable at about 0.7% of sum of FA
in preterm group. DHA (22:6 n-3) decreased significantly over the lactation period from 0.6% in
colostrum to 0.3% of total FA in mature milk, in both preterm and term HM. Eicosapentaenoic acid
(EPA; 20:5 n-3) was present in minute quantities (0.07% of the sum of FA in colostrum, transitional and
mature milk). Between preterm and term, the only significant differences were observed for ALA in
colostrum, being higher in preterm than in term HM.
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4. Discussion

There are different classes of fatty acids (FA) in HM with putative biological functions. Most
widely studied are long chain polyunsaturated FA (LCPUFA) with potential roles in the development
of visual and cognitive functions in early life [24,25]. HM also contains essential FA, such as linoleic
(18:2 n-6) and alpha-linolenic (18:3 n-3) acid that must be supplied orally as de novo synthesis is low to
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non-existent [7]. Furthermore, there is also the presence of short to medium chain and saturated FA
(SFA) along with monounsaturated FA (MUFA). In this study, we longitudinally characterized total
lipids and FA from milk of mothers who delivered either preterm or term infants.

Total lipid content increased from colostrum to mature milk in agreement with multiple previous
reports [16,26–33]. However, our observation that term HM had higher lipids than preterm milk when
the milk was mature is not corroborated by a systematic review and meta-analysis of Gidrewicz and
Fenton [34]. This could be due to inclusion of multiple studies in meta-analysis with varied sampling
and analytical procedures as compared to our study.

The saturated FA we characterized in this study ranges from short chain FA (8:0), medium chain
FA (10:0, 12:0, 14:0), to long chain FA (16:0, 18:0, 20:0) and very long chain FA (24:0). Overall, the sum
of all SFA in colostrum was lower than transitional and mature milk for both preterm and term groups.
In colostrum, short and medium chain FA were higher in preterm than in term HM, in agreement with
previous works [35,36]. Benefits of medium chain FA in preterm infant nutrition has been a topic of
research for past few decades. It has been demonstrated [21] that, after triacylglycerol hydrolysis of 10:0
and 12:0, FA are absorbed directly in the blood circulation without being incorporated in chylomicrons,
thus may be more bioavailable and/or readily available sources of energy in the immature preterm
digestive system that longer chain FA. Additionally, entering the cells these FA get into mitochondria
without the assistance of a carnitine transporter [21], therefore sparing adenosine triphosphate (ATP)
for other cellular process. Palmitic acid (16:0) was the most abundant saturated FA and accounted for
approximately 60% of sum of SFA and it also represented the second most abundant FA in HM. Palmitic
acid did not show any major temporal changes in either of the groups, suggesting minor variations
amongst different populations, a phenomenon that has also been observed in other studies [36–38].

Amongst all FA characterized in this study, oleic acid (OA, 18:1 n-9) was the most abundant
FA in both term and preterm groups. While it did not show any statistically significant difference
between groups in colostrum and transitional milk, the content was higher in term mature milk.
This observation is in line with findings of Rueda et al., [39] which not only agreed with the ranges
of OA present in both term and preterm milk but also demonstrated that term HM contained higher
proportions of OA in comparison to their preterm counterparts.

Linoleic acid (LA) was the most abundant n-6 FA in both term and preterm milk. Both groups
showed slight increases in the concentrations from colostrum to mature milk. Not only is linoleic
acid an essential fatty acid that is a required precursor for production of ARA, but also downstream
products of ARA yields leukotrienes, prostaglandins and thromboxane that are physiologically active
and provide diversified functions of signaling. The relative percentage of linoleic acid in our study
agreed with previous reports of Luukkainen [37], Genzel-Boroviczény [38], Rueda [39] and Sabel [40].
However, Kovacs [36] reported to have 40 to 50% more LA in milk of both term and preterm infants.
However, since n-6 FA can be modulated by maternal intakes, the groups can attribute the observation
to differential intake. Alpha-linolenic acid (ALA), the precursor to EPA and DHA, represented between
40 and 60% of all n-3 FA characterized in this study for both term and preterm infants. In our study,
colostrum of preterm HM contained statistically significant higher proportions of ALA than their term
counterparts. However, this significance did not sustain over time and the relative percentages of
ALA were comparable in both term and preterm groups for transitional and mature milk. The mature
milk of other studies also reportedly has no differences between the groups [36,37]. A limitation of
this study is that neither dietary intake, nor supplement intake was recorded preventing us from
associating HM FA to these factors.

The concentration of DHA decreased over stages of lactation for both groups, preterm and term
HM. This trend has been described by numerous studies reported in the literature [19,31,35,37–39].
However, consistency is not observed when comparing the concentrations of DHA in milk within
term and preterm groups. In our study we did not observe significant differences, yet it has been
reported by Kovács et al. [36] that there is significantly higher DHA in preterm milk than in term milk
for first 21 day post-partum. On the other hand Rueda et al. [39], reported to have higher DHA in term
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milk over preterm milk for first week post-partum. Since DHA content of mothers milk is sensitive
to maternal intake of food rich in sources of DHA [41], it may explain the differences observed in
different studies. It also may be prudent to note that preterm offspring may benefit from fortifying
mothers’ own milk in populations where dietary/supplementary intake of sources of DHA may be
lower than ideal.

5. Conclusions

In summary, oleic, palmitic and linoleic acids were the most abundant FA across lactation and in
both groups. Preterm colostrum contained significantly higher 8:0, 10:0, 12:0, sum medium chain fatty
acids (MCFA), 18:3 n-3 FA compared to term counterparts. Preterm mature milk contained significantly
higher 12:0, 14:0, 18:2 n-6, sum SFA, and sum MCFA. Preterm colostrum contained significantly lower
20:0, 20:3 n-6, 22:1 n-9 and 24:1 n-9. Preterm mature milk contained significantly lower total lipids, 16:1
n-7 and 18:1 n-9. We did not observe any significant differences between the preterm and term groups
for DHA, ARA and EPA at any stage of lactation. Overall, preterm milk was higher for SFA with major
contributions from MCFA and higher in 18:2 n-6. These observational differences need to be studied
further for their implications on preterm developmental outcomes and on fortification strategies of
either mothers’ own milk or donor human milk.
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