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Abstract: Knowledge of the exact statistical properties of the signal plays an important role in the
applications of Polarimetric Synthetic Aperture Radar (PolSAR) data. In the last three decades,
a considerable research effort has been devoted to finding accurate statistical models for PolSAR data,
and a number of distributions have been proposed. In order to see the differences of various models
and to make a comparison among them, a survey is provided in this paper. Texture models, which
could capture the non-Gaussian behavior observed in high resolution data, and yet keep a compact
mathematical form, are mainly explained. Probability density functions for the single look data and
the multilook data are reviewed, as well as the advantages and applicable context of those models.
As a summary, challenges in the area of statistical analysis of PolSAR data are also discussed.
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1. Introduction

Synthetic Aperture Radar (SAR) and Polarimetric SAR (PolSAR) are widely used for observation
of natural scenes. In most SAR or PolSAR systems, the size of a resolution cell is much larger than the
wavelength. The measured signal is then a coherent addition of the echoes from all individual targets
within that cell. Depending on the relative phases of each scattered wave, the coherent addition may
be constructive or destructive, and it produces a salt-and-pepper appearance known as speckle over
SAR images [1]. The target information, therefore, should be extracted through statistical analysis of
the data. Hence, an accurate statistical model to describe the data becomes very important for the
extraction of ground target properties [2–6].

Gaussian statistics for the radar returns have been frequently assumed when the spatial resolution
of PolSAR images is moderate and the speckle is fully developed [1,7,8]. Actually, the number of targets
in a resolution cell of low or medium resolution data is large. According to the Central Limit Theorem
(CLT), Gaussian statistics could give a proper approximation to the data distribution. The Gaussian
distribution is both mathematically tractable and efficient, making it very useful in specific applications.
For SAR or PolSAR data, the mean value of the complex echo is generally assumed to be zero, and all
the statistical properties are determined by the covariance matrix (or the coherency matrix) under the
Gaussian assumption.

As the image resolution increases, analysis of real PolSAR data, however, reveals that
non-Gaussian models give a more accurate representation of the data. The change of the observing
surface could also give rise to non-Gaussian distributed data. Applications based on such models
have better performance [2,4,9,10]. A common way to introduce non-Gaussianity is to divide the
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randomness of the radar images into two unrelated factors, texture and speckle. The texture models
the natural spatial variation of the radar cross section, whereas the speckle, following a Gaussian
distribution, conveys the polarimetric information. The texture and the speckle are incorporated with
a product operation which leads to a doubly stochastic model called product model [11]. In the last
two decades, a considerable research effort has been dedicated to investigate accurate product models
for PolSAR data [12–16].

Another way to model the non-Gaussian behavior of PolSAR data is the so called finite mixture
model [17–19], which assumes the data under analysis is a discrete mixture of different targets.
This makes sense in certain scenes such as urban areas, which usually consist of coherent targets like
houses and roads, as well as distributed targets like trees and grass. The backscattering from the urban
area is a combination of different scattering mechanisms. It has been shown that for complex regions
with irregular histograms, multimodal or spiky for example, the finite mixture model is more accurate
than a single distribution [17].

As summarized in [20], there are many non-Gaussian distributions, including the Weibull
distribution, the lognormal distribution, and the α-stable distribution, suggested for the
one-dimensional SAR data. However, these distributions are difficult to generalize to the
multidimensional PolSAR data. A possible solution to this problem is to consider the idea of
copulas [21]. First, we can use various non-Gaussian distributions to model the data of each
polarimetric channel separately (called marginal distribution), and then introduce some common
multivariate distributions to model the dependence of these marginal distributions. With the copulas,
different marginal distributions and simple correlation structure can make up complex distributions
for the PolSAR data [22,23].

As we can see, there are many statistical models proposed for the PolSAR data from different
aspects. In this paper, a survey of these models is provided. PDFs for the single look data and the
multilook data are mainly reviewed, as well as the advantages of those models. Analysis of real
PolSAR data are performed using different statistical methods to evaluate the models.

The remainder of this paper is organized as follows. First, a few basic concepts of the polarimetric
SAR are introduced, especially the notation employed in this paper. Then, statistics of the fully
developed speckle will be discussed. Properties of the single look data and the multilook data are
studied under the Gaussian assumption. The introduction of texture is followed, along with the widely
studied texture models, including both the scalar texture models and the multi-texture models. Finally,
finite mixture models as well as copula based models are detailed. Several experiments to validate
applicability of different models are also given. Challenges in statistical modeling is summarized at
the end.

2. Polarimetric SAR

PolSAR systems measure the properties of a distant target by detecting the change of the
polarization state that the target induces to the incident wave. Let the polarized incident wave
Ei and scattered wave Es be expressed as the Jones Vectors [24]

Ei =

[
Ei

h
Ei

v

]
Es =

[
Es

h
Es

v

]
(1)

where h represents the horizontal polarization state and v the vertical polarization state. It is possible
to relate the incident and the scattered waves by means of a 2× 2 complex matrix [24][

Es
h

Es
v

]
=

e−jkz

z

[
Shh Shv
Svh Svv

] [
Ei

h
Ei

v

]
(2)

where z is the distance between the target and the receiving antenna, and k is the wave number of
the illuminating wave. The 2× 2 transformation matrix is generally referred to as scattering matrix
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and denoted by S. It characterizes the target under observation with four complex-valued scattering
coefficients. The diagonal elements of the scattering matrix receive the name “co-pol”, since they relate
the same polarization for the incident and the scattered waves. The off-diagonal elements are known
as “cross-pol” terms as they relate orthogonal polarization states [24].

The definition of S depends on the coordinate systems. There are two principal conventions
concerning the coordinate systems where the polarimetric scattering process can be considered:
Forward Scattering Alignment (FSA) and Back Scattering Alignment (BSA) [24]. The difference lies
in the way the coordinate system is selected to describe the polarization state of the scattered wave.
The FSA is usually used when the transmitter and the receiver are not placed at the same spatial
location, for example, for bistatic radar measurements. In contrast, the BSA is often adopted in
monostatic radar measurements, in which the transmitting and receiving antennas are collocated in
space. In this paper, we assume that the BSA convention is employed.

The interaction between the electromagnetic waves with a reciprocal medium follows the vector
reciprocity theorem, which states that if we transmit a polarization state PA from position A, then the
component polarized in the PB direction at position B is equal to the PA component of the scattered
radiation when we illuminate the same object from B with polarization PB [25]. The reciprocity theorem
applies to ground targets generally [25]. In the BSA coordinate system, the reciprocity theorem says
that the cross-pol channels of the scattering matrix are equal, that is Shv = Svh. Therefore, there are
only three independent complex coefficients required to characterize the scatterer under observation.

In many cases, it is more flexible to represent the scattering matrix S as a vector which is known
as scattering vector. The vectorization can be performed through [26]

k =
1
2

Tr(SΨ) (3)

where Tr(·) is the matrix trace and Ψ is a 2× 2 complex matrix from a basis set which are constructed
as an orthonormal set under the Hermitian inner product. The lexicographic basis and the Pauli basis
are the most common ones in the context of radar polarimetry. The selection of the basis to vectorize
the scattering matrix depends on the final purpose of the vectorization itself. When studying the
statistical behavior of the PolSAR data, the lexicographic basis is more convenient due to its simplicity.
The lexicographic basis set consists of the straightforward lexicographic ordering of the elements of
the scattering matrix. For a reciprocal target, the scattering vector in this case can be expressed as

k =

 Shh√
2Shv
Svv

 (4)

Targets under observation are commonly situated in a dynamically changing environment and
are subjected to spatial and temporal variations. Despite the radar system transmits a perfectly
polarized wave, the wave scattered by the target is partially polarized [25]. Such scatterers are called
distributed targets. The analysis of this type of targets can not be performed exactly by one target but
a population of targets. More precisely, they are analyzed by introducing the concept of space and
time varying stochastic processes, where the targets are described by the second order moments such
as the polarimetric coherency or covariance matrices.

The covariance matrix is defined as the expectation of the outer product of the target vector with
its transpose conjugate

Σ = E{kk†} =

 E{ShhS∗hh}
√

2 E{ShhS∗hv} E{ShhS∗vv}√
2 E{ShvS∗hh} 2 E{ShvS∗hv}

√
2 E{ShvS∗vv}

E{SvvS∗hh}
√

2 E{SvvS∗hv} E{SvvS∗vv}

 (5)
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where (·)† and (·)∗ denote the transpose conjugate and conjugate, respectively. In practice, the number
of scattering vectors used to calculate the expectation is limited. Let L denote the number of pixels to
compute the average, the PolSAR data are then represented by the so-called sample covariance matrix

CL =
1
L

L

∑
i=1

kik†
i (6)

where ki is the ith scattering vector. The averaging is also called multilook processing which can be
employed to reduce the speckle of PolSAR data, with L referring to the number of looks.

3. Gaussian Statistics

Under the assumption that the speckle is fully developed, it has been experimentally verified that
the Gaussian statistics generally provide a good fit to SAR data, especially in homogeneous natural
areas [7,27–30]. The multivariate Gaussian distribution, which is both mathematically tractable and
efficient, is proper to model the scattering vectors when the surface roughness is relatively low, the
spatial resolution is moderate, and a large number of scatterers are present [1,24]. The Gaussian
assumption indicates that the statistical properties of the data are determined by the covariance matrix.
The sample covariance matrix in this case follows a complex Wishart distribution, which is widely
used in the applications of PolSAR data. There exist also some variations of the Wishart distribution
that are shown to be more accurate in certain circumstances.

3.1. Gaussian Distribution

When a radar illuminates an area of a random surface containing many elementary scatterers, the
scattering vector, z, can be modeled as having a d-dimensional complex Gaussian distribution with
zero mean. The Probability Density Function (PDF) is given by [31]

p(z; Σ) =
1

πd|Σ|
exp(−z†Σ−1z) (7)

where | · | is the determinant operation. The complex Gaussian distribution is denoted by z ∼ CN (0, Σ)

for brevity. The real and imaginary parts of any complex element of z are assumed to follow a circular
Gaussian distribution. Consider the ith element zi = xi + jyi for example, the joint PDF of the real and
the imaginary parts can be written as

p(xi, yi; σi) =
1

πσ2
i

exp

(
−

x2
i + y2

i
σ2

i

)
(8)

where σ2
i = Σii. Let ri be the amplitude and θi be the phase of a complex value, then the real part of zi

can be written as xi = ri cos θi, and the imaginary part as yi = ri sin θi. The Jacobian determinant of
the transform from (xi, yi) to (ri, θi) is given by

J =

∣∣∣∣∣cos θi −ri sin θi
sin θi ri cos θi

∣∣∣∣∣ = ri (9)

Subsequently, the joint PDF of the amplitude and the phase can be obtained from (8) after changing
variables, giving

p(ri, θi; σi) =
ri

πσ2
i

exp

(
−

r2
i

σ2
i

)
(10)
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The circular Gaussian assumption implies that the phase θi is uniformly distributed over (−π, π],
and independent from the amplitude. Averaging over the phase, therefore, gives the PDF of
the amplitude

p(ri; σi) =
2ri

σ2
i

exp

(
−

r2
i

σ2
i

)
(11)

Equation (11) is known as the Rayleigh distribution, with mean value σi
√

π/2. The intensity of
the ith channel, Ii = x2

i + y2
i = r2

i , can be easily proved to have a negative exponential distribution

p(Ii; σi) =
1
σ2

i
exp

(
− Ii

σ2
i

)
(12)

with mean value E{Ii} = σ2
i and variance Var{Ii} = σ4

i . This distribution shows that the useful
information is described by a single degree of freedom, corresponding to the mean intensity.

Besides the intensity, the joint properties of two different polarimetric channels are of great interest.
Considering two polarimetric channels zi = xi + jyi and zk = xk + jyk, the complex correlation
coefficient is determined by

ρejϕ =
Σik√
ΣiiΣkk

(13)

where ρ and ϕ are, respectively, the amplitude and the phase of the complex correlation coefficient.
The joint PDF of the real part and the imaginary part can be derived from (7), which is given as
follows [30,32,33]

p(xi, yi, xk, yk) =
1

π2ψ2(1− ρ2)
exp

(
−

σ2
k (x2

i + y2
i ) + σ2

i (x2
k + y2

k)

ψ2(1− ρ2)

+
2ψρ[(xixk + yiyk) cos ϕ + (xkyi − xiyk) sin ϕ]

ψ2(1− ρ2)

) (14)

where σ2
i = Σii, σ2

k = Σkk and ψ = σiσk. Write the complex values in the polar form, i.e.,
riejθi = xi + jyi and rkejθk = xk + jyk, by changing variables from (xi, yi, xk, yk) to (ri, θi, rk, θk), the
previous distribution becomes

p(ri, θi, rk, θk) =
rirk

π2ψ2(1− ρ2)
exp

(
−

σ2
k r2

i + σ2
i r2

k − 2ψrirkρ cos(θi − θk − ϕ)

ψ2(1− ρ2)

)
(15)

We are interested in the distributions of the product of the two amplitudes z = rirk, and the phase
difference φ = θi − θk, since their values reflect the correlation between different polarimetric channels.
It can be shown that the Jacobian determinant of the transform from (ri, rk, θi, θk) to (ri, z, θi, φ) is−1/ri.
Thus the following distribution can be obtained after changing variables

p(ri, z, θi, φ) =
z

π2ψ2(1− ρ2)

1
ri

exp
(
−

σ2
k r2

i +
σ2

i z2

r2
i
− 2ψρz cos(φ− ϕ)

ψ2(1− ρ2)

)
(16)

from which the joint PDF of z and φ can be further derived by integrating over θi and ri and employing
the equality (A1)

p(z, φ) =
2z

πψ2(1− ρ2)
exp

(
2ρz cos(φ− ϕ)

ψ(1− ρ2)

)
K0

(
2z

ψ(1− ρ2)

)
(17)
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Here Kv is the modified Bessel function of the second kind of order v [34]. The marginal
distribution of the product of the amplitudes, subsequently, is found to be

p(z) =
4z

ψ2(1− ρ2)
I0

(
2ρz

ψ(1− ρ2)

)
K0

(
2z

ψ(1− ρ2)

)
(18)

where I0(z) is the modified Bessel function of the first kind [34] resulting from the integral identity (A2).
Similarly, integrating (17) over the amplitudes and following the identity (A3) gives the marginal
distribution of the phase difference

p(φ) =
1− ρ2

2π(1− β2)

{
β√

β2 − 1
ln(−β +

√
β2 − 1) + 1

}
(19)

with β = ρ cos(φ − ϕ). Note that −β +
√

β2 − 1 is a complex number since β is less than 1.
Therefore, it can be represented in the polar form, e.g., −β +

√
β2 − 1 = exp(j(π − arccos β)), and as

a result, (19) becomes

p(φ) =
1− ρ2

2π(1− β2)

{
β(π − arccos β)√

1− β2
+ 1

}
(20)

The PDFs shown in (18) and (20) can be also found in [32,33]. The Gaussian assumption implies
that the statistics of the PolSAR data is completely determined by the covariance matrix. The properties
described by the multivariate distribution (7) can be analyzed separately by the intensity (12), the
product of amplitudes (18) and the phase difference (20).

3.2. Wishart Distribution

SAR data are frequently multilook processed for speckle reduction. Under the Gaussian
assumption, the sample covariance matrix CL follows a complex Wishart distribution, CL ∼ CW(L, Σ),
with PDF given by [31]

p(CL; L, Σ) =
LLd|CL|L−d exp(−L Tr(Σ−1CL))

Γd(L)|Σ|L (21)

where the normalization factor Γd(L) is defined as

Γd(L) = π
d(d−1)

2

d

∏
i=1

Γ(L− i + 1) (22)

with Γ(·) referring to the gamma function. The Wishart distribution is valid only if L ≥ d. The random
variables of this distribution are the diagonal terms of CL as well as the real and imaginary parts of the
upper (or lower) off-diagonal terms. For a d-dimensional radar signal, the total number of independent
variables is d2.

Considering only one polarimetric channel, from (21), we have the distribution of the intensity as

p(Ii; L, σi) =
1

Γ(L)

(
L
σ2

i

)L

IL−1
i exp

(
− L

σ2
i

Ii

)
(23)

It is known as the gamma distribution with mean value E{Ii} = σ2
i and variance

Var{Ii} = σ4
i /L [35]. The number of looks can be estimated using the mean and the variance of

the intensity

L̂ =
E2{Ii}
Var{Ii}

. (24)
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When L is equal to 1, the gamma distribution reduces to the exponential distribution (12).
The variances of the two different distributions show that the multilook process reduces the speckle by
scaling down the fluctuation magnitude with a factor 1/L.

For two polarimetric channels, saying channel i and channel k, the sample covariance matrix can
be written as

CL =

[
Ii Rik + jIik

Rik − jIik Ik

]
. (25)

Let ρejϕ represent the complex correlation coefficient, the joint distribution of Ii, Ik, Rik and Iik can
be derived from (21), giving

p(Ii, Ik, Rik, Iik) =
L2L(Ii Ik − R2

ik − I2
ik)

L−2

πΓ(L)Γ(L− 1)ψ2L(1− ρ2)L×

exp

(
−L

σ2
i Ik + σ2

k Ii − 2ρψ(Rik cos ϕ− jIik sin ϕ)

ψ2(1− ρ2)

) (26)

where σ2
i = Σii, σ2

k = Σkk, and ψ = σiσk. Write the off-diagonal element in the polar form,
zejφ = Rik + jIik, by changing variables from (Ii, Ik, Rik, Iik) to (Ii, Ik, z, φ), the following result can
be obtained

p(Ii, Ik, z, φ) =
zL2L(Ii Ik − z2)L−2

πΓ(L)Γ(L− 1)ψ2L(1− ρ2)L exp

(
−L

σ2
i Ik + σ2

k Ii − 2zρψ cos(φ− ϕ)

ψ2(1− ρ2)

)
(27)

The determinant of CL must be greater than 0, therefore, we have Ii Ik − z2 > 0. Integrating Ii
over (z2/Ik, ∞) using (A4) and then Ik over (0, ∞) using (A1) gives

p(z, φ) =
2LL+1zL

πΓ(L)ψL+1(1− ρ2)
exp

(
2Lzρ cos(φ− ϕ)

ψ(1− ρ2)

)
KL−1

(
2Lz

ψ(1− ρ2)

)
(28)

Subsequently, the marginal distribution of the amplitude can be obtained following the integral
identity (A2)

p(z) =
4LL+1zL

Γ(L)ψL+1(1− ρ2)
I0

(
2Lzρ

ψ(1− ρ2)

)
KL−1

(
2Lz

ψ(1− ρ2)

)
(29)

and the distribution of the phase difference by identity (A5)

p(φ) =
(1− ρ2)L

2
√

π(1− β)2L
Γ(2L)

Γ(L)Γ(L + 3
2 )

2F1

(
2L, L− 1

2
, L +

3
2

,
β + 1
β− 1

)
. (30)

where β = ρ cos(φ − ϕ), and 2F1(a, b; c; z) is the Gauss hypergeometric function [34]. Again, the
statistical properties of the multilook data can be analyzed separately using (23), (29) and (30).
The Wishart distribution is widely used in the modeling of PolSAR data [7,36–38], and there are
several variations that make the model more accurate or efficient.

3.2.1. Relaxed Wishart Model

Compared with the multivariate complex Gaussian distribution, the Wishart distribution depends
on an additional parameter, L, the number of looks. Assume that the multilook processing has different
contributions to different types of targets, Anfinsen et al. proposed a refined model called relaxed
Wishart distribution [39], in which the number of looks L is treated as a variable shape parameter.
In other words, the number of looks is assumed to be distinct in different areas. It is observed that
varying L gives a better representation of the data than using a constant L over all regions [39].
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3.2.2. Wishart-Kotz Distribution

Another variation of the Wishart distribution is the Wishart-Kotz model [40,41], which exhibits
the heavy tails needed to fit the data found in high resolution PolSAR images. In this model, there are
no special mathematical functions involved that limit the usefulness by inflicting high computational
cost and numerical instability. The sample covariance matrix in the Wishart-Kotz model is assumed to
follow a Wishart-Kotz type I distribution with PDF defined as [40]

p(CL; L, Σ, ρ, β) =
c|CL|L−d

|Σ|L (Tr(Σ−1CL))
β−1 exp(−[L Tr(Σ−1CL)]

ρ) (31)

with additional parameters ρ and β, and a normalization constant factor c

c =
ρLβ+Ld−1Γ(Ld)

Γd(L)Γ( β+Ld−1
ρ )

(32)

Here Γd(L) is the same as that in Wishart model, see (22). The Wishart-Kotz distribution is a
generalization of the Wishart distribution, which reduces to the latter when ρ = 1 and β = 1.

4. Texture Model

The properties of the fully developed speckle are detailed in the previous section. This section
illustrates how to model the texture statistically. There are two main manners to manage this:
(1) consider the texture as a scalar random variable, or (2) consider it as a vector having the same
dimension as the speckle component. They lead to the so called scalar texture model and multi-texture
model, respectively. The texture random variable is generally assumed to be positive with unity
mean. Therefore, it models the variation of the radar cross section only, leaving the intensities to the
speckle component [7,42]. The statistical properties could be described by a certain distribution, or just
a stochastic process without a specific PDF.

4.1. Scalar Texture Model

The scalar texture model assumes that the texture component in the product model is a positive
scalar random variable. The scattering vector in this case can be written as [7,11,43,44]

k =
√

τz (33)

where τ is the texture parameter with mean value equal to 1, and z is the speckle vector, following a
multivariate Gaussian distribution (7). The scalar texture model is also referred to as scale mixture
of Gaussian [4], or Sphereically Invariant Random Vector (SIRV) [45–47]. For the multilook data, the
sample covariance matrix can be expressed as

CL =
1
L

L

∑
i=1

τiziz†
i =

τ

L

L

∑
i=1

ziz†
i (34)

under the assumption that the texture has a higher spatial correlation than the speckle and the texture
parameter is constant over the multilook processing window [13].

For a known τ, (33) implies that the scattering vector k follows a complex Gaussian distribution
(see Section 3.1) with PDF given by

p(k|τ; Σ) =
1

πd|Σ|
1
τd exp

(
−k†Σ−1k

τ

)
(35)
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And the distribution of the sample covariance matrix is given by

p(CL|τ; L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
1

τLd exp
(
− L Tr(Σ−1CL)

τ

)
(36)

which is known as the Wishart distribution detailed in Section 3.2.
If the PDF of the texture random variable is not explicitly specified, τ can be viewed as an unknown

deterministic parameter from pixel to pixel [47]. According to the concept of SIRV, an approximate
maximum likelihood estimator for the texture parameter of each pixel is found to be [45,47]

τ̂i =
k†

i Σ̂−1ki

d

Σ̂ =
1
N

N

∑
i=1

kik†
i

τ̂i

(37)

where τ̂i is the texture parameter of the ith pixel, d is the dimension of the target vector, and N is the
number of pixels in the neighborhood. The estimators of the texture parameter and the covariance
matrix depend on each other. They can be decoupled using a recursive process. Inserting τ̂i into the
second line of the above equation, the covariance matrix in the (k + 1)th iteration can be estimated
by [45–47]

Σ̂k+1 =
d
N

N

∑
i=1

kik†
i

k†
i Σ̂−1

k ki
(38)

The process can be initialized by any matrix, even an identity matrix [47], and it is stopped when
the Frobenius distance between two consecutive estimated matrices reaches some limit. More details
about the existence as well as the convergence can be found in [46]. This estimator is referred to as
fixed point estimator [47].

On the contrary, if the texture random variable is specified by a distribution, averaging all possible
τ gives the unconditional or marginal PDF of the scattering vector

p(k; Σ) =
∫ ∞

0
p(k|τ; Σ)p(τ)dτ (39)

which is analytically solvable for some choices of p(τ). The PDF of the sample covariance matrix can
be obtained similarly by

p(CL; L, Σ) =
∫ ∞

0
p(CL|τ; L, Σ)p(τ)dτ (40)

A number of models have been proposed in the literature by introducing different distributions
for the texture component, including theK distribution [13], the G0 distribution [14,15], the Kummer-U
distribution [16], theW , and theM distribution [48], to represent different scenes of PolSAR data.
They are explained in the following subsections.

4.1.1. K Distribution

The K distribution, assuming that the texture is gamma distributed, is widely used to model
forests and the sea surface, and it can be unarguably regarded as one of the most successful radars
models [4,10,12,13]. The gamma distribution is given by [35]

p(x; α, θ) =
1

Γ(α)θα
xα−1 exp

(
− x

θ

)
(41)
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with shape parameter α and scale parameter θ. The mean value is µ = αθ. Let τ = x
µ to ensure the

mean value of the texture is equal to 1, the distribution can be written as

p(τ; α) =
αα

Γ(α)
τα−1 exp(−ατ) (42)

The PDF of the scattering vector k can be obtained by substituting the texture distribution into (39)
and employing the integral equality (A1)

p(k; α, Σ) =
1

πd|Σ|
2α

α+d
2

Γ(α)
(k†Σ−1k)

α−d
2 Kα−d

(
2
√

αk†Σ−1k
)

(43)

By the same procedure, inserting (42) into (40), we have the PDF of the sample covariance matrix
as follows

p(CL; α, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
2α

α+Ld
2

Γ(α)

(
L Tr(Σ−1CL)

) α−Ld
2 Kα−Ld

(
2
√

αL Tr(Σ−1CL)

)
(44)

4.1.2. Normal Inverse Gaussian (NIG)

The Normal Inverse Gaussian (NIG) distribution assumes that the texture follows an inverse
Gaussian distribution [49,50]. The PDF of the inverse Gaussian distribution is given by

p(x; µ, γ) =
( γ

2πx3

)1/2
exp

(
−γ(x− µ)2

2µ2x

)
(45)

where µ is the mean value. By letting µ equal to 1 and replacing the random variable x with τ, the
texture distribution becomes

p(τ; γ) =
( γ

2π

)1/2
τ−3/2eγ exp

(
−1

2

(γ

τ
+ γτ

))
(46)

Subsequently, the PDF of the scattering vector and the sample covariance matrix can be obtained
by following the integral Equation (A1), giving

p(k; γ, Σ) =
1

πd|Σ|

√
2γeγ

√
π

(
γ

2k†Σ−1k + γ

) 1+2d
4

Kd+ 1
2

(√
γ(γ + 2k†Σ−1k)

)
(47)

and

p(CL; γ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L

√
2γeγ

√
π

(
γ

2L Tr(Σ−1CL + γ

) 1+2Ld
4

×KLd+ 1
2

(√
γ(γ + 2L Tr(Σ−1CL)

) (48)

The NIG distribution has strong theoretical grounds derived from Brownian motion theory.
Experiments demonstrate that it usually gives a better representation of the data than the Wishart
distribution or the K distribution does, because the inverse Gaussian distribution captures larger
distribution shape variations than the gamma distribution [50]. In addition, the NIG distribution has
less trouble at boundary mixtures than the K distribution [50].
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4.1.3. G and G0 Distributions

It is shown that the G distribution and the G0 distribution have a good representation of extremely
heterogeneous regions such as urban areas [15]. Especially, the G0 distribution has the same number of
parameters as the K distribution, but without complex special functions like the Bessel function which
requires intensive computations [14,15].

The G distribution assumes that the texture parameter obeys the Generalized Inverse Gaussian
(GIG) law which is characterized by the PDF [14,51]

p(x; a, b, p) =
1

2Kp(
√

ab)

( a
b

) p
2 xp−1 exp

(
−1

2

(
b
x
+ ax

))
(49)

where a > 0, b > 0 and p is a real parameter. The mean value of this distribution is µ =
√

b
a

Kp+1(
√

ab)
Kp(
√

ab)
.

Letting τ = x
µ gives

p(τ; a, b, p) =
1
2

Kp
p+1(
√

ab)

Kp+1
p (
√

ab)
τp−1 exp

(
−
√

ab
2

(
Kp(
√

ab)

Kp+1(
√

ab)
1
τ
+

Kp+1(
√

ab)

Kp(
√

ab)
τ

))
(50)

which can be further rewritten as follows by replacing
√

ab with ω to reduce the number of parameters

p(τ; ω, p) =
1
2

Kp
p+1(ω)

Kp+1
p (ω)

τp−1 exp

(
−ω

2

(
Kp(ω)

Kp+1(ω)

1
τ
+

Kp+1(ω)

Kp(ω)
τ

))
(51)

Substituting (51) into (39) and (40), and calculating the integral using (A1) leads to

p(k; ω, p, Σ) =
1

πd|Σ|
1

ηpKp(ω)

(
η2 +

2η

ω
k†Σ−1k

) p−d
2

Kp−d

(√
ω2 +

2ω

η
k†Σ−1k

)
(52)

and

p(CL; ω, p, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
1

ηpKp(ω)

(
η2 +

2η

ω
L Tr(Σ−1CL)

) p−Ld
2

× Kp−Ld

(√
ω2 +

2ω

η
L Tr(Σ−1CL)

) (53)

where η =
Kp(ω)

Kp+1(ω)
. The above expressions are the PDFs of the scattering vector and the sample

covariance matrix following G distributions [14,52].
The G0 distribution can be obtained from the G distribution by letting a→ 0. Representing the

modified Bessel function Kv(z) using (A6), Equation (49) becomes

p(x; a, b, p) =
2p−1Γ

(
p + 1

2

)
bp√π

xp−1 exp
(
−1

2

(
b
x
+ ax

))
×
(∫ ∞

1
e−
√

abt(t2 − 1)p− 1
2 dt
)−1

(54)

If a → 0, p = −λ, b = 2β, then after calculating the integral via (A7), the PDF of the GIG
distribution is reduced to

p(x; λ, β) =
βλ

Γ(λ)
x−λ−1 exp

(
− β

x

)
(55)
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Equation (55) is known as the inverse gamma distribution, or the reciprocal of the gamma
distribution, with mean value µ = β

λ−1 . Let τ = x
µ to ensure the mean value of the texture τ is equal

to 1, the PDF becomes

p(τ; λ) =
(λ− 1)λ

Γ(λ)
τ−λ−1 exp

(
−λ− 1

τ

)
(56)

The PDFs of the scattering vector and the sample covariance matrix of the G0 distribution can
be obtained by plugging the texture distribution into (39) and (40) respectively, and calculating the
integral by (A9), giving

p(k; λ, Σ) =
1

πd|Σ|
Γ(λ + d)(λ− 1)λ

Γ(λ)

(
λ− 1 + k†Σ−1k

)−λ−d
(57)

and

p(CL; λ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
Γ(λ + Ld)(λ− 1)λ

Γ(λ)

(
λ− 1 + L Tr(Σ−1CL)

)−λ−Ld
(58)

Another extreme case of the GIG distribution is the gamma distribution when b→ 0, which leads
to the K distribution [14].

4.1.4. Kummer-U Distribution

Assuming that the texture parameter follows a Fisher distribution, also known as the
F-distribution or the Fisher-Snedecor distribution, with PDF given by [35]

p(x; d1, d2) =
1

B( d1
2 , d2

2 )

(
d1

d2

) d1
2

x
d1
2 −1

(
1 +

d1

d2
x
)− d1+d2

2
(59)

where d1 > 0 and d2 > 0, the scattering vector or the sample covariance matrix are Kummer-U
distributed, with the ability to model different types of textures, because the Fisher distribution covers
a large range of distributions [16,53]. The mean value of the Fisher distribution is µ = d2

d2−2 . Let τ = x
µ

to ensure the mean value of the texture variable equal to 1, we have the distribution for the texture as

p(τ; ξ, ζ) =
Γ(ξ + ζ)

Γ(ξ)Γ(ζ)
ξ

ζ − 1

(
ξ

ζ − 1
τ

)ξ−1 ( ξ

ζ − 1
τ + 1

)−ξ−ζ

(60)

Here parameters d1 and d2 are replaced by ξ = d1/2 and ζ = d2/2 to make the expression more
concise. Inserting the texture distribution into (39), the PDF of the scattering vector can be calculated by

p(k; ξ, ζ, Σ) =
Γ(ξ + ζ)

Γ(ξ)Γ(ζ)πd|Σ|

(
ξ

ζ − 1

)ξ

×

∫ ∞

0
τξ−1−d

(
ξ

ζ − 1
τ + 1

)−ξ−ζ

exp
(
−k†Σ−1k

τ

)
dτ

(61)

Replacing τ by ζ−1
ξ t−1, and using (A10) to calculate the integral results into the distribution of

the scattering vector

p(k; ξ, ζ, Σ) =
1

πd|Σ|
Γ(ξ + ζ)Γ(ζ + d)

Γ(ξ)Γ(ζ)

(
ξ

ζ − 1

)d

×U
(

d + ζ, d− ξ + 1,
ξ

ζ − 1
k†Σ−1k

) (62)

where U(a, b, z) is the hyper-geometric function of the second kind [34]. By the same procedure, the
distribution of the sample covariance matrix can be obtained as
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p(CL; ξ, ζ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
Γ(ξ + ζ)Γ(ζ + Ld)

Γ(ξ)Γ(ζ)

(
ξ

ζ − 1

)Ld

×U
(

Ld + ζ, Ld− ξ + 1,
ξ

ζ − 1
L Tr(Σ−1CL)

) (63)

As a matter of fact, Fisher distributions are the Pearson VI solutions and cover a large range of
distributions. It is not only confined to urban scenes, but also fits reasonably in forest and agricultural
fields [16,53]. The behavior of the head and tail of the distribution can be controlled by the two
parameters ξ and ζ.

4.1.5. W Distribution

TheW distribution assumes the texture to follow a beta distribution [48], which is given by [35]

p(x; α, β) =
1

B(α, β)
xα−1(1− x)β−1, x ∈ [0, 1] (64)

The mean value of the beta distribution is µ = α
α+β . Let τ = x

µ , ξ = α, ζ = α + β, the distribution
of the normalized texture can be written as

p(τ; ξ, ζ) =
Γ(ζ)

Γ(ξ)Γ(ζ − ξ)

ξ

ζ

(
ξ

ζ
τ

)ξ−1 (
1− ξ

ζ
τ

)ζ−ξ−1
, τ ∈ [0,

ζ

ξ
] (65)

The distribution of the scattering vector in this case can be calculated by

p(k; ξ, ζ, Σ) =
Γ(ζ)

Γ(ξ)Γ(ζ − ξ)πd|Σ|

(
ξ

ζ

)ζ−1
×

∫ ζ
ξ

0
τξ−1−d

(
ζ

ξ
− τ

)ζ−ξ−1
exp

(
−k†Σ−1k

τ

)
dτ

(66)

which leads to the following result according to the integral identity (A11)

p(k; ξ, ζ, Σ) =
1

πd|Σ|
Γ(ζ)
Γ(ξ)

(
ξ

ζ

) ξ+d−1
2 (

k†Σ−1k
) ξ−d−1

2 ×

exp
(
− ξ

2ζ
k†Σ−1k

)
W d+1+ξ−2ζ

2 , ξ−d
2

(
ξ

ζ
k†Σ−1k

) (67)

where Wa,b(z) is Whittaker W function [34]. The distribution of the sample covariance matrix can be
obtained by the same way

p(CL; ξ, ζ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
Γ(ζ)
Γ(ξ)

(
ξ

ζ

) ξ+Ld−1
2 (

L Tr(Σ−1CL

) ξ−Ld−1
2 ×

exp
(
− ξ

2ζ
L Tr(Σ−1CL)

)
W Ld+1+ξ−2ζ

2 , ξ−Ld
2

(
ξ

ζ
L Tr(Σ−1CL)

) (68)

4.1.6.M Distribution

Another possible distribution for the texture is the beta prime distribution, also known as inverted
beta distribution, with PDF given by [35]

p(x; α, β) =
1

B(α, β)
xα−1(1 + x)−α−β, x > 0 (69)
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The mean value can be calculated by µ = α
β−1 . Again, scale the random variable to ensure the

mean value is equal to 1 by letting τ = β−1
α+β−1 (1 + x), the above distribution becomes

p(τ; ξ, ζ) =
Γ(ζ)

Γ(ξ)Γ(ζ − ξ)

ζ − 1
ξ − 1

(
ζ − 1
ξ − 1

τ

)−ζ ( ζ − 1
ξ − 1

τ − 1
)ζ−ξ−1

, τ >
ξ − 1
ζ − 1

(70)

where the parameters are changed to ζ = α + β, ξ = β to make the expression brief. Equation (70) is
the texture distribution of theM distribution [48]. According to the product model, the distribution of
the scattering vector can be calculated by

p(k; ξ, ζ, Σ) =
Γ(ζ)

Γ(ξ)Γ(ζ − ξ)πd|Σ|

(
ξ − 1
ζ − 1

)ξ

×

∫ ∞

ξ−1
ζ−1

τ−ζ−d
(

τ − ξ − 1
ζ − 1

)ζ−ξ−1
exp

(
−k†Σ−1k

τ

)
dτ

(71)

Employing the integral identity (A12), we have the PDF of the scattering vector as

p(k; ξ, ζ, Σ) =
1

πd|Σ|
Γ(ζ)Γ(ξ + d)
Γ(ξ)Γ(ζ + d)

(
ζ − 1
ξ − 1

)d
M
(

ξ + d, ζ + d,− ζ − 1
ξ − 1

k†Σ−1k
)

(72)

and the PDF of the sample covariance matrix as

p(CL; ξ, ζ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
Γ(ζ)Γ(ξ + Ld)
Γ(ξ)Γ(ζ + Ld)

(
ζ − 1
ξ − 1

)Ld

×M
(

ξ + Ld, ζ + Ld,− ζ − 1
ξ − 1

L Tr(Σ−1CL)

) (73)

Here M(a, b, z) is the confluent hypergeometric function of the first kind, also known as the
KummerM function [34]. TheW distribution and theM distribution are able to model data with low
variance but extreme skewness, which is particularly relevant to data with textural variability after a
speckle filtering [48].

4.1.7. Wishart-Generalized Gamma Distribution

The Wishart-Generalized Gamma (WGΓ) distribution employs the generalized gamma
distribution to model the texture. The generalized gamma distribution has a more compact form
and a larger variety of alternative distributions, with the gamma, the Weibull, the Rayleigh, and
the exponential distributions being its special cases. Thus it is of greater flexibility in the statistical
modelling [54]. The PDF of the generalized gamma distribution is given by [35]

p(x; v, θ, k) =
v

θΓ(k)

( x
θ

)kv−1
exp

(
−
( x

θ

)v)
, v > 0, θ > 0, k > 0 (74)

which reduces to the gamma distribution (41) when v = 1. The mean value is given by
µ = θΓ(k + 1

v )/Γ(k). Scaling the mean value to 1, the PDF for the texture is obtained as

p(τ; v, k) =
vβkv

Γ(k)
τkv−1e−(βτ)v

(75)

where β = Γ(k + 1
v )/Γ(k). The distribution of the scattering vector k then can be calculated by

p(k; v, k, Σ) =
vβkv

Γ(k)πd|Σ|

∫ ∞

0
τkv−d−1 exp

(
−(βτ)v − k†Σ−1k

τ

)
dτ (76)
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There is no closed form expression for the above equation, but it can be solved numerically [54].
The distribution of the sample covariance matrix can be calculated by

p(CL; v, k, L, Σ) =
vβkvLLD|CL|L−d

Γ(k)I(L, d)|Σ|L
∫ ∞

0
τkv−Ld−1 exp

(
−(βτ)v − L Tr(Σ−1CL)

τ

)
dτ (77)

It is reported that the WGΓ distribution could provide better fitness than the K and Kummer-U
distributions for different land cover types of homogeneous, heterogeneous, and extremely
heterogeneous terrains [54].

4.1.8. Generalized K Distribution

The well-known gamma distribution sometimes cannot fit the texture distribution accurately
in very heterogeneous areas. In order to improve the flexibility of the model, it is assumed that the
texture follows a Laguerre expansion of the gamma distribution [55], with its PDF given by

p(τ; α, µ) =
τα−1

Γ(α)

(
α

µ

)
exp

(
−ατ

µ

) ∞

∑
u=0

ξu
Γ(α)u!

Γ(u + α)
Lα−1

u

(
ατ

µ

)
(78)

where µ, the mean value, is normally assumed to be equal to 1, and

ξu =
u

∑
k=0

(−1)k
(

u + α− 1
u− k

)
1
k!

(
α

µ

)k
E{xk} (79)

The Laguerre polynomial Lα−1
u (x) is given by

Lα−1
u (x) =

u

∑
k=0

(−1)k
(

u + α− 1
u− k

)
xk

k!
(80)

The PDF of the sample covariance matrix in this case can be expressed as [55]

p(CL; α, µ, L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L
αα

Γ(α)µα
×

∞

∑
u=0

ξu
Γ(α)u!

Γ(u + α)

u

∑
k=0

(−1)k

2
k!

(u + α− 1)!
(u− k)!(α− 1 + k)!

(
α

µ

)k ( Lµ Tr(Σ−1CL)

α

) α+k−Ld
2

Kα+k−Ld

(
2
√

α

µ
L Tr(Σ−1CL)

) (81)

which is a weighted combination of a series of K distributions based on a Laguerre polynomial
expansion. It shows that the generalized K distribution gives a better approximation than the K
distribution when there exist strong scatterers in the scene [55].

4.2. Multi-Texture Model

In the scalar texture model, different polarimetric channels are assumed to have a common texture
variable. However, if the electromagnetic wave sees different geometrical or dielectric properties of
the target, and if those properties are spatially modulated, then the texture of each channel should be
different [56]. For example, in scattering from forest areas, volume scattering will affect the cross-pol
component stronger than the co-pol channels, whereas surface scattering will have the opposite
effect [57]. The scalar texture model must, therefore, be extended to take into consideration the
different radar cross section modulations in polarimetric channels. One solution is to allow for a vector
component of the texture in the product model. This type of models are called multi-texture models.
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Under the assumption of reciprocity, there are only three independent complex coefficients
required to characterize the scatterer under observation. The multi-texture model then can be
formulated as [57–60]

k = Λ1/2z (82)

where z represents the speckle, following a multivariate Gaussian distribution (see Section 3.1), and
Λ is a diagonal matrix containing texture variables for each channel

Λ =

τhh 0 0
0 τhv 0
0 0 τvv

 (83)

The texture parameters are assumed to be positive, and we have E{Λ} equal to I, the identity
matrix. Assuming that the texture variables are constant on the scale of the multilook processing
window, the sample covariance matrix can be written as

CL =
1
L

L

∑
i=1

kikT
i = Λ1/2WΛ1/2 (84)

where W is Wishart distributed, see Section 3.2.
Provided that the distributions of the texture variables are known, the PDF of the scattering vector

can be calculated using

p(k; Σ) =
∫

Ω+
p(k|Λ; Σ)p(Λ)dΛ (85)

where Ω+ is the set of all diagonal matrices with non-negative entries. After changing variable by
z = Λ−1/2k, the conditional distribution of k on Λ can be obtained from (7), giving

p(k|Λ; Σ) =
1

πd|Σ||Λ|
exp

(
−k†Λ−1/2Σ−1Λ−1/2k

)
(86)

By the similar way, we have the distribution of the sample covariance matrix as [57,59]

p(CL; L, Σ) =
∫

Ω+
p(CL|Λ; L, Σ)p(Λ)dΛ (87)

where

p(CL|Λ; L, Σ) =
LLd|CL|L−d

Γd(L)|Σ|L|Λ|L exp
(
−L Tr(Σ−1Λ−1/2CLΛ−1/2)

)
(88)

Different texture variables for the multi-texture model can be: (1) totally dependent, in which
case it reduces to the scalar texture model, (2) independent from each other, that is, texture variables
follow different distributions with different parameters, or (3) partially correlated [58,61]. In many
cases, it is reasonable to assume co-pol channels have the same texture but different from that of
the cross-pol channels. This type of models is usually referred to as dual-texture model [57,59,62].
For reciprocal media with reflection symmetry for example, the PDF of the sample covariance matrix
can be expanded as [59]

p(CL; L, Σ) =
L3L|CL|L−3

I(L, 3)|Σ|L
∫ ∞

0
exp

(
−L

q22c22

Tx

)
p(Tx)

TL
x

dTx×∫ ∞

0
exp

(
−L

q11c11 + q13c31 + q31c13 + q33c33

Tco

)
p(Tco)

T2L
co

dTco

(89)
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where qij and cij denote the (i, j)th entry of matrix CL and Σ respectively. The texture of the co-pol
channels is represented by Tco and that of the cross-pol channel by Tx.

4.2.1. Correlated K Distribution

The correlated K distribution assumes that the texture variables of different polarimetric channels
are partially correlated, each following a gamma distribution [58,61]. Unfortunately, there is no explicit
expression for the joint distribution of the texture variables, or the correlated gamma distribution.
In this model, the texture of polarimetric channel i, specified by the PDF (42) with parameter α, is
given by [61]

τi =
1

2α

2α

∑
k=1

[g(k)i ]2 (90)

where g(k)i is the ith element of the vector g(k), k = 1, · · · , 2α, which is Gaussian distributed with zero
mean, variance one, and correlation matrix T. The correlation properties of the texture variables is also
specified by T. The characteristic function of the vector containing all texture variables is [61]

C(ω) =
1

|I + j(1/α)TW|α (91)

where W is a diagonal matrix having the entry (i, i) equal to the ith element of the characteristic
function variable ω. This model requires that all polarimetric channels have the same half-integer
distribution parameter α, e.g., 0.5, 1.5, 2.5 and so on.

4.2.2. Dual-Texture G Distribution

The dual-texture G distribution is derived by considering different texture variables for co-pol
and cross-pol channels. Both the co-pol and the cross-pol texture variables are modelled by the GIG
distributions (49), which yields a more flexible multivariate distribution [62]. Under the assumption
of reciprocity and reflection symmetry, the statistical properties of the single look complex data is
characterized by the distribution [62]

p(k; Σ, θ) =
1

πd|Σ|

2

∏
i=1

(η2
i + 2ηisi/ωi)

pi−d+i
2

η
pi
i Kpi (ωi)

Kpi−d+i

(√
ω2

i + 2ωisi/ηi

)
(92)

where θ = {ω, pi, ηi} consists of all parameters for the GIG texture distributions (see Section 4.1.3),
s1 = z11c11 + z13c31 + z31c13 + z33c33, and s2 = z22c22, with zij and cij indexing entries of Z = kk† and
Σ respectively.

5. Other Models

To model a complex scene using texture models, we often need to introduce complicated
distributions with many parameters to describe the statistical behavior of the texture component.
However, having more parameters requires a more complicated estimation process by considering
higher order statistics. In addition, higher order moment estimators are known to have higher
variance. With the limited sample sizes used in the modelling, such complicated modelling may be
very inefficient [50]. To overcome this problem, some researchers try to divide a complex model into
multiple simple components and then find a way to combine these components together. The finite
mixture model and copula based model detailed as follows are based on this idea.

5.1. Finite Mixture Model

The heterogeneity that appears in PolSAR data may result from the mixture of different targets.
For instance, from an urban area which usually consists of different objects like houses, trees and roads,
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the backscattering is a combination of different scattering mechanisms. The forest areas sometimes can
be treated as a mixture of bright clutters and dark ones, corresponding to the strong returns from the
crowns of trees and the shadows behind them. To represent this type of data, a simple model would be
inappropriate. Finite mixture models, instead, could achieve reasonable level of accuracy [17–19,63,64].

Assume that the region under analysis can be modeled by a mixture of K components, then the
overall PDF of the data can be written as a weighted sum of the probabilities of each component [65]

p(x; θ) =
K

∑
k=1

wk pk(x; θk) (93)

where θ is a vector containing all the parameters of the distribution and the mixing proportions obey

K

∑
k=1

wk = 1, wk ≥ 0 (94)

It has been shown that for complicated regions with more irregular histograms (multimodal,
spiky), the finite mixture model is more accurate than a single distribution [17–19].

There are many options for the distributions of the mixing components, but here we mainly focus
on the mixture of Wishart distributed components. For different mixing components, the number of
looks are the same. The PDF, therefore, can be written as

p(CL; L, θ) =
LLd|CL|L−d

Γd(L)

K

∑
k=1

wk exp(−L Tr(Σ−1
k CL))

|Σk|L
(95)

where θ = {Σk, k = 1, · · · , K} and Γd(L) is given by (22). The PDF of the ith channel intensity, which
is also a finite mixture, is found to be

p(Ii; L, θ) =
IL−1
i

Γ(L)

K

∑
k=1

(
L

σ2
k,i

)L

exp

(
− L

σ2
k,i

Ii

)
(96)

where σ2
k,i = [Σk]ii. The most interesting property of a mixture density is that the shape of the density

is extremely flexible. A mixture density may be multimodal, or even if it is unimodal, may exhibit
considerable skewness or additional humps. For this reason, finite mixture distributions offer a flexible
way to describe rather heterogeneous data by summarizing the characteristics of the data in terms of
the number and the spread of the mixture components [65].

5.2. Copula Based Model

Copulas are popular in high-dimensional statistical applications as they allow one to easily
model and estimate the distribution of random vectors by estimating marginals and dependence
separately [21]. They are of great interest for two main reasons: (1) as a way to study scale-free measures
of dependence; and (2) as a starting point for constructing families of multivariate distributions [21].
For the PolSAR data, we often have a much better idea about the marginal behaviour of individual
polarimetric channels than we do about their dependence structure. The copula approach allows us
to combine our more developed marginal models with a variety of possible dependence models to
investigate the statistical behavior of the data.

A d-dimensional copula, denoted by C(u) = C(u1, . . . , ud), is a joint Cumulative Distribution
Function (CDF) of a d-dimensional random vector on the unit hypercube [0, 1]d with uniform marginals.
More specifically, a copula is a function C from [0, 1]d to [0, 1] with the following properties [21,66]:
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1. C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0, the copula is equal to 0 if at least one parameter is 0.
2. C(1, . . . , 1, ui, 1, . . . , 1) = ui, the copula is equal to ui if all parameters are 1 except ui.
3. For each hyperrectangle B = ∏d

i=1[xi, yi] ⊆ [0, 1]d where xi ≤ yi, the C-volume of B is
non-negative

∑
z∈×d

i=1{xi ,yi}
(−1)N(z)C(z) ≥ 0 (97)

where z represents the corners of the hyperrectangle, and N(z) = #{k : zk = xk} is the number of
elements in z reaching the lower bound of the hyperrectangle.

According to Sklar’s Theorem, any multivariate joint distribution can be written in terms of
univariate marginal distribution functions and a copula which describes the dependence structure
between the variables [21]

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (98)

where Fi is the continuous marginal CDF Fi(x) = P(Xi ≤ x). The copula C contains all information
about the dependence structure whereas the marginal cumulative distribution functions Fi contains all
information about an individual random variable.

There are many parametric copula families available, which usually have one or more parameters
controlling the strength of dependence. The most popular ones include the elliptical copulas (such as
the Gaussian copula and the student t copula), and the Archimedian copulas. In the context of PolSAR
data modeling, the Ali-Mikhail-Haq copula which belongs to the Archimedian family is demonstrated
to be appropriate [22,23,67]. The Gaussian copula is also found to be proper to model the wavelet
coefficients [68]. Though it is a hot topic, the study of copulas and the role they play in statistics and
stochastic processes is a subject still in its infancy. There are many open problems and much work to
be done.

6. Model Analysis

In the previous sections, the statistical models proposed for the PolSAR data are reviewed, with
an emphasis on the derivation of PDFs for the scattering vector and the sample covariance matrix.
The models are categorized into three groups: (1) Gaussian Models, (2) Texture Models, and (3) The
Others. Table 1 shows a summary of all these models. As we can see, texture models are still the
main focus in statistical modeling of PolSAR data. Several examples of the texture distributions with
different distribution parameters are plotted in Figure 1.

In the remaining of this section, we will show some experimental results on the applicability of
different statistical models.

First of all, two homogeneous Regions Of Interest (ROI) over the farmland of a RADARSAT-2
image are analyzed, as shown in Figure 2. The data, in single look complex format, has a spatial
resolution of 11.1 m × 7.6 m (Range × Azimuth). It was acquired over Flevoland (The Netherlands)
with the Fine Quad-Pol mode during the ESA-led AgriSAR 2009 campaign. Statistical properties
are analyzed separately by the histograms of the intensity, the product of amplitudes and the phase
difference between two polarimetric channels. To tell whether Gaussian distributions are proper or not,
the histograms are compared with the PDFs defined by (12), (18) and (20). The covariance matrices of
the Gaussian distributions are estimated using the simple mean estimator.

Figure 2 shows the fit of the HH intensity, and the fit of the product of HH Channel and HV
channel. It demonstrates that the histograms conform to the corresponding PDFs, implying that
Gaussian distributions are suitable for these crops areas. Though it could work, the comparison of
histogram and PDF is not visually effective, see Figure 2f,g for example. So in the next experiments we
will try different methods to validate the applicability of statistical models.

As mentioned in the previous sections, the spatial resolution of PolSAR images is one of the most
important factors that have strong impact on the data statistics. To demonstrate this, real SAR data
including a RADARSAT-2 Fine Quad-Pol data (RST2) as well as a F-SAR X-band full-pol data (FSAR)
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are analyzed. The two data have quite different spatial resolutions, 11.1 m × 7.6 m for the RST2 data,
and 0.25 m × 0.25 m for the FSAR data. Three ROIs over the crops area from each data are tested, see
Figure 3a,b. For the RST2 data, each ROI covers 50× 50 pixels. The ROIs in the FSAR data are much
larger thanks to a higher spatial resolution, each covering 200× 200 pixels. The Pauli decomposition
shows that the ROIs in both images are very homogeneous, no appreciable texture is observed.

Table 1. Summary of statistical PolSAR data models.

Category Model PDF References Summary

G
au

ss
ia

n

Gaussian (7) [31,33] Simple, high mathematical tractability, suitable for
data of low or moderate spatial resolution.Wishart (21) [31–33]

Relaxed Wishart (21) [39] More flexible than the Wishart distribution, but
assigning different values to the number of looks L
is not so convincing.

Wishart-Kotz (31) [40,41] With ability to model heavy tail behaviors,
computationally efficient and numerically stable,
but at the expense of adding two more parameters.

Te
xt

ur
e

M
od

el
s

K (43), (44) [4,7,10] Suitable for non-Gaussian data, widely used to
model forest, ocean and so on, strong physical
background.

NIG (47), (48) [49,50] Large shape variations, strong theoretical grounds
derived from Brownian motion.

G (52), (53) [14,15,52] Able to model different types of texture, but
requires more parameters (two parameters).

G0 (57), (58) [14,15] Suitable for extremely heterogeneous data, no
complex special function involved.

Kummer-U (62), (63) [16,53] Able to model different types of texture, but
requires more parameters (two parameters), texture
distribution belongs to Pearson family.

W (67), (68) [5] Able to model data with low variance but extreme
skewness, e.g., textured data after speckle filtering.M (72), (73) [5]

WGΓ No Explicit [54] Of great flexibility (generalization of many other
distributions), but the PDF needs to be calculated
numerically.

Generalized K (81) [55] Good approximation of data when there exist
strong scatterers, very complex PDF with
polynomial expansions.

Correlated K No Explicit [58,61] Able to model texture correlations of different
channels, no explicit expression for the texture
variables, distribution parameters are limited to
specific values.

Dual-Texture G (92) [62] Different texture distributions for the co-pol and
the cross-pol channels.

O
th

er
s

Finite Mixture (93) [17–19] Extremely flexible (covering both unimodal and
multimodal distributions), able to model data
with considerable skewness, suitable for rather
heterogeneous data.

Copula Based No Explicit [22,67] Divides complex multivariate distributions into
marginal distributions and dependence structure,
and analyze them separately, but it is not very
straightforward to choose the best copulas.

Normalized Intensity Moments (NIM) are employed to determine whether the Gaussian
distributions are suitable for the test ROIs or not [9,69]. Let I denote the intensity of a polarimetric
channel, the NIM of the vth order is defined as

NIMv =
E{Iv}
Ev{I} (99)
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For Gaussian distributed data, the intensity will follow an exponential distribution as defined
in (12). The NIMs in this case are independent of the data, which can be calculated by

NIM∗v = Γ(v + 1) (100)

By comparing the estimated values from the data with those of Gaussian distributions, we can
easily make conclusions on the applicability of Gaussian distributions.

The HH channel is analyzed for both the RST2 data and the FSAR data. Results are shown in
Figure 3c,d, where black lines represent theoretical values of the exponential distribution and different
markers represent values estimated from the test ROIs. As it can be seen, the NIMs estimated from
the RST2 data fit those calculated from the exponential distribution very well. Same results can be
obtained for the HV channel and the VV channel. It is rational to conclude that these ROIs can be
modeled by Gaussian distributions. In contrast, the result on the FSAR data shows different behaviors.
There are large discrepancies between the estimated values and the theoretical values for all ROIs.
Apparently, Gaussian distributions are not accurate any more.

A further validation on the FSAR data is performed. Assuming that the intensity of each ROI can
be modeled by a Weibull distribution, then the distribution parameter, denoted by γ, can be estimated
using the first order moment. Furthermore, the NIM of the vth order can be computed by

NIM†
v =

Γ
(

1 + v
γ

)
Γv
(

1 + 1
γ

) (101)

In Figure 3e, the estimated NIMs (markers) and those calculated using the above equation
(lines) are plotted for each ROI. The Weibull distribution seems to be applicable in ROI 2 and ROI 3.
Compared with the exponential distribution, the Weibull distribution could capture larger variance by
introducing an additional distribution parameter. However, even the Weibull distribution could not
give an accurate representation for ROI 1. Complex distributions with more parameters may achieve
reasonable fit.
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Figure 1. Examples of different texture distributions. (a) PDFs of the gamma (gamma(6) and gamma(10)),
the inverse gamma (inv gamma(6) and inv gamma(10)) and the GIG (gig(8, 10) and gig(16, 10))
distributions. (b) PDFs of the Fisher (Fisher(10, 8) and Fisher(10, 16)), the beta (beta(10, 16)),
the inverted beta (inv beta(10, 16)), and the generalized gamma (gen gamma(2, 6) and gen
gamma(2, 10)) distributions.
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Figure 2. Histograms of two homogeneous areas in a RADARSAT-2 image and the PDFs under
Gaussian assumption. Parameters of the Gaussian distributions are estimated using moments. (a) Pauli
decomposition of the RADARSAT-2 data and two ROIs. (b,c) Intensity of the Shh. (d,e) Amplitude of
ShhShv. (f,g) Phase of ShhShv.
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Figure 3. NIMs of the 2nd, the 3rd and the 4th order estimated from three crops areas in a RADARSAT-2
data and a F-SAR data. (a) Pauli decomposition and ROIs of the RADARSAT-2 image. (b) Pauli
decomposition and ROIs of the F-SAR image. (c) NIMs of the ROIs in the RADARSAT-2 data and the
exponential distribution. (d) NIMs of the ROIs in the F-SAR data and the exponential distribution.
(e) NIMs of the ROIs in the F-SAR data and Weibull distributions.

In general, the Weibull distribution is advisable to model the intensity of high resolution single
channel data. However, for PolSAR data, the correlations between different polarimetric channels
convey useful information, besides the intensities. In order to describe the statistical behavior correctly,
copulas (introduced in Section 5.2) can be adopted. By modeling the dependence structure between
polarimetric channels using copulas, and the intensities by Weibull distributions, a good approximation
of the data could be expected. However, how to choose the proper copulas needs to be investigated
intensively. We haven’t found a copula capturing the dependency properly for the testing ROIs.

Another aspect that causes non-gaussianity in PolSAR data is the fluctuation of radar cross section
due to the change of surface properties, e.g., height of the observing surface. Usually, this type of
data should be modeled using texture distributions. To validate the applicability of texture models,
two PolSAR images, the RADARSAT-2 Fine Quad-Pol data (RST2) and the ALOS-2 level 1.1 Full-Pol
data (ALOS2), are analyzed. Both images were acquired over Barcelona (Spain) with similar incidence
angles. The spatial resolution is different, 11.1 m × 7.6 m (Range × Azimuth) for the RST2 data
and 3.49 m × 3.84 m for the ALOS2 data, respectively. Original data are in the single look complex
format, from which the sample covariance matrices are obtained after applying a multilook processing.
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We have selected ROIs locating at similar positions in the urban area, in the agriculture area, in the sea
and the forest areas. Pauli decomposition of the test data and ROIs are shown in Figure 4.

Matrix variate log-cumulants [42] are used to examine the suitability of texture models. The matrix
variate log-cumulants are of great value for the analysis of sample covariance matrix, and that they
can be employed to derive estimators for the distribution parameters with low bias and variance [42].
Different from the NIMs, there is no need to study each polarimetric channel separately with matrix
variate log-cumulants. Define the Mellin kind matrix-variate characteristic function as the Mellin
Transform of the PDF

φ(s) =
∫

Ω+

|Z|s−d p(Z)dZ (102)

then, the vth-order log-cumulant, or Mellin kind cumulant, is given by

κv =
dv

dsv ln φ(s)
∣∣∣∣
s=d

(103)

Meanwhile, the sample log-cumulants can be estimated from the data using

κ̂v = µ̂v −
v−1

∑
i=1

(
v− 1
i− 1

)
κ̂iµ̂v−i (104)

where µ̂v is the estimated log-moments

µ̂v =
1
M

M

∑
i=1

(ln |Ci|)v (105)

with M denoting the number of samples and Ci the ith sample covariance matrix.
To see if a texture model is applicable, we can compare the log-cumulants calculated from the

PDF (κv) and those estimated from the sample data (κ̂v). In [42], a diagram is proposed to visualize
the comparison by plotting the second order log-cumulants κ2 against the third order log-cumulants
κ3 in a plane, where different distributions place in different regions, as shown in Figure 4c,d. In this
diagram, estimated log-cumulants are represented by the "+" markers (values from different ROIs
are distinguished by various colors), and theoretical values of different texture distributions are
represented by curves (the K and the G0 distributions) as well as regions (the Kummer-U , theM and
theW distributions).

From Figure 4, we can see that the urban areas (red and green rectangles) can be modeled by the
G0 or the Kummer-U distributions, which have the capability to model heterogeneous areas. The two
ROIs in urban area represent two different urban structures, one is of tall and densely distributed
apartments, the other is of short and sparse houses. This may be an explanation as to why different
statistics, the G0 vs the Kummer-U , are obtained. In agriculture areas (cyan and yellow rectangles),
K distribution is shown to be the most suitable model. The forest area (black rectangle) shows weak
texture in the RST2 data. In the ALOS2 data, there is a strong fluctuation in the backscattering due
to the radar foreshortening. To eliminate the effect of radar image distortions, another forest region
(purple rectangle) is analyzed, which is found to follow a K distribution. In most cases, texture is not
observed in the sea areas.

As explained in Section 5.1, the finite mixtures could also give rise to non-gaussian statistics.
To further distinguish textures from mixtures, higher order log-cumulants are required [70]. A large
number of samples are demanded in order to estimate the higher order log-cumulants correctly.
There are only 20× 20 pixels in each of the previous ROIs, not enough to obtain a satisfying estimation
of the fourth order log-cumulants. So another experiment is carried out on an airborne SAR data,
a UAVSAR image.
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(a) (b)

(c) (d)

Figure 4. Matrix variate log-cumulants of the 2nd and the 3rd order estimated from a RADARSAT-2
data and an ALOS-2 data. Theoretical values calculated from the K, the G0, the Kummer-U , theW ,
theM and the Wishart distributions are also plotted as references. (a) ROIs of the RADARSAT-2 data.
(b) ROIs of the ALOS-2 data. (c) Matrix variate log-cumulants of the RADARSAT-2 data. (d) Matrix
variate log-cumulants of the ALOS-2 data.

The test site is in the West Panhandle of Florida (USA), and the data is in the multilook
cross-product slant range format, with number of looks in the range dimension and azimuth dimension
equal to 3 and 12 respectively. The ENL is estimated as 12.73 over a homogeneous sea area. Four ROIs
covering land types of ocean area (ROI 1), forest (ROI 2), wetland (ROI 3), and urban area (ROI 4), are
tested, see Figure 5. Thanks to a higher spatial resolution, 1.67 m × 0.8 m (Range × Azimuth), each
ROI contains 90× 70 pixels, much more samples than those in the previous experiment.
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Figure 5. Test regions on the UAVSAR data. Four ROIs over different land types are tested, including
the sea, the forest, the wetland and the urban area.

The log-cumulants of the second order, the third order and the fourth order are calculated.
From the log-cumulant diagrams (Figure 6a,b), we can see that different ROIs show different statistical
behaviors. The ocean area can be modeled by a Wishart distribution, and the forest by a K distribution.
The wetland and the urban area are very heterogeneous, especially the urban area, which has a very
small κ3. The point clouds representing estimated statistics are less widely spread than those in
Figure 4c,d. This is because more samples are used to estimate the values.

The fourth order log-cumulant is considered to further discriminate the texture from mixture.
As shown in Figure 6c,d, the log-cumulants of major texture models can construct a smooth surface,
while those of the finite mixture model will lie below this surface. The results show that texture models
are proper for the sea area and forest area, while a finite mixture model make a better representation
than a texture model for the wetland area and the urban area, because the point clouds estimated from
ROI 1 and ROI 2 are on the product model surface, whereas those from ROI 3 and ROI 4 are below it.
Actually, the Pauli decomposition in Figure 5 shows that the first two ROIs are very homogeneous
and ROI 3 consists of different targets. Urban area, made up of distributed targets and point targets
usually, has very large variance. This can be verified by the log-cumulant cube in Figure 6d, where
both of the absolute values of κ3 and κ4 are very large. The estimation of the number as well as the
weights of mixing components needs to be further studied.
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Figure 6. Log-cumulants of the 2nd, the 3rd and the 4th orders on the UAVSAR data. The right column
and the left column are the same results but with different axes limits. (a,b) Log-cumulants of the 2nd
and the 3rd order. ROIs over different ground targets show different statistics. (c,d) Log-cumulant
up to the 4th order. It shows some ROIs can be modeled by texture models, while others should be
represented using finite mixture model.

At last, statistical properties of the sea area at two different conditions are examined. One is
with smooth surface, and the other with waves, as shown in Figure 7. Both data are acquired
by RADARSAT-2 at C-band, and they have similar spatial resolutions. To study the textures of
different polarimetric channels, the intensity of each channel is checked separately using the scalar
log-cumulants [42,71]. The second order and the third order log-cumulants are employed as before.
From Figure 7, we can see that in the first case, no texture is observed in all polarimetric channels. This can
be also validated by the Pauli decomposition. When there exist sea waves, however, the log-cumulants
are quite different. The HH channel and the VV channel have similar statistics, but different from those
of the HV channel. In other words, multi-texture is observed in the test area. The result supposes that
we can model the data using a dual-texture model in which the co-pol channels share a same texture
distribution and the cross-pol channel with another one. The correlation between different textures needs
to be further investigated to see if a partially correlated texture distribution is required.
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Figure 7. Scalar log-cumulants of different polarimetric channels (the HH, the HV and the VV channels)
over sea areas. (a) Test region over smooth sea surface. (b) Test region over sea surface with waves.
(c) Log-cumulants of the smooth sea surface. (d) Log-cumulants of the sea surface with waves.

7. Challenges

When the spatial resolution is not very high and the data is very homogeneous, the Gaussian
distributions could provide a good representation of the data. As the spatial resolution increases,
PolSAR data usually show non-Gaussian behaviour, e.g., exhibiting heavy tails. The texture models,
which adopt additional random variables to model the spatial variation of the radar cross section, are
found to be accurate for this kind of data. Texture models could model the non-Gaussian behavior
observed in high resolution data, and yet keep a compact mathematical form. However, to model
textures over complex scenes, sophisticated distributions are generally required. In addition, they are
known to present problems in estimating parameters accurately. General distributions that cover a
wide range of other distributions are suggested by many researchers. However, they usually have a
complex form. Using several simple distributions from a certain family, Pearson family for example,
could be a better idea. The distributions from a same family often have similar behaviors, but can be
further distinguished by statistics like higher order log-cumulants [70].

In the product model as shown in (33) or (34), positive random variable following any distribution
can be employed to model the texture. Additionally, PDFs of the scattering vector or the sample
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covariance matrix can be obtained subsequently after mathematical calculations. The PDFs, however,
give no information about why the data following a specific distribution is obtained. Most of the
texture models lack a physical explanation of the underlying scattering process. A possible way to
solve this problem could be the random walk model, which treats the received signal as an addition of
responses from all the scatterers in the same resolution cell [9,12,72]. The random walk model can be
interpreted as a discrete analog of the SAR focusing process.

Texture information has been used in optical image processing for a long time. In SAR or PolSAR
images, it is also found to be useful to distinguish different target types. For example, trees of different
heights can be distinguished by texture information [73]. However, currently the most common
way to make use of texture models is to design probability based algorithms (e.g., classification and
segmentation) by replacing the Gaussian distribution or the Wishart distribution [4–6]. How to extract
texture information and let PolSAR applications benefit from it is not involved. Apparently, combining
polarimetric information and texture information could improve the performance of applications since
more knowledge is introduced. Therefore, a further study in this aspect will be of great value.

Besides texture models, there are non-Gaussian models subdividing complicated distributions into
components, each with a simple distribution. For example, the finite mixture model treats a distribution
as a weighted sum of those of different target types. In addition, the copula based model divides a
multivariate distribution into marginal distributions and a general dependence structure. In the finite
mixture model, robust algorithms to estimate the mixing number and the mixing weights are in urgent
need. For the copula based method, we have many options for the marginal distributions. However,
for the dependence structure, not many experiments were implemented to show which copula is
the best. Additionally, it is a big challenge to extend the bivariate copulas which are intensively
investigated in the field of statistical analysis to multivariate ones to fit the PolSAR data.

The statistical properties of PolSAR data are characterized totally by the PDFs of the scattering
vectors or the sample covariance matrices. However, it is difficult to use these PDFs directly because
they are multivariate ones. Normally, the statistics of each polarimetric channel are studied separately,
and the correlation between different polarimetric channels are neglected. Another way is to analyze
the determinants of sample covariance matrices. The widely used matrix variate log-cumulant is an
example. However, we need to filter the data (the multilook process) to obtain the sample covariance
matrices, which could change the actual statistical properties of the data. To overcome these problems,
the l2-norms of the scattering vectors can be employed, and they are found to be a useful tool for
texture analysis of PolSAR data [73]. However, there are also limitations, e.g., the difference between
models are not very large.

In summary, statistical modeling and texture analysis of PolSAR data covers a wide range of
topics. To make a better understanding of texture and to make good use of it, there is still have a lot of
work to do.
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Abbreviations

The following abbreviations are used in this manuscript:

BSA Back Scattering Alignment
CDF Cumulative Distribution Function
CLT Central Limit Theorem
FSA Forward Scattering Alignment
GIG Generalized Inverse Gaussian
NIG Normal Inverse Gaussian
NIM Normalized Intensity Gaussian
PDF Probability Density Function
PolSAR Polarimetric SAR
ROI Region Of Interest
SAR Synthetic Aperture Radar
SIRV Spherically Invariant Random Vector

Appendix A

Some integral identities used in this paper are listed out here.

1. ([74] p. 368, Equation (3.471-9))

∫ ∞

0
xv−1 exp

(
− β

x
− αx

)
dx = 2

(
β

α

)v/2
Kv

(
2
√

βα
)

Re β > 0, Re α > 0

(A1)

Kv is the modified Bessel function of the second kind of order v.
2. ([74] p. 340, Equation (3.339)) ∫ π

0
exp(z cos x)dx = π I0(z) (A2)

I0(z) is the modified Bessel function of the first kind.
3. ([74] p. 702, Equation (6.624-1))∫ ∞

0
xe−αxK0(βx)dx =

1
α2 − β2

×

 α√
α2 − β2

ln

 α

β
+

√(
α

β

)2
− 1

− 1


(A3)

4. ([74] p. 347, Equation (3.382-2))∫ ∞

u
(x− u)ve−µxdx = µ−v−1e−uµΓ(v + 1), u > 1, Re v > −1, Re µ > 0 (A4)

5. ([74] p. 700, Equation (6.621-3))

∫ ∞

0
xµ−1e−αxKv(βx)dx =

√
π(2β)v

(α + β)µ+v
Γ(µ + v)Γ(µ− v)

Γ(µ + 1/2)

× 2F1

(
µ + v, v +

1
2

; µ +
1
2

;
α− β

α + β

)
Re µ > |Re v|, Re (α + β) > 0

(A5)

2F1(a, b; c; z) is the Gauss hypergeometric function.
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6. ([74] p. 917, Equation (8.432-3))

Kv(z) =

( z
2
)v Γ

(
1
2

)
Γ
(

v + 1
2

) ∫ ∞

1
e−zt(t2 − 1)v− 1

2 dt, Re (v +
1
2
) > 0, |arg z| < π

2
(A6)

7. ([74] p. 325, Equation (3.252-3))

∫ ∞

1
xµ−1(xp − 1)v−1 =

1
p

B
(

1− v− µ

p
, v
)

p > 0, Re v > 0, Re µ < p(1− Re v)
(A7)

8. The gamma function is defined as

Γ(t) =
∫ ∞

0
xt−1e−xdx. (A8)

Let x = β
y where β > 0, we have the following equation after changing variables

∫ ∞

0
y−t−1 exp

(
− β

y

)
dy = Γ(t)β−t (A9)

9. ([34] p. 505, Equation (13.2.5))∫ ∞

0
e−ztta−1(1 + t)b−a−1dt = Γ(a)U(a, b, z) (A10)

U is the confluent hypergeometric function of the second kind, or KummerU function.
10. ([74] p. 367, Equation (3.471-2))

∫ u

0
xv−1(u− x)µ−1 exp

(
− β

x

)
dx =β

v−1
2 u

2µ+v−1
2 Γ(µ)

× exp
(
− β

2u

)
W1−2µ−v

2 , v
2

(
β

u

)
Re µ > 0, Re β > 0, µ > 0

(A11)

W is Whittaker W function.
11. ([74] p. 368, Equation (3.471-5))

∫ ∞

u
xv−1(x− u)µ−1 exp

(
β

x

)
dx =B(1− µ− v, µ)uµ+v−1

×M
(

1− µ− v, 1− v,
β

u

)
0 < Re µ < Re (1− v), u > 0

(A12)

M is the confluent hypergeometric function of the first kind, also known as the
KummerM function.
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