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Abstract:



Joint vehicle localization and categorization in high resolution aerial images can provide useful information for applications such as traffic flow structure analysis. To maintain sufficient features to recognize small-scaled vehicles, a regions with convolutional neural network features (R-CNN) -like detection structure is employed. In this setting, cascaded localization error can be averted by equally treating the negatives and differently typed positives as a multi-class classification task, but the problem of class-imbalance remains. To address this issue, a cost-effective network extension scheme is proposed. In it, the correlated convolution and connection costs during extension are reduced by feature map selection and bi-partite main-side network construction, which are realized with the assistance of a novel feature map class-importance measurement and a new class-imbalance sensitive main-side loss function. By using an image classification dataset established from a set of traditional real-colored aerial images with 0.13 m ground sampling distance which are taken from the height of 1000 m by an imaging system composed of non-metric cameras, the effectiveness of the proposed network extension is verified by comparing with its similarly shaped strong counter-parts. Experiments show an equivalent or better performance, while requiring the least parameter and memory overheads are required.
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1. Introduction


For most of the sliding window-based vehicle detection methods involving localization and categorization, predictions are often performed in a separated manner, where the categories are estimated after the positional information is obtained. In the localization process—also called vehicle detection in its narrow sense—the positional existence of vehicles is estimated by analyzing the features extracted from the sliding window that moves across the region of interest with a pre-defined route and stepping pattern. The features used for vehicle detection can either be hand-crafted shallow descriptors or the deep features generated by convolutional neural network (CNN). Shallow features such as Haar [1], histogram of oriented gradients (HOG) [2,3], and local binary pattern (LBP) [3], etc.—although they are less robust and accurate as the deep ones—can make a good compromise between speed and efficiency when the computational resources or the quantity of training samples are very limited. However, once these limitations no longer exist, the detection methods based on deep features are often superior with strong resistance to disturbances in scale, lighting condition, and shadow, and their supreme performances have been repeatedly verified in many studies [4,5,6,7,8]. For these CNN-based methods, their underlying structures generally follow the regions with convolutional neural network features (R-CNN)  [9] or its accelerated variants [10,11,12,13] with region of interest (ROI)-pooling [14]. More specifically, the R-CNN detector—whose features are calculated from the full-scale input image without sub-sampling—despite being primitive, turns out to be informative for recognizing small objects. Because of this, in large aerial images with small-scaled vehicles, R-CNN-like structure [5,6,7,8] is often preferred over those with ROI-pooling [4,15], which is also used in this article. Moreover, it can be accelerated by lossless preprocessing means such as saliency detection [16,17] and objectness filtering [8].



Once the vehicle locations are obtained, they are fed to the subsequent categorization process as positional indications to extract features. Similar to the localization process, features for classification can be produced by either shallow or deep models. At present, limited by the number of publicly available high-resolution aerial image datasets, only a small number of vehicle detection methods involve a classification procedure [18,19,20]. Among these limited publications, authors in both [19] and [20] tried to categorize vehicles by the “SVM + feature” strategy, while in [20] the strong influence of the class-imbalance issue on  classification accuracies has been observed.



The separated estimation scheme discussed above is quite natural, and has been adopted for the positional classification of many general objects [10,12,13,21]. However, it could be troublesome for classifying targets as small as vehicles. Considering a private car only six pixels in width, any location error greater than four pixels will miss the main body of the vehicle and make the following categorization meaningless. Detecting objects in dense scenes can be untangled via density estimation [22] or object counting [23], which has already been validated for congested traffic scene classification [24]. While in this article, without loss of generality, taking the R-CNN detector as a common CNN-based classifier as in [7,8], the previously mentioned cascaded localization error can be avoided by treating the samples with deviation as a negative class and classifying them alongside the accurately centered but differently typed positives.



This arrangement primarily solves the problems caused by the small target scale, and strictly constrains type classification to those accurately located situations. Except for that, however, the introduction of a large quantity of negatives further skews the unbalanced categorical distributions between vehicle types. To address this problem, a bi-partite network extension driven by a class-imbalance-aware cost function is proposed. This cost function is designed based on the idea of providing the two network components with different training losses, intentionally correlating the extended component to the minority classes which are badly classified. Moreover, to reduce the extension costs, the extended components are built with feature maps from lower convolutional layers selected by a novel importance measurement. Notably, compared with other similarly-shaped structures, this proposed modification scheme is capable of achieving equal or better performance with much less extension overhead.



The rest of the paper is arranged as follows: Related and similar works are discussed in Section 2. The CNN basics and the semantic interpretation of convolutional kernels are given in Section 3. The proposed extension and its details are introduced in Section 4. Dataset preparation, experiment setup, and analysis of experimental results are presented in Section 5. Conclusive discussions on the experiments are given in Section 6. Section 7 concludes the paper.




2. Related Work


Class imbalance is a ubiquitous issue existing in nearly every real-life classification problem. As it has been intensively studied for more than two decades, many comprehensive and insightful reviews have been published to generalize the methods on this topic [25,26,27,28]. According to [28], these proposed treatments generally fall within three categories: data-level, algorithm-level, and hybrid treatments. The data-level methods focus on balancing the training samples, modifying their distributions via over-sampling or under-sampling. Typical techniques would include synthetic minority over-sampling technique (SMOTE) [29] and many of its variants, such as adaptive synthetic sampling (ADASYN) [30] and cluster-based oversampling (CBO) [31]. The algorithm-level methods—which are mostly based on the cost-sensitive principle [32,33]—alleviate the bias with majority classes by assigning greater penalties for the minority ones in training. The hybrid methods (e.g., the ensemble style classifiers [34]) take the advantages of the previous two for further performance enhancement, which is common, as mentioned in [25,28].



All of the previously mentioned means are for “shallow” models, but their class-imbalance-addressing principles still apply to the deep learning-based classifiers [35]. For instance, the re-sampling tricks work fine [36,37], although some more advanced dealing methods (e.g., the generative adversarial network (GAN) [38]) should be used to avoid noise and over-fitting in the re-sampling. Similarly, algorithm-level cost function reformation is also widely applicable [39,40,41], where the softmax loss [42,43], cross-entropy loss [39], and logistic regression [44] are mostly taken as the basis format. More recently, a new branch of cost-sensitive methods based on improving the underlying micro feature space structure have appeared, and they have achieved a significant improvement by constraining the relative sample distances [35,45,46,47]. Representative methods in this category include the triplet loss [43,45], quintuplet loss [35], and the center loss [47], which are now hotly debated in the academy.



Although the proposed method in this article generally follows the algorithm-level principle, it is more concerned about achieving a robust performance improvement with less or no influence on the original structure. This goal is achieved by re-balancing the classification bias with the assistance of an extra network component, where the structural expansion cost is kept at a minimum by the incorporative usage of feature map selection.



Plain extension of the convolutional kernel was theoretically analyzed in [48] without involving the class-imbalance issue. Structural extension is a common method for network performance enhancement whose underlying intentions focus either on feature space enhancement [41,48,49,50] or strong prior generation [51,52], and it has been applied to numerous topics, including classification [49,51], tracking [52], edge detection [41], etc. Specifically, only one paper [53] has been found to directly address the class-imbalance issue by combining the feature vectors outputted from a dual arrangement of auto-encoders, where the issue of cost-efficiency has not been emphasized.



Feature map selection can be viewed as a special case of feature selection based on the CNN structure. Consistent with the feature selection methods, it also has two categories with three types [54]: the first category includes the filters [55,56,57], where ranks of the features are obtained without the help of classifiers; the second category employs the predictor, and for the included types, wrappers [58] explicitly score the feature, while the embedded methods [59,60,61] do it implicitly in the training process. Mostly, feature map selection is used for the enhancement of network performance. However, for the purpose of structural simplification, the wrappers principle would be more appropriate in our case.



Due to such specialized requirement, per the brief review above, few studies have tried to make a combinatorial usage of these two methods to seek effective network performance improvement with optimized expansion costs. So, the method proposed in this article acts as a novel approach to  the class-imbalance problem with convenient usage, where no tricky hard negative mining or parameter selection is involved.




3. Background


3.1. Basic Knowledge of Convolutional Neural Networks


Convolutional neural networks (CNNs) currently dominate computer vision studies, with constant state-of-the-art performance in almost every topic to which they are applied. CNNs are a special kind of deep belief network (DBN) with components called convolutional layers, composed of units called kernels or filters. Due to space limitations,  a very brief introduction based on [62] is given for the principles of DBN and CNN and to help with the clarity of symbols. Firstly, a normal DBN can be viewed as a stack of fully-connected layers, where each layer has a set of learnt parameters [image: there is no content] composed of connection weights [image: there is no content] and bias [image: there is no content]. During the forward propagation, every input vector [image: there is no content] will be processed by an affine transformation to get the output [image: there is no content], as in Equation (1).


[image: there is no content]



(1)







In practice, the output [image: there is no content] will be further corrected by a nonlinear function such as [image: there is no content] to overcome the XOR problem, where the rectified linear unit (or ReLU) [63,64] will always be chosen as the [image: there is no content]. At the final stage of forward propagation, an output vector from the topmost fully-connected layer would be transformed by a probability distribution function (e.g., the softmax function) before being outputted. The softmax function defined in Equation (2) is one of the most commonly used Bernoulli distribution outputs calculated through normalized exponential transformation.


Py=i|x=softmaxzi=expzi∑jexpzj



(2)







To obtain the highest probability on the correct class label y on the input [image: there is no content], this output for softmax function is minimized by its negative log-likelihood format, which is defined in Equation (3).


Jθ;x,y=Ly^,y+λ·ΩθLy^,y=−logsoftmaxzi=log∑jexpzj−zi



(3)







Here, [image: there is no content] is the loss to be minimized during training, and [image: there is no content] is the softmax-based loss term in which y and [image: there is no content] are the true and estimated labels for input [image: there is no content]. [image: there is no content] is some regularization term with restrictions defined on the network parameters [image: there is no content] (e.g., the weights [image: there is no content] or biases [image: there is no content]). More often than not, gradient descent-based optimization is employed to reduce the value of [image: there is no content], where the updating gradient from the softmax loss is [image: there is no content], based on the estimated label. Similarly, the updating gradients for [image: there is no content] and [image: there is no content] are defined in Equation (4), calculated by the chain rule.


∇W(k)J=h(k−1)Tg,∇b(k)J=g



(4)






W(k)←W(k)+α·∇W(k)J,b(k)←b(k)+α·∇b(k)J



(5)







[image: there is no content] and [image: there is no content] are the weights and bias for the fully connected layer at level k, whose rectified output is denoted as [image: there is no content]. During the back propagation, at each layer, the weights and bias are updated by adding the deviations [image: there is no content] and [image: there is no content], with the latter ones multiplied by a learning rate [image: there is no content] to control the convergence rate, as in Equation (5).



Those are the cases for the DBN, while all things are almost identical in the case of CNN, except for the part involving the convolutional layers. Convolutional layers can be treated as a special kind of fully-connected layer with shared connection weights held by kernels. Take the network in Figure 1 for illustration; considering a 4-D kernel tensor [image: there is no content] from the kth convolutional layer, during the back propagation, the input signal data [image: there is no content] is convoluted with [image: there is no content] with step s to get the output [image: there is no content]. The produced activation map [image: there is no content] is also called the feature map, which will always be under-sampled in practice by an operation called pooling to get the input data for the next layer, denoted as [image: there is no content]. After the input image [image: there is no content] has gone through all five convolutional layers in Figure 1, the final feature map [image: there is no content] will be flattened into a 1-D vector [image: there is no content] to be fed to the fully-connected trailing layer FC6 and the following FC7, FC8 to get the final predicted probabilities. Likewise, in the back-propagation, the 1-D difference [image: there is no content] from the FC6 layer is reshaped into 3-D as [image: there is no content] to update the feature maps. Assuming the objective function value is [image: there is no content] on the feature maps [image: there is no content] and kernels [image: there is no content], its back-propagated differences from the upper layer should be calculated as [image: there is no content] and [image: there is no content]. Then, the feature maps and kernels are updated in a manner identical to Equation (5), where the convolutional kernels and feature maps are updated by adding with the derivations multiplied by a learning rate coefficient [image: there is no content], as in Equation (6).


[image: there is no content]



(6)






Figure 1. A typical convolutional neural network (CNN) structure, with feature and difference maps produced by the forward and backward propagations. SW: station wagon; WT: working truck.
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3.2. The Semantic Texture Encoding Pattern for Convolutional Kernels


Despite of all the symbols and equations listed above, studies like [65] sought to produce more interpretable results, helping to better understand and improve the network. One of the important functional components of the DeepVis toolbox proposed in [65] is to find and show the image crops causing the top-most activations by each kernel. This kind of data-centric visualization measure [66,67,68] differs from other means such as deconvolution [69] or image synthesis  [70], showing the correlations between kernel and image samples more directly.



The manifestation effectiveness of the previously mentioned data-centric max-activation illustration method is shown in Figure 2. Therein, six kernels from the CONV5 layer are arranged into two separated groups, denoted as [image: there is no content] and [image: there is no content] by their correlation strengths with the input image [image: there is no content] shown in the column Raw Image. Under the column Top Activation Image Crops, the max-activation image crops are listed for each kernel, from which a stable image content can be observed, and that represents the textural pattern being encoded. Finally, for each kernel, the correlation between its texture and the input image can be measured by the corresponding feature maps being listed under the Feature Map column. Clearly, the feature maps from the kernels [image: there is no content] have greater activation values, while those belonging to [image: there is no content] are almost black. Considering that these pixel-wise activations will be fed to the trailing fully-connected layers to produce the class-wise likelihoods, strongly activated feature maps from [image: there is no content] indicate that they have stronger correlations with the input image.


Figure 2. Illustration of the semantic meaning of the convolutional kernels. The raw input image is displayed in the Raw Image column; the six feature maps produced by six different kernels at the CONV5 layer are shown in the Feature Map column; and six arrays of local image crops on which the top six feature map activations are produced are shown in the Top Activation Image Crops column.



[image: Remotesensing 09 00494 g002]






In fact, the way in which  the high activations in feature maps from the last convolutional layer help with efficient classification can be exemplified by using Equation (5). Considering two activations [image: there is no content] and [image: there is no content] at the same position [image: there is no content] from two feature maps [image: there is no content] and [image: there is no content] at layer level [image: there is no content], with that [image: there is no content] and [image: there is no content]. The connection weights bounded with these two activations are [image: there is no content] and [image: there is no content] in a single trailing fully-connected layer with its final categorical probabilities generated by transformation [image: there is no content]. Then, by Equation (4), the updating differences for [image: there is no content] and [image: there is no content] can be calculated by Equation (7), where [image: there is no content].


∇Wl1,j(k)=gj(k)·hl1(k−1),∇Wl2,j(k)=gj(k)·hl2(k−1)



(7)







So, when there is [image: there is no content], greater updating differences will be generated for the [image: there is no content] as [image: there is no content]. Assuming activations [image: there is no content] and [image: there is no content] are all beneficial for the final probabilistic estimation on class j, the weighted connection [image: there is no content] will grow faster and larger with respect to [image: there is no content]. This means that the feature map [image: there is no content] produced by convolutional kernel [image: there is no content] is more effective for recognizing samples from class j.





4. Methods


4.1. Overview of the Proposed CNN Extension Scheme


So, being aware of the fact that the modeling power of a CNN is strongly correlated with the diversity of feature maps at the last convolutional layer, this article sets out to tackle the problem of class-imbalance by adopting a cost-effective imbalance-aware feature map extension. Commonly, two kinds of overheads will be introduced when new feature maps are added: the convolution overhead and the connection overhead. Specifically, the convolution overhead refers to the extra convolution operation and extra feature map storage. The connection overhead happens in the fully-connected layer right above the extended convolutional layer, where every connection between pixels in the new feature map and the hidden-neurons in the fully-connected layers should be added. In order to reduce  these two overheads, two general measures are adopted, which are illustrated in Figure 3: (1) the selective feature map extension by a newly derived class-importance measurement; (2) a class-imbalance-sensitive softmax loss function for optimizing the extended component. As a result, after these two modifications, the original network is turned into a bi-partite structure with enhanced sensitivities to the samples in the minority classes.


Figure 3. The general structure of the proposed network enhancement method.
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	(1)

	
Part 1: The selective feature map extension by class-importance measurement. This measure aims to reduce the convolution overhead by reusing feature maps selected from the preceding layers. The criteria adopted in the feature selection process—named feature map class-importance—are similar to that in [58], but are further extended for a multi-class problem with slight modification. Additionally, according to [58], these selected feature maps are further filtered by an extra convolutional layer to reduce noise before being used as the Extended Features component in Figure 3.




	(2)

	
Part 2: the class-imbalance-sensitive softmax loss function. This measure aims at reducing the connection overhead and increasing the class-imbalance awareness of the improved structure. Firstly, the extended network components holding the Extended Features are isolated from the main part of the Original Network by a single-layered fully-connected (FC) layer FC Ext. This FC layer has hidden neurons only as few as the number of output classes; thus, the additional connection quantity for the new maps is largely reduced. Secondly, as shown in the right-most text-box of Figure 3, a new loss function named main-side loss is adopted in place of the original softmax loss to raise the sensitivities of the Extended Features to the minority classes.







For the rest of Section 4, the proposed extension is described in detail based on a network prototype miniature visual geometry group (VGG-M)  shown in Figure 3, which is very similar to AlexNet [71], but has slight improvements on the local convolutional parameters. This illustrative network has five convolutional layers (denoted as CONV1 to CONV5) and three fully-connected layers (denoted as FC6 to FC8), and feature maps for extension are selected from layers CONV3 and CONV4. All of these terms will be used in the following explanations.




4.2. The Network Extension by Selected Feature Maps


The idea of using quadratic expansion of the loss function to reduce less-effective network connections is not new—similar studies can be seen in [72], dating back to 1989. However, loss function-based feature map significance cannot be used to make class related pruning. Instead, the class-wise importance measurement for the feature maps is not hard to obtain—it can be produced by using a similar expansion technique on the output class likelihoods from the output neurons. Considering a general case where [image: there is no content] is the collection feature maps at the [image: there is no content]th layer generated from input image [image: there is no content], and the predicted probability for class i is [image: there is no content]. Then, the contribution of feature map [image: there is no content] to the estimated likelihood on class i can be approximated by Equation (8).


Py=i|Zq(k−1)≈Py=i|Z(k−1)−Py=i|Z(k−1)/q=∑∂Py=i|Z(k−1)∂Zq(k−1)⊙Zq(k−1)+R2Zq(k−1)



(8)







In Equation (8), [image: there is no content] is the collection of feature maps [image: there is no content] without [image: there is no content], and [image: there is no content] denotes the other higher-order expansions based on [image: there is no content]. In the first expansion term, [image: there is no content] is the feature map differences back-propagated from the probability value at the ith output neuron, and ⊙ is the element-wise multiplication between matrices. In practice, this difference can be efficiently obtained by back-propagation. By summing the pixel-wise production of the feature map and its differences, the class-importance for the feature map on class i can be obtained. This is vividly shown in Figure 4.


Figure 4. The first-order term of the Taylor expansion in Equation (8). [image: there is no content] denotes the feature map difference, positive, negative, and zero values marked as green, red, and black.
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The class-important measure is validated in Figure 5, where the correlations for the maximal feature map activation and maximal feature significance to the probability values on negative samples are presented. Specifically, the x-axis max activations in Figure 5a means the topmost activation value measured from all the feature maps from CONV5. This is also  the case for the x-axis class importance in Figure 5b. As can be seen, the data points in Figure 5b are much tighter and dense, roughly distributed on a curve with shape [image: there is no content], where [image: there is no content]. Such strong correlation also indicates that the final categorical estimation is mostly based on a single feature map, which again emphasizes the importance of effective feature map selection.


Figure 5. Correlations of the max-activations and class-importance with the class probability of the negative class. (a) Max-activation vs. class probability. (b) Max class-importance vs. class probability.
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Figure 6a shows the distribution pattern of feature maps from the CONV3 and CONV4 layers in the max class-importance vs. max-activation space. From Figure 6a, it can be determined that  feature maps from the CONV4 are slightly more significant than those from CONV3, with elements in the high class-importance section distributed closer to the x-axis. The categorical inclination of a specific feature map [image: there is no content] can be calculated by getting the index i of its largest class importance as [image: there is no content], and their categorical distributions are shown in Figure 6b for five vehicle classes. As can be observed, feature maps belonging to all five classes have similar distributions in the importance section either high and low. Accordingly, in picking the most relevant feature maps for extension, it would be reasonable to select the ones with highest importance scores from each class and control that class-wise quantity according to their classification deficiencies, as in Algorithm 1.


Figure 6. Scatter plots showing the distribution of the feature maps [image: there is no content] from CONV3 and CONV4 in the class-importance vs. max-activation space. (a) The distributions of CONV3 and CONV4 feature maps. (b) Feature maps correlated to the five classes by the class-importance measurement.
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	Algorithm 1 Class Imbalance-Aware Extension Feature Map Selection



	Input: Classification accuracies [image: there is no content], class-importance [image: there is no content] for feature maps [image: there is no content] from the CONV3 and CONV4 layers, and the total number of maps to be selected [image: there is no content].

Output: Selected feature map indexes [image: there is no content] on CONV3 and CONV4

	1:

	
Calculate the number of extension maps needed for each class. For instance, for class j, denote the required extension quantity as [image: there is no content], then there is [image: there is no content].




	2:

	
For each class j, sort the CONV3 and CONV4 feature maps [image: there is no content] by their class importance values [image: there is no content] in descending order, with the indexes denoted as [image: there is no content], where [image: there is no content].




	3:

	
For each class j, get the top [image: there is no content] map indexes from the descending order set as [image: there is no content].




	4:

	
Merge the class-wise top indexes [image: there is no content] from the previous step, and get the output feature map index set as [image: there is no content].












More specifically, as in Algorithm 1, the selection ratio for each class is measured by their pro rata accuracy deficiencies [image: there is no content], so the class-wise selection quantity is [image: there is no content]. Two exemplified CONV3 and CONV4 feature map selections are illustrated in Figure 7, where the total selection quantities are [image: there is no content] and [image: there is no content]. Therein, the extended feature map candidates mainly reside in the high class-importance region.


Figure 7. (a) The 50 selected maps for [image: there is no content]. (b) The 109 selected maps for [image: there is no content].
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4.3. Class Imbalance-Sensitive Softmax Loss Function


Up to the present, explanations for the cost-effective network extension have been focused on the feature map selection process which reduces the convolution overhead. However, the connection overhead is also significant if the newly extended feature maps are encoded directly by the trailing fully-connected layer FC6. Typically, for a network with structure similar to that in Figure 3, there can be as many as 4096 hidden neurons in FC6. Supposing the feature maps from CONV5 are of shape [image: there is no content], then as many as [image: there is no content] real-valued connection weights will be introduced for every newly added feature map. This kind of overhead can be greatly reduced if these extended feature maps are encoded by a single-layered fully-connected layer independent of the original network, which has hidden neurons with quantity equal to the number of output classes. As shown in Figure 8, the resulting bi-partite network is generalized as composed by three structural components: the common part, the main network, and the side network. For the eight-layered network in Figure 3, the common part refers to the shared layers CONV1 and CONV2, the Main Network refers to layers CONV3 through FC8 in the Original Network, and the Side Network refers to the Extended Features along with the isolated FC Ext layer.


Figure 8. Principle structure of the class-imbalance aware Main-Side Network.
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In this structure, the output values from FC Ext can be viewed as an extra categorical estimation based purely on the newly added feature maps, whereas the final categorical prediction from the extended network can be calculated as the summation of these two. Taking the predicted likelihoods from the Main and Side Network components as [image: there is no content] and [image: there is no content], this kind of summarization-based likelihood mixture can be viewed as applying a hard connection on these two likelihoods as [image: there is no content], in which both predictions are equally weighted. However, according to the analysis in Section 3.2, this straightforward means does not promise that the extended part will be more correlated with minority class samples. Take the [image: there is no content] as some activation from a feature map in the Side Network component at layer [image: there is no content], and its connection weights to a majority class i and a minority class j are denoted as [image: there is no content] and [image: there is no content]. Then, according to Equation (9), in the case of using softmax loss, the updating differences [image: there is no content] and [image: there is no content] from upper layer will be almost equal.


∇Wl,i(k)=gi(k)·hl(k−1),∇Wl,j(k)=gj(k)·hl(k−1)



(9)







So, in order to achieve class-imbalance sensitivity, the loss function should differ the back-propagated values for the Side Network between majority and minority classes. This setting is manageable. By Figure 8, considering the likelihood summation format as employing the [image: there is no content] from Side Network to rectify the estimates [image: there is no content] from the Main Network, then the [image: there is no content] acts as a filling for the probability deficiencies of [image: there is no content] marked by the red bar in Figure 8. Then, if this kind of likelihood amendment is intentionally diminished for the majority classes and encouraged for the minority classes, the predictions from the Side Network are more likely to be correlated with samples from the minority classes.



More specifically, as in Equation (10), the newly introduced Main-Side loss is denoted as [image: there is no content] at the right-side of the picture, which takes the softmax loss [image: there is no content] as its main component. Then, in order to make these two updating values vary from each other, an extra regularization only relevant with [image: there is no content] is added to the loss function, which is denoted as [image: there is no content] with a global penalization coefficient [image: there is no content]. Since [image: there is no content] is only dependent on the Side Network output [image: there is no content], the back-propagated differences for the Main and Side Network components [image: there is no content] and [image: there is no content] will be different, as in Equation (11).


[image: there is no content]



(10)






[image: there is no content]



(11)







Recalling that the softmax loss term [image: there is no content] should be diminished during training, this Side Network correlated regularization [image: there is no content] should produce small penalty values for the minority classes, but large values for the majority classes. The simplest way to achieve this is to assign varied penalty coefficients for class-wise likelihood values in [image: there is no content], and the classification accuracies for these classes measured on the cross-validation dataset serves such needs. So, as in Equation (12), the additional loss function regularization term [image: there is no content] is defined as the Norm-2 of the element-wise multiplication of [image: there is no content] and the class-wise accuracies measured on the Main-Network.


[image: there is no content]



(12)







The [image: there is no content] in Equation (12) is the averaged accuracy for the given image set [image: there is no content] on class j measured by [image: there is no content] from the Main Network, [image: there is no content] is the categorical penalization coefficient applied on [image: there is no content], and ⊙ means element-wise multiplication between two vectors. Following this definition, for a majority class i already having very high accuracy [image: there is no content], its penalization will be higher than a minority class j with lower [image: there is no content], and vice versa. Besides, due to the flexibilities in choosing the set of input images [image: there is no content], three penalization modes can thus be derived, here denoted as Global, Local, and Batch-wise, as shown in Figure 9.


Figure 9. The t-Distribution stochastic neighbor embedding (t-SNE) -based visualization [73] of the negatives and vehicle types in the FC8 output space, and the three penalization modes used for [image: there is no content]: (a) global, (b) local, and (c) batch-wise.



[image: Remotesensing 09 00494 g009]






Conceptually, these three penalization modes have specific pros and cons of their own. According to Figure 9, the global penalization [image: there is no content] based on the overall sample set O stays unchanged for all training subsets, and thus is insensitive to abnormalities in local space. The local penalization [image: there is no content] partially improves the flexibility by using accuracy local cluster [image: there is no content] for each training sample that k belongs to, but such accuracy must still be measured beforehand and could be obsolete during the training. Instead, for the batch-wise mode, a real-time tracking of accuracy can be acquired from the training mini-batch [image: there is no content], while the additional price is the increased non-linearity in convergence.





5. Experiments and Analysis


5.1. Data Set Description and Experiment Setup


5.1.1. DLR 3K Aerial Image Dataset


The DLR 3K aerial image dataset is an aerial image dataset made publicly available online by the Germany Aerospace Center, which has been studied in [19]. It contains 20 aerial images with resolution of [image: there is no content] captured over the city of Munich by a low-cost airborne imaging system called DLR 3K+ Cam, which is composed of three non-metric Canon Eos 1Ds Mark III cameras with Zeiss lenses. This system is intended to be fixed on an airplane or a glider with a ZEISS shock mount, where images are taken at the height of 1000 m with real-time ortho-rectification made either on-board or at ground station. All pictures are in RGB real-colored spectral bands (each being digitalized by 8 bits) with ground sampling distance (GSD) at 13 cm.



Although there is no modern skyscraper, these pictures contain quantities of medium-height residential buildings, workshops, trees, lawns, railway track, and streets filled with kinds of vehicles either wide or narrow. All of these put together form a rich set of scenarios which would include most of the typical conditions that cause false detections. Figure 10 shows some of the image samples. The four sub-figures marked as [image: there is no content] ∼ [image: there is no content] are cropped from spots marked by yellow squares in the main image a on the left, which represent classical detection disturbances: tight parking ([image: there is no content]), shadows from trees and houses ([image: there is no content], [image: there is no content], and [image: there is no content]), and partial occlusion ([image: there is no content]). In addition, buildings and man-made facilities in this area have complex textures similar to vehicles, which further increases the localization and categorization difficulties.


Figure 10. (a) A typical frame from the training sample. ([image: there is no content] ∼ [image: there is no content]) Typical difficult detection cases. (c) The close-to-vehicle region (shaded blue) and categorical sampling positions.
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Instead of using the original vehicle classes in the dataset, we defined a new set of classes, with the main focus being put on small and medium-sized vehicles; that is, Sedan, Station Wagon (i.e., private SUV), Van, and Working Truck. Quantitative distributions and averaged scales of these vehicle types are listed in Table 1, by which a highly skewed inter-class distribution of samples can be clearly observed. In it, the Station Wagon class has the top-most quantity with the Sedan and Van lagging far behind. The quantity of Working Truck is trivial, with occupation ratios at merely 0.8% in the training set and 0.6% in the testing set.



Table 1. The vehicle types defined in this paper and the basic statistics.







	
Type

	
Samples

	
Training Set

	
Testing Set




	
L (px)

	
W (px)

	
N

	
L (px)

	
W (px)

	
N






	
Sedan

	
 [image: Remotesensing 09 00494 i001]

	
21.45

	
10.47

	
776

	
20.83

	
10.16

	
1075




	
Station Wagon

	
 [image: Remotesensing 09 00494 i002]

	
19.99

	
9.76

	
2302

	
19.14

	
9.32

	
4178




	
Van

	
 [image: Remotesensing 09 00494 i003]

	
24.65

	
12.06

	
312

	
24.14

	
11.83

	
512




	
Working Truck

	
 [image: Remotesensing 09 00494 i004]

	
27.17

	
13.31

	
29

	
26.58

	
13.02

	
34








Note: L (px) and W (px) denote the length and width of vehicles in pixels, and N denotes the quantity.









5.1.2. Training and Testing Preparation as a Classification Problem


Since the R-CNN detection structure is employed, it can be regarded as a common CNN-classifier making categorization on full-scaled input images. To facilitate the analysis and verification, [image: there is no content] sized patches are uniformly extracted from the original image for a simplified experimental environment. Furthermore, to reduce the quantity of unnecessary negative samples with redundant textural patterns, these image patches are produced from three different regions by their distance to vehicle centers DistV, which are shown in Figure 11:

	
The Centered category: position marked by yellow square in sub-figure c in Figure 10 with DistV no more than 3 pixels;



	
The Close Range category: positions marked by red squares within the blue shaded region in sub-figure c in Figure 10, whose DistV are in range from 4 to 20 pixels;



	
The Far Range category: in sub-figure c from Figure 10, positions marked by green squares outside the blue shaded region with DistV more than 20 pixels.







Figure 11. The sample categories used on the three regions: Centered, Close Range, and Far Range.
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Only samples in the Centered category are treated as positives, which will be further categorized into different vehicle types. Samples from the Close Range and Far Range categories are taken as negatives with different classification difficulties. By Figure 11, data enhancements are performed on these samples by rotation with different times [image: there is no content], where rotated angle spacing [image: there is no content] is calculated by [image: there is no content]. Since samples in the Centered and Close Range categories are less populated, their rotate angle spacings are [image: there is no content] and [image: there is no content] with augmentation times at [image: there is no content] and [image: there is no content]. Finally, sample quantities in these categories are kept equal (approximately 33.3% for each), which results in 210,944 training samples and 534,624 testing samples.




5.1.3. The Baseline Network Structure and Extension Styles for Analysis


To manifest the effectiveness of feature selection and Main-Side loss-based fine-tuning, the VGG-M [74] network is employed as the baseline for the optimized extension. The VGG-M and its full version the 16-layered VGG [75] are powerful holistically structured networks, and have achieved a top-5 error at only 13.7% and 7.4% on the ILSVRC-2012-val dataset, which are the best scores until 2014. Different from its ancestor AlexNet [71], VGG-M uses small kernels of size [image: there is no content] with 1 pixel-sized padding, making them ideal for encoding the local structural differences. After that, the development on CNN have either sought greater depth by shortcut connection [76,77,78] or more miscellaneous structural complexities [21,50,79].



Three typical kinds of extension structures based on VGG-M are illustrated in Figure 12, which will be studied in the following subsections. Figure 12a shows the case when the network is extended with blank randomly initialized kernels, and Figure 12b shows the case when selected feature maps from the preceding layers are used for extension. Figure 12c shows the case when both the feature selection and Main-Side loss techniques are employed for extension.


Figure 12. Three typical extension schemes. (a) Plain extension with blank kernel generated feature maps; (b) Plain extension with selected feature maps; (c) Main-Side bi-parted extension with selected feature maps.
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During the experimental analysis in the rest of the section, six kinds of network extension in total are involved for general or specific analysis, and their principle structures are shown in tables in Figure 13. Therein, the miniature VGG-M and full-sized VGG-16 are abbreviated as Orig.M and Orig.16 in Figure 13a,b. Plain network extension by blank kernels and selected feature maps with the original softmax loss are abbreviated as New Ext. and Select Ext., shown by Figure 13c,d. Blank kernel-based and selected feature map-based extension with the class-imbalance-sensitive Main-Side loss are denoted as New S-Ext. and Select S-Ext., shown by Figure 13e,f.


Figure 13. The five network structures studied in the experimental section. (a) The baseline network miniature miniature visual geometry group (VGG-M) (Orig.M) and (b) 16-layered VGG (Orig.16), the comparative extensions with either (c,d) the Loss of Softmax (New Ext., Select Ext.) or (e,f) the proposed Main-Side Loss (New S-Ext., Select S-Ext.).
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More specifically, the network structures Orig.M, Orig.16, New Ext., Select Ext., and Select S-Ext. with the three penalization modes are compared and studied in Section 5.2 for a holistic comparison. After that, the structures New Ext. and Select Ext. are compared in Section 5.3 to showcase the effect of using selected features in the plain softmax loss-based network extension instead of the blank kernels. Finally, the main factors including the coefficient [image: there is no content], coefficients [image: there is no content], and the three penalization modes are compared based on the New S-Ext. structure to analyze the behavior of the Main-Side loss function in Section 5.4.





5.2. Experimental Results


The proposed network extension scheme is verified in this section. The networks chosen for comparison are the baseline VGG-M (Orig.M), the 16-layered full-sized VGG (Orig.16), extensions based on the softmax loss (New Ext. and Sel. Ext.), and extensions based on the selected features and Main-Side loss (Sel. S-Ext.).



The parameter model file sizes, memory consumption sizes, and their overheads are shown in Table 2, in which the memory consumption is measured with batch size 96. All data are measured based on the Caffe CNN platform. Generally, Main-Side loss-based network extensions have the least overhead compared to those using softmax loss. The parameter file size increments are trivial since the FC6 Ext. layer has only five hidden neurons. For the memory consumptions, extra memory space saving is done by reusing existing feature maps from preceding layers. Moreover, there are also implicit computation savings by eliminating the convolutions in layers Conv3 Ext. and Conv4 Ext..



Table 2. Trained model file sizes and GPU-memory consumption for batch size of 96.







	
Net Struct.

	
Orig.M

	
Orig.16

	
New Ext.

128

	
New Ext.

256

	
Sel. Ext.

128

	
Sel. Ext.

256

	
Sel. S-Ext.

128

	
Sel. S-Ext.

256






	
Model (Mb)

	
361.7

	
537.1

	
439.6

	
519.8

	
426.1

	
460.9

	
362.2

	
362.8




	
[image: there is no content] Model (Mb)

	
-

	
175.4

	
77.9

	
158.1

	
64.4

	
99.2

	
0.5

	
1.1




	
Mem (Mb)

	
1820.3

	
10547.1

	
1988.4

	
2093.0

	
2018.5

	
2053.7

	
1977.4

	
2004.3




	
[image: there is no content] Mem (Mb)

	
-

	
8726.8

	
168.0

	
272.7

	
192.7

	
223.1

	
157.1

	
183.9










Class-wise classification performances measured by accuracies and F1 scores are presented in Table 3 and Table 4, based on extensions with [image: there is no content] and [image: there is no content] by Algorithm 1. In them, the global, local and batch-wise based penalization modes for Select S-Ext. are abbreviated as Glb., Lcl., and Bat.. Due to the limitation of page space, the Select Ext. is further abbreviated as Sel. Ext.. The trailing keyword ReLU indicates the usage of ReLU layer to constrain the Side-Network probabilities. In each column, the first-, second-, and third-highest scores are marked by bold, underline, and double-underline.



Table 3. Best averaged F1 score cases of classification performance for 128 feature map extension.







	

	
Negative

	
Sedan

	
Station Wagon

	
Van

	
Working Truck




	
ACC

	
F1

	
ACC

	
F1

	
ACC

	
F1

	
ACC

	
F1

	
ACC

	
F1






	
Orig.M

	
96.83%

	
0.9791

	
58.40%

	
0.6247

	
81.81%

	
0.8010

	
90.11%

	
0.8422

	
69.72%

	
0.5435




	
Orig.16

	
99.68%

	
0.9624

	
57.13%

	
0.6433

	
82.04%

	
0.8329

	
91.64%

	
0.8650

	
70.05%

	
0.5914




	
New Ext.

	
97.20%

	
0.9822

	
63.38%

	
0.6474

	
82.13%

	
0.8245

	
91.92%

	
0.8459

	
74.52%

	
0.5666




	
Sel. Ext.

	
96.90%

	
0.9808

	
63.56%

	
0.6487

	
82.25%

	
0.8247

	
93.00%

	
0.8501

	
68.16%

	
0.5609




	
Glb.

	
97.01%

	
0.9810

	
65.73%

	
0.6438

	
81.51%

	
0.8303

	
92.38%

	
0.8471

	
71.29%

	
0.5377




	
Glb.ReLU

	
97.22%

	
0.9820

	
65.95%

	
0.6410

	
81.27%

	
0.8315

	
92.69%

	
0.8477

	
71.25%

	
0.5406




	
Lcl.

	
97.00%

	
0.9813

	
65.45%

	
0.6408

	
81.65%

	
0.8310

	
92.66%

	
0.8497

	
69.63%

	
0.5418




	
Lcl.ReLU

	
97.27%

	
0.9823

	
64.61%

	
0.6404

	
81.53%

	
0.8285

	
92.56%

	
0.8498

	
70.70%

	
0.5375




	
Bat.

	
97.12%

	
0.9814

	
64.40%

	
0.6417

	
81.54%

	
0.8276

	
92.89%

	
0.8471

	
70.38%

	
0.5351




	
Bat.ReLU

	
97.30%

	
0.9820

	
63.87%

	
0.6407

	
81.67%

	
0.8273

	
92.66%

	
0.8505

	
72.78%

	
0.5556








Note: The first, second and third topmost values in each column are marked by bold, underline and double-underline. Meanings of abbreviations are: the baseline VGG-M (Orig.M), the 16-layered full-sized VGG (Orig.16), the softmax loss based extensions (New Ext. and Sel. Ext.), and Main-Side loss based extensions (Sel. S-Ext.).








Table 4. Best averaged F1 score cases of classification performance for 256 feature map extension.







	

	
Negative

	
Sedan

	
Station Wagon

	
Van

	
Working Truck




	
ACC

	
F1

	
ACC

	
F1

	
ACC

	
F1

	
ACC

	
F1

	
ACC

	
F1






	
Orig.M

	
96.83%

	
0.9791

	
58.40%

	
0.6247

	
81.81%

	
0.8010

	
90.11%

	
0.8422

	
69.72%

	
0.5435




	
Orig.16

	
99.68%

	
0.9624

	
57.13%

	
0.6433

	
82.04%

	
0.8329

	
91.64%

	
0.8650

	
70.05%

	
0.5914




	
New Ext.

	
97.23%

	
0.9823

	
61.97%

	
0.6431

	
82.26%

	
0.8207

	
92.26%

	
0.8484

	
71.97%

	
0.5804




	
Sel. Ext.

	
96.96%

	
0.9808

	
61.98%

	
0.6453

	
82.39%

	
0.8192

	
91.69%

	
0.8451

	
70.85%

	
0.5439




	
Glb.

	
97.12%

	
0.9816

	
64.26%

	
0.6419

	
81.47%

	
0.8263

	
92.83%

	
0.8453

	
70.31%

	
0.5409




	
Glb.ReLU

	
97.16%

	
0.9818

	
64.47%

	
0.6441

	
81.80%

	
0.8290

	
92.94%

	
0.8505

	
73.60%

	
0.5472




	
Lcl.

	
96.94%

	
0.9809

	
65.91%

	
0.6384

	
81.45%

	
0.8306

	
92.46%

	
0.8507

	
68.53%

	
0.5469




	
Lcl.ReLU

	
97.11%

	
0.9816

	
65.11%

	
0.6439

	
81.69%

	
0.8296

	
92.46%

	
0.8481

	
72.05%

	
0.5564




	
Bat.

	
97.01%

	
0.9809

	
63.75%

	
0.6413

	
81.52%

	
0.8242

	
92.92%

	
0.8457

	
69.94%

	
0.5442




	
Bat.ReLU

	
97.31%

	
0.9823

	
65.12%

	
0.6420

	
81.45%

	
0.8303

	
92.70%

	
0.8482

	
71.70%

	
0.5419








Note: The first, second and third topmost values in each column are marked by bold, underline and double-underline. Meanings of abbreviations are: the baseline VGG-M (Orig.M), the 16-layered full-sized VGG (Orig.16), the softmax loss based extensions (New Ext. and Sel. Ext.), and Main-Side loss based extensions (Sel. S-Ext.).








From these two tables, several important phenomena need to be taken care of. Firstly, compared to the small version Orig.M, the full-sized Orig.16 is superior in achieving high F1 scores and high accuracy for recognizing negatives, but it is bad for making accurate predictions on the positive classes. This means that the depth-based network extension is more likely to be affected by the class-imbalance. Secondly, the softmax loss-based Sel Ext. has more high scores when [image: there is no content], meaning that selected features are better utilized for minority classes under smaller extension quantity. Thirdly, the Main-Side loss-based selective feature map extensions are stabler at maintaining high performance for the minority classes (Sedan, Van) except for ones too trivial in size (Working Truck). Fourthly, the usage of ReLU slightly decreases the improvement in accuracies while helping with the enhancement of F1 score. Considering the small overhead cost for the Select S-Ext. variants, their network extension efficiencies are better than the others.



Finally, a brief illustration of the effectiveness of the proposed network extension is given in Figure 14, where Orig.M and Select S-Ext. with [image: there is no content] and [image: there is no content] are chosen for comparison. In Figure 14a, newly recognized images by Select S-Ext. are listed in Figure 14a by their types in each row. According to the common characteristics in appearance, three categories can be established in the columns: those with rare structures or confusing appearances (Rare Instances), those being blurred by shadows (Shadowing), and those being partially covered by trees and buildings (Covering). These are the challenging conditions to which the extended network structure is devoted. At last, prediction accuracies of Orig.M and Select S-Net. on the three sample categories discussed in Section 5.1.2 are illustrated in Figure 14b, abbreviated as Orig. and Imprv.. Therein, accuracy values of Imprv. are marked above its curve markers, and the improvement values Diff. are shown as bars. As expected, samples with greater vehicle center distances (Far Distance) are better predicted by their recognition easiness. Additionally, consistent with the design pattern of Main-Side Loss, greater improvement happens on positives in the Centered category.


Figure 14. Network classification performance improvement illustrated by the established classification dataset. (a) Newly recognized positives after extension. (b) Prediction accuracies and the increments on sample categories: Centered (Cent.), Close Range (Close), and Far Range (Far).
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5.3. Network Extension Efficiency by Selected Feature Maps


This sub-section discusses the network extension efficiency in using the selected convolutional feature maps. To justify the comparisons, only the extensions New Ext. and Select Ext. based on the softmax loss are adopted, so all kernels will be penalized equally over different classes.



Table 5 shows the classification accuracies between the original VGG-M network and its two extended counterparts, New Ext. and Select Ext.. Seven extension quantities are involved in the comparison, ranging from 64 to 256. Since the feature maps selection scheme described in Algorithm 1 will introduce duplications, the number of feature maps used in the selective extension is always smaller. As can be observed from Table 5, outperforming instances frequently occur on large and medium-sized classes (e.g., Sedan and Station Wagon) which have occupation ratios at 23.06% and 66.96%. For class Van, which has an occupation ratio of 9.10%, only one outperforming is detected. Accuracy differences on class Working Truck fluctuate radically, a class which has the smallest data occupation ratio at 0.88%.



Table 5. Classification accuracies for softmax loss-based extensions New Ext. and Select Ext..







	
Original

	
Sedan

	
Station Wagon

	
Van

	
Working Truck




	
ACC 58.40%

	
ACC 81.81%

	
ACC 90.11%

	
ACC 69.72%






	
New Ext. & Sel. Ext.

	
New

	
Select

	
New

	
Select

	
New

	
Select

	
New

	
Select




	
N64/S50

	
63.02%

	
63.19%

	
81.85%

	
82.27%

	
92.58%

	
91.81%

	
74.06%

	
76.30%




	
N96/S71

	
63.00%

	
62.78%

	
82.11%

	
82.35%

	
92.76%

	
91.90%

	
75.84%

	
67.97%




	
N128/S89

	
63.38%

	
63.56%

	
82.13%

	
82.25%

	
91.92%

	
93.00%

	
74.52%

	
68.16%




	
N160/S109

	
63.23%

	
63.59%

	
82.07%

	
81.96%

	
92.62%

	
92.48%

	
75.30%

	
75.73%




	
N192/S130

	
62.55%

	
62.30%

	
81.99%

	
82.40%

	
92.53%

	
92.07%

	
72.54%

	
73.62%




	
N224/S150

	
63.38%

	
63.10%

	
81.84%

	
82.05%

	
92.46%

	
91.95%

	
69.97%

	
68.73%




	
N256/S168

	
61.97%

	
61.98%

	
82.26%

	
82.39%

	
92.26%

	
91.69%

	
71.97%

	
70.85%








Note: For each pair of accuracies given by New Ext. and Select Ext., instances where the Select Ext. outperforms the New Ext. are emphasized by bold font.








The phenomenon mentioned above can be regarded as the equal penalization nature of the softmax loss. As most of the feature maps selected by Algorithm 1 have high class-significance for all classes, they are more likely to be assigned to majority classes. For the kernels only efficient on minority classes, fluctuations occur as softmax loss attempts to bias them to the majority ones. As a result, poor overall performance refinement is obtained by Select Ext.. As in Figure 15, averaged F1 scores and accuracies are shown for the three networks, with differences between Select Ext. (Select) and New Ext. (Simple) displayed as bars Diff.. Instances where Select Ext. is comparable to New Ext. are marked by arrows, and values for Select Ext. are listed above the markers. For the aforementioned reasons, these instances are rare, and the superiorities of Select Ext. are less significant.


Figure 15. Overall performance comparisons between the Orig.M, New Ext. and Select Ext. under different extension sizes. (a) the averaged F1 scores, (b) the averaged accuracies. Instances where Select Ext. is comparable to New Ext. are marked by arrows.
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Finally, in Figure 16, a more fair comparison for showing the feature map extension efficiency is performed based on a per-kernel evaluation, where the increase in F1 score for each newly added feature map is calculated by [image: there is no content], in which [image: there is no content] and [image: there is no content] for the baseline and extended network, and [image: there is no content] is the number of extended feature maps. As can be observed from Figure 16, the selective feature map-based extension is more efficient in medium-sized minority classes (Sedan and Van) for small extension quantity, while dropping more rapidly than the blank kernel-based one since the selected ones lack enough flexibility.


Figure 16. Efficiency comparison of extended feature maps (kernels). [image: there is no content] is the quantity of all vehicles. Selected feature maps (kernels) are more effective for small extension and minority classes.
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5.4. Main Factors in Main-Side Loss Function-based Fine-Tuning


Three major configurations have to be considered when using the Main-Side loss to fine-tune the bi-parted Main-Side network, which will be analyzed on the New S-Ext. extension: the first one is whether to fix the FC layers in the Main Network during the fine-tuning; the second one is the penalization coefficient [image: there is no content] and the positive constraint imposed on the single layered FC6 Ext. by an extra ReLU layer; and the third one is the three penalization modes. The reason for choosing the New S-Ext. extension for inspection is that it uses feature maps generated by blank kernels, which ensures that all extended kernels are equally flexible, and thus can be useful for an objective illustration of the impact caused by different configurations.



The first configuration—which involves partial fixation or joint optimization—determines whether the FC6 to FC8 layers should be updated during the fine-tuning. This configuration is only examined on the global penalization version of New S-Ext., with the class-wise performances shown in Table 6. It is then obvious from the table that the joint optimization settings outperform the partially fixed ones in almost every class, including the accuracies and F1 scores, except the trivially populated class Working Truck. The superiority in performance for the joint optimization version is caused by the simultaneous adjustment of the estimation accuracies by the Main Network component, which means that kernels in the Main and Side Networks are optimally re-assigned. It is worth note that the existence of the positive constraint by ReLU layer is less significant for the joint optimization versions, in which the scores are almost identical.



Table 6. Categorization accuracies for fixed-Main and joint optimization, best average F1 cases.







	

	
Sedan

	
Station Wagon

	
Van

	
Working Truck




	
ACC

	
F1

	
ACC

	
F1

	
ACC

	
F1

	
ACC

	
F1






	
Global No ReLU, Fix-M

	
62.12%

	
0.6275

	
81.10%

	
0.8212

	
91.46%

	
0.8479

	
72.67%

	
0.5492




	
Global ReLU, Fix-M

	
60.26%

	
0.6289

	
81.48%

	
0.8132

	
91.03%

	
0.8463

	
72.33%

	
0.5542




	
Global No ReLU, Joint

	
65.42%

	
0.6435

	
81.44%

	
0.8320

	
93.29%

	
0.8497

	
73.77%

	
0.5508




	
Global ReLU, Joint

	
65.66%

	
0.6449

	
81.58%

	
0.8325

	
92.96%

	
0.8484

	
72.06%

	
0.5490








Note: Fixed and non-fixed optimization settings are abbreviated as Fix-M and Joint, and the top-2 highest scores are marked as bold and underline.








For the second configuration involving the coefficient [image: there is no content] and the positive constraint ReLU, comparing results are shown in Figure 17 and Figure 18. As can be observed from Figure 17a, the influences of [image: there is no content] are more correlated with the prediction accuracies, as they arise when the coefficient decreases. This is because smaller penalization encourages larger likelihood rectifications from the Side Network. This rectification effect is more clear in Figure 18, where medium-sized minority classes (e.g., class Sedan and Van) have greater accuracy improvements compared with majority ones (e.g., Station Wagon). However, the class that is too small (e.g., Working Truck) seems to benefit less from this effect because of the possibility of over-fitting.


Figure 17. Influences of the coefficient [image: there is no content] and ReLU constraint on the overall accuracy and [image: there is no content] score in three modes. (a) the averaged accuracies; (b) the averaged [image: there is no content] scores.
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Figure 18. Influences of the penalization mode and the coefficient [image: there is no content] on accuracy and [image: there is no content] score for different vehicle types. [image: there is no content] is the quantity of positives, which is all the vehicles.
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In contrast, as seen previously in both figures, the existence of the ReLU layer has little or no influence on the resulting accuracies, while the removal of the ReLU layer seems to help stabilize the fluctuations in accuracies and F1 scores as the penalization [image: there is no content] changes. This is reasonable, since by permitting negative adjustments from the Side Network, they help with pruning the Main Network likelihoods too high to cause over-fitting.



For the third configuration—which involves the comparison between the three penalization modes (Global, Local, and Batch-wise)—experimental results are presented in Table 7. Judging from the scores, there is no apparent winner: Batch-wise penalization is more suitable for improving the small-sized classes (e.g., Working Truck), the Global penalization is more suitable for medium-sized classes (e.g., Sedan and Van), and the Local penalization performs better for the large and medium-sized ones (e.g., Station Wagon and Sedan).



Table 7. Best accuracies and F1s for three modes with or without the ReLU layer on FC6 Ext. layer.







	

	
Sedan

	
Station Wagon

	
Van

	
Working Truck




	
ACC

	
F1

	
ACC

	
F1

	
ACC

	
F1

	
ACC

	
F1






	
Global No ReLU, Joint

	
65.42%

	
0.6435

	
81.44%

	
0.8320

	
93.29%

	
0.8497

	
73.77%

	
0.5508




	
Global ReLU, Joint

	
65.66%

	
0.6449

	
81.58%

	
0.8325

	
92.96%

	
0.8484

	
72.06%

	
0.5490




	
Local No ReLU, Joint

	
65.79%

	
0.6415

	
81.63%

	
0.8335

	
92.91%

	
0.8494

	
69.67%

	
0.5491




	
Local ReLU, Joint

	
65.53%

	
0.6441

	
81.55%

	
0.8320

	
92.88%

	
0.8468

	
72.17%

	
0.5432




	
Batch-wise No ReLU, Joint

	
64.79%

	
0.6442

	
81.95%

	
0.8308

	
92.40%

	
0.8498

	
71.04%

	
0.5548




	
Batch-wise ReLU, Joint

	
65.00%

	
0.6435

	
81.72%

	
0.8307

	
92.58%

	
0.8477

	
74.92%

	
0.5662








Note: In each column, the first and second topmost values are emphasized by bold and underline. Implementations with and without ReLU layer are marked by ’ReLU’ and ’No ReLU’. ’Joint’ means non-fixed optimization same as that in Table 6.










6. Discussion


As mentioned in Section 1, few articles have been found to address the class-imbalance issue in high-resolution aerial image-based vehicle localization and categorization using CNN structure extension; this article serves as an exploration of such methods. A principally similar work named hierarchical deep CNN (HD-CNN) [50] has studied the effectiveness of a tree-structured CNN ensemble on general object classification problems involving dozens of classes. However, with only a few classes, it is inconvenient to build multi-level class taxonomy, and appending a near-full-sized CNN structure might not be sufficiently cost-efficient considering the size of the problem.



The effectiveness of the proposed extension scheme is exemplified in a moderately-sized VGG-M network in a self-proven manner. According to the analysis in the previous experimental section, several general conclusions can be drawn on the network extension-based class-imbalance dealing methods, which can be useful for applying the methods on other similar applications:

	(a)

	
According to Table 3 and Table 4, using wider and deeper network structure with plain extension (blank kernels and softmax loss) will generally improve the classification performances on all classes, while using deeper structure will help more with the generalized performance measured by F1 score.




	(b)

	
According to Table 5, the effectiveness of the softmax loss-based plain width extension with either blank kernels or selected feature maps will decrease rapidly as the extension quantity increases. Additionally, the selected feature maps are more effective under small extension quantity, while losing their advantage in large extension, as they lack flexibility.




	(c)

	
As can be seen from Table 3, Table 4 and Table 5, selected feature maps are more helpful for improving the classification accuracies, while they can barely keep up with the blank kernel-based extension in overall F1 score by Figure 15a. To maintain a reasonably high F1 score performance, the penalization mode Glb.ReLU and Bat.ReLU are preferred, as in Table 3 and Table 4.




	(d)

	
As seen by Figure 17a, penalization modes without ReLU constraint in the Main-Side loss-related fine-tuning can produce a more significant increment in accuracies as the global penalization [image: there is no content] decreases. The existence of a ReLU layer helps to stabilize the fluctuation in F1 scores when [image: there is no content] changes, as in Figure 17b.




	(e)

	
By Figure 18, the class-imbalance-sensitive penalization term [image: there is no content] helps to improve the classification accuracies for the medium-sized minority classes (Sedan and Van), but is not so ideal for classes with an absolutely trivial sample quantity (Working Truck).




	(f)

	
The sizes of most effective vehicle classes for the three penalization modes are different. Shown by Table 7, the Global penalization mode is effective on medium-sized classes (Sedan and Van), the Local mode is effective for large- and medium-sized classes (Station Wagon and Sedan), while the Batch-wise mode is effective for small-sized classes (Working Truck).










7. Conclusions


Methods for joint vehicle localization and categorization in aerial images helps with important applications such as traffic flow analysis and suspicious vehicle detection. By treating samples who exceed the permitted location deviation as negatives and classifying them along with the other vehicle classes, the problem of cascaded localization error in separated estimation is eliminated. Top-3 accuracy as high as 99% can be achieved when a typical CNN-based classifier is employed (e.g., the 16-layered VGG network), but it still suffers from the class-imbalance issue, which causes poor classification performances on minority classes.



Based on the R-CNN detection structure, a cost-effective network extension scheme is proposed in this paper to address this issue by introducing less computation and memory consumption overhead. Such efficiency is achieved by two means: the feature map selection and bi-partite Main-Side Network extension, which are performed with the help of a feature map class-importance measurement and a class-imbalance-aware loss function newly proposed in this article. The resulting extended network structure is verified along with its similarly-shaped strong counterparts on a 0.13 m GSD aerial image dataset captured over the urban region of Munich. Experimental results show that the selectively extended feature maps are more effective than those produced by randomly initialized new kernels. By applying the Main-Side loss on this bi-partite network, classification performances on medium-sized minority classes can be further improved. The three Main-Side loss penalizing schemes help with this performance improvement differently, showing varied refinement effect on different-sized classes. Generally, by jointly employing the feature map selection and Main-Side loss optimization schemes, comparable vehicle categorization results can be achieved compared to the counterparts with less parameter and memory overheads.



Key contributions of this study are as follows: First, a novel multi-class feature map importance measurement is proposed by extending the existing significance score for binary classification problems. Second, an easy-to-use cost-effective network extension scheme called Main-Side Network is proposed to greatly improve the classification performances on minority classes with small amount of overhead. Third, three penalization modes are proposed for regularizing the Main-Side loss adopted in this extension, which are simple to implement and beneficial for minority classes with different properties.



In future work, the existing classification deficiencies on tiny classes (e.g., the Working Truck class) is planned to be deeply investigated by using stronger models from the one-class classification. Difficult detection conditions involving shadowed and partially sheltered vehicles caused by skyscrapers and street trees will be further analyzed with harder experimental dataset. Behaviors of the three penalization modes for the Main-Side Loss should be further analyzed in detail to enhance the performance. The Main-Side Network extension structure is intended to be replaced by a network splitting method; thus, the convolution and memory consumption overhead can be completely eliminated.
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The following abbreviations are used in this manuscript:



	ADASYN
	Adaptive Synthetic Sampling



	CBO
	Cluster-based Oversampling



	CNN
	Convolutional Neural Network



	DBN
	Deep Belief Network



	FCN
	Fully Convolutional Neural Network



	HOG
	Histogram of Oriented Gradients



	GAN
	Generative Adversarial Network



	GSD
	Ground Sampling Distance



	LBP
	Local Binary Pattern



	R-CNN
	Regions with Convolutional Neural Network Features



	ROI
	Region of Interest



	SIFT
	Scale Invariant Feature Transform



	SMOTE
	Synthetic Minority Over-sampling Technique



	SVM
	Support Vector Machine



	t-SNE
	t-Distributed Stochastic Neighbor Embedding



	VGG
	Visual Geometry Group
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