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Abstract: Sub-Saharan Africa currently has the world’s highest urban population growth rate of
any continent at roughly 4.2% annually. A better understanding of the spatiotemporal dynamics of
urbanization across the continent is important to a range of fields including public health, economics,
and environmental sciences. Nighttime lights imagery (NTL), maintained by the National Oceanic
and Atmospheric Administration, offers a unique vantage point for studying trends in urbanization.
A well-documented deficiency of this dataset is the lack of intra- and inter-annual calibration between
satellites, which makes the imagery unsuitable for temporal analysis in their raw format. Here
we have generated an ‘intercalibrated’ time series of annual NTL images for Africa (2000–2013) by
building on the widely used invariant region and quadratic regression method (IRQR). Gaussian
process methods (GP) were used to identify NTL latent functions independent from the temporal
noise signals in the annual datasets. The corrected time series was used to explore the positive
association of NTL with Gross Domestic Product (GDP) and urban population (UP). Additionally,
the proportion of change in ‘lit area’ occurring in urban areas was measured by defining urban
agglomerations as contiguously lit pixels of >250 km2, with all other pixels being rural. For validation,
the IRQR and GP time series were compared as predictors of the invariant region dataset. Root mean
square error values for the GP smoothed dataset were substantially lower. Correlation of NTL with
GDP and UP using GP smoothing showed significant increases in R2 over the IRQR method on
both continental and national scales. Urban growth results suggested that the majority of growth
in lit pixels between 2000 and 2013 occurred in rural areas. With this study, we demonstrated the
effectiveness of GP to improve conventional intercalibration, used NTL to describe temporal patterns
of urbanization in Africa, and detected NTL responses to environmental and humanitarian crises.
The smoothed datasets are freely available for further use.

Keywords: Nighttime lights; urbanization; socio-economic indicators; DMSP-OLS; NPP-VIIRS;
global public health; Africa

1. Introduction

Urbanization can be broadly defined as the transition of settlements from rural to urban
environments and the growth of existing metropolitan areas. The proportion of the world’s population
living in urban areas is projected to be 66% by 2050 [1] and sub-Saharan Africa currently has the
world’s highest annual urban growth rate of any continent at 4.2% [2]. Urbanization is known to
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impact a range of socio-economic issues including public health, education, environmental quality, and
economic development [3]. The public health effects of urbanization are complex with both negative
and positive outcomes. For example, numerous studies have indicated that urban environments may
have a mitigating effect on malaria transmission [4], while at the same time increasing the incidence of
dengue fever [5]. Thus, innovative and reliable methods and datasets for monitoring spatiotemporal
changes in urban areas are paramount.

Nighttime lights imagery (NTL) [6], maintained by the National Oceanic and Atmospheric
Administration (NOAA), offer a unique viewpoint for studying urban trends. These data, available as
annual composite images from 1992 to 2013 provide a means for spatiotemporal analysis on a global
scale. Although noise removal and other corrective processing are applied to the NTL imagery by
NOAA to make them usable for analyses, inherent shortcomings remain. Foremost among these is
the lack of inter- and intra-annual calibration between satellites. The satellite sensors that collected
these data lacked on-board calibration capabilities and a system for recording in-flight gain changes [7].
When observing raw imagery, this causes annual fluctuations in recorded brightness rather than the
gradual increase expected with typical growth in urban populations. Elvidge et al. [7] developed an
empirical procedure to allow ‘intercalibration’ of the NTL data. Often referred to as the invariant
region and quadratic regression method (IRQR), this method has been applied across a number of
settings [8–13]. It is a regression based method that relies on a high gain reference image and a reference
area where illumination has changed little over time.

An alternative intercalibration method was developed by Liu et al. [11]. These authors built
on the IRQR method by applying intra- and inter-annual corrective algorithms and make use of a
thresholding technique [12] that relies on land use/land cover data to extract urban information.
Wu et al. [13] presented an alternative strategy for applying the IRQR method that included pixel
saturation correction and the use of the power-law function for regression analysis. Li et al. [14] used
an automatic algorithm to extract reference area pixels and entered them into a linear regression
model where outliers were iteratively discarded to refine the intercalibration equation. Finally,
Zhang et al. [15] employed a novel sampling strategy along the ‘ridgeline’, i.e., the densest part
of plots generated between the reference and target images, to derive calibration models. Regardless
of the approach, the intercalibration methods reviewed here all showed improved performance as
indicated by their respective evaluation procedures. In general, method evaluation was based on the
use of GDP, which has demonstrated a positive linear relationship to NTL in various studies [14–17].
However, the shortcomings of these alternative intercalibration methods is that they were conducted
within a limited geographic scope, required multiple reference datasets such as land use/land cover or
population, and were not sufficiently validated.

Precisely intercalibrated NTL data is ideal for mapping urban extents as Li and Zhou [18] describe
in their recent systematic methodology review of this subject. Others, such as Ju et al. [19] have
focused on the characterization of urban dynamics in China using pixel-based time series trajectories to
identify five distinct patterns of urban growth. Similarly, Zhang and Seto [20] identified urbanization
typologies on a worldwide basis and validated the accuracy of their results with multispectral
imagery. Ma et al. [21] both analyzed and predicted urban development at the municipal level using
three different regression models to measure the relationships between NTL and population, GDP,
built-up area, and electric power. Finally, Cauwels et al. [22] applied NTL to the concept of urban
agglomerations by using a threshold method combined with a segmentation function that identifies
clusters of contiguously lighted pixels.

The primary objective of this study was to generate an intercalibrated time series of annual NTL
images at the continental scale for Africa from 2000 to 2013 for use in measuring changes in urbanization
over time. This particular period was chosen to align with significant reductions in the incidence
of malaria in Africa, which occurred primarily as a result of scale-up of large-scale interventions,
but also due to environmental changes and economic development, including urbanization [23].
Since substantial inter-annual noise remained even after IRQR intercalibration, we evaluated the use
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of Gaussian process methods (GP) to generate a smoothed series of NTL images free of temporal
noise signals. We then demonstrated the utility of the smoothed dataset for describing patterns of
urbanization in Africa and studying relationships between NTL and economic and population indices.

2. Materials and Methods

2.1. Data Source

The Nighttime lights imagery used for this study was produced by the U.S. Air Force as part
of their Defense Meteorological Satellite Program (DMSP). The Operational Linescan System (OLS)
sensors on DMSP satellites have specialized low light detection capabilities across visible and near
infrared wavelengths. During the 22 years spanning 1992 through 2013, six satellites were active
and their sun-synchronous near-polar orbits provided global coverage twice per day. The NOAA
National Centers for Environmental Information (formerly National Geophysical Data Center) has
been the custodian of the DMSP-OLS data archives since 1992. More recently in 2010, NOAA produced
a complete time series consisting of cloud-free composites made using the archived data for each
calendar year by satellite. This product is known as the version 4 DMSP-OLS Nighttime Lights
Time Series and is freely available on the NOAA website [6]. The composites are provided on 30 arc
second image grids spanning from −180 to 180 degrees longitude and from −65 to 75 degrees latitude.
The digital numbers (DN) have a 6-bit dynamic range with values from 0 to 63. They also contain
four bands representing distinct levels of data processing: raw average of the DN values, a cloud-free
coverage tally, average DN of cloud-free light detections multiplied by the percent frequency of light
detection, and stable lights. We utilized the stable lights band which consists of the average of the
visible band DN values and represents areas with persistent lighting. It includes gas flares from
petroleum operations, but ephemeral events such as fires have been discarded and background noise
from other sources has been removed.

For this study, the NTL stable lights composites from satellite-years 2000–2013 were used
(Table 1). Google Earth Engine [24] provided easy access to Version 4 annual composites of the
DMSP-OLS Nighttime Lights Time Series and the image processing tools required to perform the bulk
of the analysis.

Table 1. Stable lights composites for DMSP-OLS satellite-years 2000–2013.

Year
Satellites

F-14 F-15 F-16 F-18

2000 F142000 F152000
2001 F142001 F152001
2002 F142002 F152002
2003 F142003 F152003
2004 F152004 F162004
2005 F152005 F162005
2006 F152006 F162006
2007 F152007 F162007
2008 F162008
2009 F162009
2010 F182010
2011 F182011
2012 F182012
2013 F182013

2.2. Image Processing

Not all the variation observed in the stable lights composites of NTL can be attributed to actual
changes in urbanization [7]. For instance, variation across time and space in the DN values recorded
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can also be explained by human activities other than urbanization, by physical phenomena like the
refraction of light or by measurement error due to the use of different satellites. Here we explain the
steps taken to address the different sources of variation.

2.2.1. Intercalibration

Since the NTL satellites had no standard for calibration of their sensors, the data were
pre-processed for temporal analysis. Elvidge et al. [7] developed an empirical procedure for
intercalibration of NTL annual composites from different satellite-years. Also known as the IRQR
method, it is a regression based method that relies on a reference area where illumination has changed
little over time and an accurate baseline image dataset. Sicily is the standard reference area for
intercalibration since it has an even spread of data across the full dynamic range and its population is
relatively stable with only a 0.17% growth rate from 2001 to 010 [10]. Likewise, satellite year F12-1999
has relatively high brightness values and is used as the baseline with images from all other satellite
years adjusted to match its data range.

To implement the adjustment, the region of Sicily was resampled on each NTL image to a standard
0.825 km grid. This grid cell size was chosen based on the area of a 30 arc second pixel at Sicily’s
latitude. The relationship between each satellite-year image and the baseline image F12-1999 was fit
using the following quadratic regression model:

Xi,0 = C0 + C1Xi,j + C2X2
i,j (1)

where Xi,0 is the DN of the ith grid cell in the baseline image, Xi,j is the DN of the ith grid cell
in satellite-year image j, and the parameters C0, C1 and C2 are the intercept, linear, and quadratic
coefficients, respectively. For all images, DNs values less than 2 were excluded in keeping with the
author’s method [7]. Figure 1 shows an example regression scattergram for satellite-year F18-2013
versus F12-1999 for Sicily. Regression coefficients generated by the model were then used to adjust
the DN values observed for Africa. For each year, a set of calibrated values were computed using
Equation (2):

XA
i,j = C0 + C1Xi,j + C2X2

i,j (2)

where XA
i,j is the calibrated digital number of the ith pixel cell in satellite-year image j of Africa.

To ensure calibrated DN values were within the 0–63 range, calibrated values that exceeded 63 were
set to 63 and where the minimum value was greater than zero, the original zeroes were restored to
preserve the background ‘darkness’ matrix.
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2.2.2. Gaussian Process Smoothing

Once the satellites have been intercalibrated, there are still discrepancies between DN values
at the same location-year recorded by different satellites. The occurrence of such discrepancies
suggests that the observed data are in fact a noisy realization of an actual but unobserved NTL signal.
This relationship can be expressed as

XA
i,j = XS

i,j + εi,j (3)

where XA
i,j is the observed NTL signal, and XS

i,j is the actual and unobserved NTL signal of the ith
pixel at satellite-year j and εi,j the associated observation error. The intercalibration step does not
eliminate the error term, rather, it results in the error being rescaled to the same magnitude across the
different satellite-years.

Gaussian process methods [25] are commonly used with models similar to that in Equation (3) for
solving inference problems in time series [26–28] where the aim is to distinguish an unobserved signal
or latent function from noisy data. The main assumptions of such models are that the noise terms
εi,j are independent and identically distributed, while the realizations of the latent function XS

i,j are
not independent and follow a multivariate normal distribution. In our case, the second assumption
guarantees that the observations and latent function are correlated across time.

Here we estimated XS
i,j by fitting a Gaussian process with a covariance kernel [29] composed of

a linear and an exponentiated quadratic term to each of 22 satellite-years (Table 1). While the first
kernel implements the estimation of the NTL trend across time, the second allows identification of
non-constant increments/decrements of the DN values. Additional details on our use of Gaussian
process modeling and kernel function types can be found in Appendix A.

2.2.3. Annual Averaging

From 2000 to 2007, there were multiple satellites operating in any given year (Table 1). For the
uncalibrated (UC) and intercalibrated (IC) test cases used throughout this study, DN values for each
satellite during this time period were intra-annually averaged to produce a single annual image.

2.2.4. Gas Flare Removal

Gas flares are present in the stable lights band of the Version 4 NTL dataset and, given they
are not generally associated with human settlements, they were removed. In a previous study,
Elvidge et al. [30] estimated flare volume and evolution and mapped their locations and extent. As part
of this study, flare locations as polygonal masks have been made available on NOAA’s website as
shapefiles, a common spatial data format [6]. These were downloaded, merged, and used to mask all
known flares. While these have not been updated since 2009, this dataset represents the best estimate
of the locations of gas flares available. Since most gas flares in African occur in marine environments
or the remote Sahara Desert, newer flares should not result in significant inaccuracies.

2.2.5. Blooming Correction

Probably the most serious non-temporal errors in the NTL images are caused by ‘overglow’
and ‘blooming’, which is the diffusion of urban light into rural areas and the magnification of
light by reflective surfaces such as water and sand, respectively. In either case, the errors are
not entirely due to reflected light. Additional sources of this error are the composite building
process and image registration errors [31]. It was noted that overglow occurring on a single image
dataset can be compounded in composite images. Also, numerous small errors in geo-registration
may cause brightly lit urban cores to grow slightly at their peripheries. In both cases, the result
is overestimation of urban extents and settlements on land and their deceptive extension into
uninhabitable aqueous environments.

Pixel blooming caused by water reflectance from inland water bodies and coastal waters was
accounted for by masking via the World Water Bodies and World Countries datasets [32], respectively.
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Mediating urban overestimation due to overglow is considerably more problematic. Typical solutions
to this problem involve use of low light thresholding which is intended to filter out a portion
of the lowest predicted DNs. The goal of these somewhat empirical approaches are to remove
‘noise’ associated with overglow from the urban boundaries without fragmenting the urban core or
excluding genuine smaller settlements [33]. We have chosen to forgo the use of thresholding due to its
uncertain efficacy.

2.2.6. Re-Projection

NTL composites are produced on a 30 arc second grid, so the land surface area of the pixels
naturally differs according to their geographic latitude. For example, in Kampala, Uganda which is
essentially on the Equator, a pixel represents approximately 0.86 square kilometers, whereas in Cape
Town, South Africa (34◦S latitude) pixels represent 0.71 square kilometers. This becomes problematic
with spatial analysis requiring surface area measurements. When investigating temporal changes
in urbanization, this is quite often the case. Thus, the processed NTL composites were projected
to the Mollweide equal-area map projection for analytical purposes. This is a pseudo cylindrical
map projection where the accuracy of area representation takes precedence over the accuracy of
angle and shape. The composites were projected to a 1 km cell size using the nearest neighbor
re-sampling technique. This step was only applied to the imagery used for the urban growth analysis
described below.

2.3. Method Validation and Urban Growth Analysis

To determine relative success of the intercalibration method, the ‘sum-of-lights’ index (SOL) [7]
was calculated for each satellite year. The SOL is simply the sum of the predicted DNs for an NTL
image within a region of interest. Once calculated by region, it is plotted as a time series. Success is
indicated by a relative convergence of SOL values in years where two satellite products are available,
and a relatively continuous growth trend across the time series (Figures 2 and 3).
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For procedural validation, the IRQR and Gaussian process time series were compared as predictors
of the satellite F12-1999 annual composite image of Sicily. Given the assumption that NTL values have
not changed in Sicily 2000–2013, the F12-1999 image can be considered the gold-standard ‘observed’
values for 2000–2013 in our study. When the IRQR and GP time series are similarly considered
‘predicted’ values, the mean squared error (MSE) measurement can be used to validate and compare
methods. Given that the Gaussian process calculations were based on the entire time series, MSEs
were calculated using data from all years.

This enhanced intercalibration method was also used to evaluate the positive association of
the intercalibrated and processed NTL time series to GDP and urban population on a continental
and country-wise basis. These relationships have been demonstrated in earlier studies [34,35] and
therefore are used as an indication of the efficacy of our own methods. Statistics for GDP per country
were sourced from the World Bank [36] using the US dollar price in July 2016 as the benchmark.
Corresponding urban population data were also obtained from the World Bank [37]. The correlation
of SOL to these factors was compared both before and after intercalibration. The relationship
between uncalibrated and annually averaged (UC), intercalibrated and annually averaged (IC), and
intercalibrated and Gaussian process smoothed (GP) NTL with GDP and UP was estimated using
linear regression. Models were fit at continental scale and for sub-Saharan African countries. Since
GDP and UP data were not available for Somalia and Western Sahara, they were not included in the
continental analysis.

The amount of growth in urban and rural settlements was also calculated both in absolute and
proportional terms. Total urban and rural statistics are based on the area represented by all ‘lit’ pixels
(DN > 0), whereas urban agglomerations were defined as contiguously lit pixels with an area >250 km2

(~97 mi2).
Figure 4 provides a flow chart outlining the work flow for NTL intercalibration, image processing

procedures, and validation and analysis. Figure 5 provides an enhanced view of the intercalibrated
2013 nighttime lights image for continental Africa.
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3. Results

As described above in Materials and Methods, the regression based IRQR intercalibration method
relies on a reference area where illumination has changed little over time and an accurate baseline
image dataset. Using Sicily as the reference area and satellite year F12-1999, regression models were
generated for all satellite-years (Table 2). Following gas flare removal and blooming correction, these
regression coefficients were used to adjust the raw DN values for NTL images of Africa. These steps
were followed by Gaussian Process smoothing to produce the final intercalibrated time series.

Table 2. Regression coefficients for intercalibration.

Satellite Year C0 C1 C2 R2

F12 1999 0 1 0 1
F14 2000 1.2445 1.3076 −0.0051 0.9334
F14 2001 0.3811 1.3103 −0.0050 0.9461
F14 2002 1.2242 1.1542 −0.0030 0.9262
F14 2003 0.8802 1.2381 −0.0039 0.9444
F15 2000 0.1832 1.0418 −0.0010 0.9410
F15 2001 −0.7078 1.1191 −0.0015 0.9617
F15 2002 0.1354 0.9587 0.0008 0.9662
F15 2003 0.3589 1.4992 −0.0078 0.9336
F15 2004 0.7187 1.3200 −0.0050 0.9485
F15 2005 0.7567 1.2666 −0.0040 0.9377
F15 2006 0.9387 1.2660 −0.0040 0.9409
F15 2007 1.6464 1.2480 −0.0038 0.9056
F16 2004 0.3607 1.1809 −0.0032 0.9153
F16 2005 0.1794 1.3906 −0.0060 0.9402
F16 2006 0.1955 1.1322 −0.0017 0.9233
F16 2007 0.9177 0.8841 0.0017 0.9483
F16 2008 0.6750 0.9773 0.0001 0.9456
F16 2009 1.9043 0.9740 −0.0007 0.8381
F18 2010 2.9053 0.4593 0.0070 0.8404
F18 2011 3.1449 0.6453 0.0036 0.8129
F18 2012 2.1239 0.5975 0.0054 0.9369
F18 2013 2.1382 0.6683 0.0039 0.9372

3.1. Method Evaluation

3.1.1. Sum-of-Lights Index

Figures 2 and 3 show SOL plotted for uncalibrated and IRQR (only) NTL series, respectively.
Successful intercalibration is indicated by a relative convergence of SOL values in years where two
satellite products are available. Another indication of successful intercalibration is a clear continuous
growth trend in light values across the time series. Figure 3 illustrates how IRQR calibrated datasets for
Africa visually comply with these criteria, despite noticeable discontinuity introduced by satellite F18.

When annual averaging was applied in addition to IRQR intercalibration, it resulted in a smoother
SOL growth trend between most years, with exceptions occurring in the transition years between
satellite F16 and F18 (2008–2010). However, when Gaussian process smoothing was applied using
all intercalibrated satellite-year images, it yielded a smooth trajectory of continuous SOL growth
(Figure 6).
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3.1.2. Validation Using the Invariant Region

For procedural validation, the uncalibrated (UC), IRQR intercalibrated (IC), and GP smoothed
time series were compared as predictors of the invariant region dataset: satellite-year F12-1999.
The mean squared error was calculated for each of these test cases using DN values for Sicily (Table 3).

Table 3. MSE for intercalibration test cases vs. F12-1999.

Case UC IC GP

MSE a 22.76 18.22 11.38
a Mean squared error.

Whereas conventional intercalibration exhibited considerably lower MSE than the uncalibrated,
the Gaussian process approach was clearly the best predictor of the reference dataset with an MSE
half that of the UC test case. While these results are not evidence of improved accuracy, they do
substantiate the use of Gaussian process smoothing to produce refined NTL time series while observing
the principles of the IRQR method.

3.2. Correlation of SOL with GDP and Urban Population

In terms of the relationships between the NTL layers (UC, IC and GP) and GDP and urban
population, the UC layer showed the least correlation, while IC and GP case adjustments each
incrementally increased the strength of the relationship. The regression results and root-mean-squared
error (RMSE) values for continental Africa are listed in Table 4. The coefficients of determination
indicate that the SOLs in the GP case have a stronger linear relationship with GDP than those from the
IC case. Thus, when Gaussian process smoothing was applied, R2 increased from 0.92 to 0.98 and from
0.90 to 0.9997 for GDP and urban population, respectively. Corresponding RMSE values also decreased
dramatically. The high R2 and relatively low RMSE value for the Gaussian process SOL vs. urban
population clearly indicates the advantage of this enhanced intercalibration method. Figures 7 and 8
graphically illustrate these improvements.
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Table 4. Coefficient of determination and RMSE for SOL vs. GDP and urban population.

Intercalibration Test Cases
GDP Urban Population

R2 RMSE a R2 RMSE b

Uncalibrated (UC) 0.847 990,522 0.803 1,122,507
Intercalibrated (IC) 0.925 360,601 0.902 412,637

IC + Gaussian process (GP) 0.983 158,827 0.9997 22,241
a Root-mean-squared error.Remote Sens. 2017, 9, 713  11 of 23 
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Regression analyses performed at the country level yielded similar results. Figures 9 and 10
display regression results for these analyses. The GP test case is shown to perform notably better than
the IC case in nearly all cases with positive with correlation coefficients ranging from 0.72 to 0.997 for
GDP and 0.76 to 0.9996 for urban population. The Gambia and Eritrea were two exceptions where the
correlation coefficient for the IC method exceeded that of our GP method in the case of GDP.
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Other exceptions were the notably poor and negative correlations of SOL to both GDP and UP
for Zimbabwe and the Central African Republic. Figures 11 and 12 illustrate these atypical temporal
patterns of SOL in relation to GDP and UP.
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3.3. Urban Growth Analysis

The absolute and percent changes in lit and agglomerated area for the 2000–2013 time period
have been calculated to model total settlement (urban and rural) and urban growth, respectively.
These are shown in Table 5 and illustrated as bar graphs in Figures 13 and 14. The red bars represent
absolute change in lit area and the blue bars indicate change in agglomerated area. In general,
the growth in total lit area per country exceeds that of agglomerations, though it is possible for
growth in urban agglomerations to be greater than growth in total lit area. Although this seems
counterintuitive, given that agglomerations have been filtered by size, merging of small urban clusters
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over time can produce such results. This can be illustrated with an example of growth analysis
in Kenya’s Nairobi metropolitan area (Figure 15). Note that in Figure 15a the lit area in the year
2000 is derived from all cluster sizes, whereas in Figure 15b agglomerations in 2000 only include
two clusters that exceed the 250 km2 filtering threshold. In both cases, the yellow areas outside
the dashed lines of the year 2000 polygons represent the area of absolute change. In this case, the
urban/peri-urban communities surrounding Mount Kenya merged with greater Nairobi by 2013.
Consequently, agglomerations increased by 3936 km2, while lit area increased by only 2919 km2.
Countries displaying greater growth in agglomerated than lit area include Cote d’Ivoire, Swaziland,
Lesotho, and Djibouti (Figures 13 and 14).

Table 5. Absolute and percent change in lit and agglomerated area, 2000–2013.

Country
Total Area of Lit Pixels (km2) Area of Urban Agglomerations (km2)

2000 2013 Change a % Chg 2000 2013 Change % Chg

South Africa 202,098 240,581 38,483 19 156,608 192,501 35,893 23
Nigeria 68,470 96,054 27,584 40 41,870 58,744 16,874 40
Sudan 24,622 49,307 24,685 100 16,449 33,055 16,606 101
Angola 7086 21,845 14,759 208 3800 10,884 7084 186

Mozambique 5566 16,119 10,553 190 1439 6777 5338 371
Ethiopia 8888 17,866 8978 101 2129 5403 3274 154
Kenya 14,194 22,527 8333 59 8289 15,410 7121 86
Ghana 23,708 30,384 6676 28 15,134 21,451 6317 42

Tanzania 10,228 15,272 5044 49 3238 5662 2424 75
Congo, DR 6105 11,020 4915 81 2745 4489 1744 64

Cote d’Ivoire 39,350 43,443 4093 10 18,737 23,493 4756 25
Niger 3864 7804 3940 102 975 1710 735 75

Botswana 7946 11,869 3923 49 2134 4811 2677 125
Senegal 6226 10,083 3857 62 2790 4815 2025 73

Congo, R 2371 5800 3429 145 1622 2919 1297 80
Namibia 9611 12,960 3349 35 2692 4219 1527 57

Chad 1127 4393 3266 290 233 1180 947 406
Zambia 10,667 13,726 3059 29 5870 7455 1585 27

Burkina Faso 3086 5820 2734 89 741 1509 768 104
Mali 3444 6163 2719 79 803 1224 421 52

Gabon 3206 5372 2166 68 707 2335 1628 230
Benin 3354 5464 2110 63 1511 2930 1419 94

Cameroon 6672 8621 1949 29 2423 2705 282 12
Swaziland 5180 7060 1880 36 3818 6204 2386 62

Malawi 4819 6583 1764 37 1895 1482 −413 −22
Eq Guinea 158 1753 1595 1009 0 631 631 -

Uganda 4055 5604 1549 38 1834 2508 674 37
Liberia 490 2029 1539 314 252 510 258 102

Rwanda 694 1948 1254 181 346 905 559 162
Mauritania 1912 3070 1158 61 699 891 192 27

Lesotho 1562 2681 1119 72 344 1588 1244 362
Sierra Leone 371 1132 761 205 0 280 280 -

Togo 2431 3167 736 30 1164 1408 244 21
Somalia 1495 2210 715 48 0 614 614 -
Guinea 2275 2973 698 31 511 476 −35 −7
Gambia 445 1030 585 131 300 548 248 83

Madagascar 2931 3468 537 18 710 925 215 30
Burundi 501 961 460 92 275 398 123 45
Eritrea 1512 1938 426 28 417 506 89 21

Central Afr Rep 829 1175 346 42 266 266 0 0
Djibouti 408 677 269 66 0 340 340 -

Guinea Bissau 197 216 19 10 0 0 0 -
Zimbabwe 19,625 16,847 −2778 −14 10,270 9287 −983 −10

a Sorted by absolute change in lit area, descending order.



Remote Sens. 2017, 9, 713 15 of 23

Remote Sens. 2017, 9, 713  14 of 23 

 

metropolitan area (Figure 15). Note that in Figure 15a the lit area in the year 2000 is derived from all 
cluster sizes, whereas in Figure 15b agglomerations in 2000 only include two clusters that exceed the 
250 km2 filtering threshold. In both cases, the yellow areas outside the dashed lines of the year 2000 
polygons represent the area of absolute change. In this case, the urban/peri-urban communities 
surrounding Mount Kenya merged with greater Nairobi by 2013. Consequently, agglomerations 
increased by 3936 km2, while lit area increased by only 2919 km2. Countries displaying greater 
growth in agglomerated than lit area include Cote d’Ivoire, Swaziland, Lesotho, and Djibouti 
(Figures 13 and 14). 

 

Figure 13. Sub-Saharan countries with significant growth in lit and agglomerated area (>2500 km2 
lit), 2000–2013. Columns are sorted by lit area growth in descending order. 

 
Figure 14. Sub-Saharan countries with minimal growth in lit and agglomerated area (<2500 km2 lit), 
2000–2013. Columns are sorted by lit area growth in descending order. 

  

Figure 13. Sub-Saharan countries with significant growth in lit and agglomerated area (>2500 km2 lit),
2000–2013. Columns are sorted by lit area growth in descending order.

Remote Sens. 2017, 9, 713  14 of 23 

 

metropolitan area (Figure 15). Note that in Figure 15a the lit area in the year 2000 is derived from all 
cluster sizes, whereas in Figure 15b agglomerations in 2000 only include two clusters that exceed the 
250 km2 filtering threshold. In both cases, the yellow areas outside the dashed lines of the year 2000 
polygons represent the area of absolute change. In this case, the urban/peri-urban communities 
surrounding Mount Kenya merged with greater Nairobi by 2013. Consequently, agglomerations 
increased by 3936 km2, while lit area increased by only 2919 km2. Countries displaying greater 
growth in agglomerated than lit area include Cote d’Ivoire, Swaziland, Lesotho, and Djibouti 
(Figures 13 and 14). 

 

Figure 13. Sub-Saharan countries with significant growth in lit and agglomerated area (>2500 km2 
lit), 2000–2013. Columns are sorted by lit area growth in descending order. 

 
Figure 14. Sub-Saharan countries with minimal growth in lit and agglomerated area (<2500 km2 lit), 
2000–2013. Columns are sorted by lit area growth in descending order. 

  

Figure 14. Sub-Saharan countries with minimal growth in lit and agglomerated area (<2500 km2 lit),
2000–2013. Columns are sorted by lit area growth in descending order.



Remote Sens. 2017, 9, 713 16 of 23
Remote Sens. 2017, 9, 713  16 of 23 

 

 

Figure 15. Example of lit area growth (a) versus agglomerated area growth (b) in the Nairobi 
metropolitan area. 

4. Discussion 

For the first time, we report here on the production of an intercalibrated open access NTL 
dataset spanning continental Africa 2000–2013 using a GP statistical approach. This improved 
dataset can be applied to a broad range of disciplines including public health, economic 
development, and environmental monitoring. While NTL data offer an opportunity to measure and 
map the human footprint, in its raw format, these data are difficult to interpret and can lead to 
spurious conclusions. 

Gaussian process smoothing, the key enhancement of our intercalibration method, yielded a 
more intuitively smooth increase in SOL over Africa and was less noisy than that produced by using 
IRQR and annual averaging alone. While there is no gold standard short of calibration with known 
light sources as ground truth [38] against which to validate this approach, the SOL plots indicate a 
relatively effective intercalibration. However, what is achieved through IRQR intercalibration is not 
the elimination of errors, but their re-scaling such that they have the same magnitude across 
satellite-years. Through the use Gaussian process methods, independent temporal noise signals 
have been separated from latent functions in the annual NTL datasets. We have attempted to 
validate the GP method results against the premises of the conventional IRQR method. That is, the 
assumption that the reference dataset for the invariant region represents the NTL brightness across 
the time series. While invariably information is lost in the process, the overall result is an NTL time 
series for Africa that is standardized and comparable across both time and space. 

The success of intercalibration with GP smoothing was also evaluated by comparing the 
resultant time series to known indicators of urbanization: GDP and UP. Improvements in the 
correlations found between the SOL and these indices when using the GP method provide further 
support for its use. When the same relationships are explored on a national basis, it provides 

Figure 15. Example of lit area growth (a) versus agglomerated area growth (b) in the Nairobi
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4. Discussion

For the first time, we report here on the production of an intercalibrated open access NTL dataset
spanning continental Africa 2000–2013 using a GP statistical approach. This improved dataset can
be applied to a broad range of disciplines including public health, economic development, and
environmental monitoring. While NTL data offer an opportunity to measure and map the human
footprint, in its raw format, these data are difficult to interpret and can lead to spurious conclusions.

Gaussian process smoothing, the key enhancement of our intercalibration method, yielded a
more intuitively smooth increase in SOL over Africa and was less noisy than that produced by using
IRQR and annual averaging alone. While there is no gold standard short of calibration with known
light sources as ground truth [38] against which to validate this approach, the SOL plots indicate a
relatively effective intercalibration. However, what is achieved through IRQR intercalibration is not the
elimination of errors, but their re-scaling such that they have the same magnitude across satellite-years.
Through the use Gaussian process methods, independent temporal noise signals have been separated
from latent functions in the annual NTL datasets. We have attempted to validate the GP method results
against the premises of the conventional IRQR method. That is, the assumption that the reference
dataset for the invariant region represents the NTL brightness across the time series. While invariably
information is lost in the process, the overall result is an NTL time series for Africa that is standardized
and comparable across both time and space.

The success of intercalibration with GP smoothing was also evaluated by comparing the resultant
time series to known indicators of urbanization: GDP and UP. Improvements in the correlations found
between the SOL and these indices when using the GP method provide further support for its use.
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When the same relationships are explored on a national basis, it provides sub-regional insights into
urban and economic growth patterns, as well as the consequences of political and humanitarian events.
While we have not compared GDP/UP figures to NTL values in countries outside Africa, we would
expect similar relationships in these countries. The country based regression analysis for sub-Saharan
Africa yielded generally positive results with only a few exceptions. The GP method performed notably
better than the IC method in nearly all cases with correlation coefficients exceeding 0.9 for 80% and
90% of the countries for GDP and urban population, respectively. The exceptions were The Gambia
and Eritrea, where positive correlation coefficients for the IC method exceeded that of our GP method
for the GDP regression. For Eritrea, a partial explanation for this anomaly is the fact that GDP data
for 2012–2013 are unavailable. However, also at the root of this data omission are a series of military
disputes and border disputes with Ethiopia and Djibouti during our study period. In the case of The
Gambia their economy, and therefore GDP, struggled between 2000 and 2004 and the unsmoothed IC
dataset reflected this short term trend more accurately than the globally smoothed GP case.

Among the national statistics there were two countries with notably poor negative correlations
to both GDP and UP: Zimbabwe and the Central African Republic. Notable is Zimbabwe’s unusual
patterns with the SOL decreasing from 2000 through 2011 when it begins to recover. This pattern
coincides with a disputed presidential and parliamentary election in 2008 preceded by periods of
political unrest. The GDP trended slightly downward during the lead up to the election and then
rose sharply thereafter. However, UP rose steadily from 2000 to 2013, even while SOL was decreasing.
The Central African Republic also displays an unusual pattern, with relatively low SOL values, an
urban population that rises steadily, and GDP that rises but drops abruptly in 2013 in response to a coup
d’état. In general, anomalies such as these can be traced to the effects of insurgent warfare, political
unrest, and humanitarian crises on nighttime lighting. Bennett and Smith [39] studied socioeconomic
changes that caused reductions in NTL in post-Soviet Russia and war-torn Syria, while Li et al. [40]
observed similar reductions as a result of the Islamic State of Iraq and Syria (ISIS) insurgency in
Northern Iraq. Humanitarian crises often come in the form of drought, famine, earthquakes, and
tropical storms. Gillespie et al. [41] examined the effects of tsunami damage in Sumatra (2004–2008)
using NTL imagery. Several authors have suggested NTL based metrics for monitoring at risk
populations. For instance, Coscieme et al. [42] propose an NTL based index of regional disparity
and Li et al. [43] similarly suggest a nighttime light variation index (NLVI) to predict the risk of
armed conflicts. All these insights underscore the potential for well calibrated NTL data as a tool for
monitoring the regional effects and outcomes of such events.

Urban growth analysis using the improved NTL time series data indicate that the extent of urban
growth appears to vary widely across African countries, with an overall trend of increasing areas of
the continent being lit, particularly around urban agglomerations. We have described basic patterns
of urban growth in Africa by computing changes in the area of lit NTL pixels and agglomerated
pixels (>250 km2) on a national basis. The lit area serves as an indicator of overall growth of human
settlements, whereas the agglomerations are meant to be a measure of large metropolitan areas, a
proxy for urbanization.

Most sub-Saharan countries exhibited substantially greater growth in lit area than agglomerated
lit area. Exceptions included Cote d’Ivoire, Swaziland, Lesotho, and Djibouti which all showed greater
growth in agglomerated area. In Cote d’Ivoire, this may be due the effects of civil wars occurring
in 2002 and 2011, with increased agglomerated area resulting from migration away from centers of
conflict to urban areas. In the case of Swaziland and Lesotho, this is likely related to their proximity to
South Africa which has the highest growth rates. In both cases, lit area growth was concentrated along
borders with South Africa and internal major roadways. Thus, merging of smaller, patchy urban areas
caused a relatively high increase in agglomerated area. In the case of Djibouti, most growth in lit area
occurred in the city of Djibouti causing it to surpass the 250 km2 threshold.

A variety of other anomalous patterns are expressed by countries with minimal growth in
lit area many of which likely reflect human events, as previously discussed. Zimbabwe uniquely
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showed decreases in both lit and agglomerated area which were likely the effects of persistent political
unrest during the study period. Malawi increased in lit area while decreasing its agglomerated area,
apparently due to disaggregation of the city of Zomba metropolitan area. Finally, other notable
anomalies are the Central African Republic and Guinea Bissau. The Central African Republic had
no change in agglomerated area, while Guinea Bissau had no agglomerated area as of 2013 despite a
modest 19% increase in lit area. In both of these situations, annual growth patterns may be attributed
to their relatively sparse populations and the margin of error associated with the processed NTL data.

While we have demonstrated the utility of our enhanced approach to intercalibration of NTL
imagery, for the purpose of this study we focused on imagery up to 2013. Continued growth in
NTL applications hinge on new NTL data sources such as the Visible Infrared Imager Radiometer
Suite (VIIRS) of the National Polar-Orbiting Operational Environmental Satellite System launched
in 2011 [44–46]. Although nighttime lights imagery from VIIRS are superior to DMSP-OLS data in
both spatial resolution (0.5 km) and dynamic range (14-bit), it is currently only available as monthly
composites and only since 2014. Furthermore, VIIRS data processing methods are relatively unexplored,
with relatively few publications to date that make use of the imagery. Thus, DMSP-OLS will likely
remain the de facto standard for nighttime lights based investigations for a number of years. As part
of this study, integration of VIIRS data with DMSP-OLS data was briefly explored as way to extend
the time series to 2015. However, the relative complexity of data processing necessary to interface
the two datasets was prohibitive and deemed beyond the scope of this study. Future research on
data processing of VIIRS imagery and their integration with DMSP-OLS data is vital if NTL based
research and application development is to continue. Toward this end, release of a VIIRS NTL time
series of processed annual composites similar to DMSP Version 4 would be of great benefit to the
scientific community.

5. Conclusions

The NTL dataset has been widely used during the past two decades with the number of related
publications increasing dramatically as reported in the systematic literature review by Huang et al. [47].
With the release of the Version 4 DMSP/OLS Nighttime Lights Time Series dataset by NOAA in
2010, the publication rate increased further with 25 papers published in 2013 alone. Clearly, these
numbers speak to both the unique worth of the dataset and the benefits of open access to high quality
annual NTL composites. Numerous publications have proposed methods to correct well-documented
calibration deficiencies in the version 4 composites, and here we add our own refined technique.

Here we report on the use of Gaussian process methods to estimate NTL latent functions free from
noise signals prevalent in IRQR intercalibrated datasets. The method was validated by comparing
uncalibrated, intercalibrated, and GP smoothed time series as predictors of the invariant region dataset.
We have also demonstrated the value of the improved time series by investigating the established
relationship of NTLs to GDP and urban populations, by describing basic patterns of urban growth in
Africa, and considering its potential to detect and monitor environmental and humanitarian crises.
Finally, the intercalibrated NTL time series (2000–2013) has been made available to global health
researchers as well as the broader scientific community in the hopes of spawning continued growth in
NTL based research (see Supplementary Materials).

Supplementary Materials: The intercalibrated nighttime lights imagery series (2000–2013) produced as part of
this study are available online at http://geodata.globalhealthapp.net/.
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Appendix A.

The Gaussian process smoothing of NTL imagery in this study was implemented at the pixel
level. That is, for each pixel location in Africa, the dependent variable was the DN values across time
and the image year is the only covariate. Since the input images were previously intercalibrated using
the IQRQ method, we did not incorporate the type of satellite as a source of variation into the model.

In Figure A1, we present samples smoothed DN values obtained using this method. It should
be noted that the IQRQ intercalibrated data points present non-consistent trends and as well as
discrepancies between observations in the same year. The smoothed curve captures the long term
trend of the DN values and is free from the inter-annual variation, which we hypothesize is mainly
noise. Note that although our results are presented from 2000, the smoothing process uses data from
1998 which helps to provide better estimates on the left tail of the data distribution.
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Appendix A.1. Gaussian Process Regression 

Let (݂) be a collection of random variables such that any finite number of them has a joint 
Gaussian distribution, then (݂) is known as a Gaussian process. A typical setting of a Gaussian 
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Appendix A.1. Gaussian Process Regression

Let ( f ) be a collection of random variables such that any finite number of them has a joint
Gaussian distribution, then ( f ) is known as a Gaussian process. A typical setting of a Gaussian process
regression tries to estimate an unobserved f from a set of observations X corrupted by additive noise
according to equation

X = f (s) + ε (A1)

where ε is a vector with independent entries N
(
0, σ2) and f : S → R is a Gaussian process with some

mean function M : S → R and covariance kernel K : S× S → R . For simplicity, it can be assumed
a prior mean function of zero, so that the process if fully specified by its covariance kernel. Then the
predictive distribution of the process at a new set of inputs s* has the moments

E( f (s*)|X) = K(s*, s)
(

K(s, s) + σ2I
)−1

X (A2)

and
var( f (s*)|X) = K(s*, s*) + K(s*, s)

(
K(s, s) + σ2I

)−1
K(s, s*) (A3)

where I is the identity matrix.
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Appendix A.2. Examples of Covariance Kernels

Autocorrelated data across time or space is characterized for presenting similar values depending
on the closeness of the observations. In Gaussian process models, it is the covariance kernel that defines
the closeness or similarity between observations. It is through the covariance kernels that a Gaussian
process encodes the behavior of f . Next, we present three examples of kernels that summarize different
functional forms.

Appendix A.2.1. Linear Kernel

A covariance kernel that encodes a linear relation between inputs s and output X, equivalent to a
linear regression model, is defined as

K(s*, s) = σ2
(

1 + s* sT
)

(A4)

where σ2 is a scale parameter (Figure A2).
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Appendix A.2.2. Exponentiated Quadratic Kernel

An exponentiated quadratic covariance kernel defines an exponential decay in the correlation of
observations depending on their inputs distance. It is defined as

K(s*, s) = σ2 exp

(
−‖s* − s‖2

2 `2

)
(A5)

where σ2 is a scale parameter and ` is the characteristic length-scale of the covariance kernel and
defines the maximum length at which data can be extrapolated (Figure A3).
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Appendix A.2.3. Composed Linear—Exponentiated Quadratic Kernel

A composed covariance kernel that combines features from the linear and exponentiated quadratic
kernels can be obtained by simply adding the kernels as defined by Equations (A4) and (A5).

Below we present examples of the posterior mean produced by the three types of kernels reviewed
above using a ‘toy’ data set (Figure A4).
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