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Abstract: This paper proposes a novel deep learning framework named bidirectional-convolutional
long short term memory (Bi-CLSTM) network to automatically learn the spectral-spatial features from
hyperspectral images (HSIs). In the network, the issue of spectral feature extraction is considered
as a sequence learning problem, and a recurrent connection operator across the spectral domain is
used to address it. Meanwhile, inspired from the widely used convolutional neural network (CNN),
a convolution operator across the spatial domain is incorporated into the network to extract the
spatial feature. In addition, to sufficiently capture the spectral information, a bidirectional recurrent
connection is proposed. In the classification phase, the learned features are concatenated into a
vector and fed to a Softmax classifier via a fully-connected operator. To validate the effectiveness of
the proposed Bi-CLSTM framework, we compare it with six state-of-the-art methods, including the
popular 3D-CNN model, on three widely used HSIs (i.e., Indian Pines, Pavia University, and Kennedy
Space Center). The obtained results show that Bi-CLSTM can improve the classification performance
by almost 1.5% as compared to 3D-CNN.

Keywords: feature learning; long short term memory; convolution operator; bidirectional recurrent
network; hyperspectral image classification

1. Introduction

Current hyperspectral sensors can acquire images with high spectral and spatial resolutions
simultaneously. For example, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor
covers 224 continuous spectral bands across the electromagnetic spectrum with a spatial resolution
of 3.7 m. Such rich information has been successfully used in various applications such as national
defense, urban planning, precision agriculture and environment monitoring [1].

For these applications, an essential step is image classification, whose purpose is to identify the
label of each pixel. Hyperspectral image (HSI) classification is a challenging task. Two important
issues exist [2,3]. The first one is the curse of dimensionality. HSI provides very high-dimensional
data with hundreds of spectral channels ranging from the visible to the short wave-infrared region
of the electromagnetic spectrum. These high-dimensional data with limited numbers of training
samples can easily result in the Hughes phenomenon [4], which means that the classification accuracy
starts to decrease when the number of features exceeds a threshold. The other one is the use of
spatial information. The improvement of spatial resolutions may increase spectral variations among
intra-class pixels while decreasing spectral variations among inter-class pixels [5,6]. Thus, only using
spectral information is not enough to obtain a satisfying result.
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To solve the first issue, a widely used method is to project the original data into a low-dimensional
subspace, in which most of the useful information can be preserved. In the existing literature, large
amounts of works have been proposed [7–10]. They can be roughly divided into two categories:
unsupervised feature extraction (FE) methods and supervised ones. The unsupervised methods
attempt to reveal low-dimensional data structures without using any label information of training
samples. These methods retain overall structure of data and do not focus on separating information
of samples. Typical methods include but are not limited to principal component analysis (PCA) [7],
neighborhood preserving embedding (NPE) [11], and independent component analysis (ICA) [12].
Different from these, the aim of supervised learning methods is to explore the information of labeled
data to learn a discriminant subspace. One typical method is linear discriminant analysis (LDA) [13,14],
which aims to maximize the inter-class distance and minimize the intra-class distance. In [8],
a non-parametric weighted FE (NWFE) method was proposed. NWFE extends LDA by integrating
nonparametric scatter matrices with training samples around the decision boundary [8]. Local Fisher
discriminant analysis (LFDA) was proposed in [15], which extends the LDA by assigning greater
weights to closer connecting samples.

To address the second issue, many works have been proposed to incorporate the spatial
information into the spectral information [16–18]. This is because the coverage area of one
kind of material or one object usually contains more than one pixel. Current spatial-spectral
feature fusion methods can be categorized into three classes: feature-level fusion, decision-level
fusion, and regularization-level fusion [3]. For feature-level fusion, one often extracts the spatial
features and the spectral features independently and then concatenates them into a vector [5,19–21].
However, the direct concatenation will lead to a high-dimensional feature space. For decision-level
fusion, multiple results are first derived using the spatial and spectral information, respectively,
and then combined according to some strategies such as the majority voting strategy [22–24].
For regularization-level fusion, a regularizer representing the spatial information is incorporated
into the original object function. For example, in [25,26], Markov random field (MRF) modeling, the
joint prior probabilities of each pixel and its spatial neighbors were incorporated into the Bayesian
classifier as a regularizer. Although this method works well in capturing the spatial information,
optimizing the objective function in MRF is time-consuming, especially on high-resolution data.

Recently, deep learning (DL) has attracted much attention in the field of remote sensing [27–30].
The core idea of DL is to automatically learn high-level semantic features from data itself in a
hierarchical manner. In [31,32], the autoencoder model has been successfully used for HSI classification.
In general, the inputs of the autoencoder model are a high-dimensional vector. Thus, to learn the
spatial features from HSIs, an alternative method is flattening a local image patch into a vector and then
feeding it into the model. However, this method may destroy the two-dimensional (2D) structure of
images, leading to the loss of spatial information. Similar issues can be found in the deep belief network
(DBN) [33]. To address this issue, convolutional neural network (CNN) based deep models have
been popularly used [2,34]. They directly take the original image or the local image patch as network
inputs, and use local-connected and weight sharing structure to extract the spatial features from HSIs.
In [2], the authors designed a CNN network with three convolutional layers and one fully-connected
layer. In addition, the input of the network is the first principal component of HSIs extracted by
PCA. Although the experimental results demonstrate that this model can successfully learn the spatial
feature of HSIs, it may fail to extract the spectral features. Recently, a three-dimensional (3D) CNN
model was proposed in [34]. In order to extract the spectral-spatial features from HSIs, the authors
consider the 3D image patches as the input of the network. This complex structure will inevitably
increase the amount of parameters, easily leading to the overfitting problem with a limited number of
training samples.

In this paper, we propose a bidirectional-convolutional long short term memory (Bi-CLSTM)
network to address the spectral-spatial feature learning problem. Specifically, we regard all the spectral
bands as an image sequence, and model their relationships using a powerful LSTM network [35].
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Similar to other fully-connected networks such as autoencoder and DBN, LSTM can not capture
the spatial information of HSIs. Inspired from [36], we replace the fully-connected operators in the
network by convolutional operators, resulting in a convolutional LSTM (CLSTM) network. Thus,
CLSTM can simultaneously learn the spectral and spatial features. In addition, LSTM assumes that
previous states affect future states, while the spectral channels in the sequence are correlated with each
other. To address this issue, we further propose a Bi-CLSTM network. During the training process of
the Bi-CLSTM network, we adopt two tricks to alleviate the overfitting problem. They are dropout
and data augmentation operations.

To sum up, the main contributions of this paper are as follows. First, we consider images in
all the spectral bands as an image sequence, and use LSTM to effectively model their relationships;
second, considering the specific characteristics of hyperspectral images, we further propose a unified
framework to combine the merits of LSTM and CNN for spectral-spatial feature extraction.

2. Review of RNN and LSTM

Recurrent neural network (RNN) [37,38] is an extension of traditional neural networks and used to
address the sequence learning problem. Unlike the feedforward neural network, RNN adds recurrent
edges to connect the neuron to itself across time so that it can model a probability distribution over
sequence data. Figure 1 demonstrates an example of RNN. The input of the network is a sequence
data {x1, x2, . . . , xT}. The node updates its hidden state ht, given its previous state ht−1 and present
input xt, by

ht = σ(Whxxt + Whhht−1 + b), (1)

where Whx is the weight between the input node and the recurrent hidden node, Whh is the weight
between the recurrent hidden node and itself from the previous time step, and b and σ are bias and
nonlinear activation function, respectively.

ℎ1

𝑥1 𝑥2

ℎ2

𝑥3

ℎ3

𝑥𝑇

ℎ𝑇

⋯
⋯RNN RNN RNN RNN

Figure 1. The structure of RNN.

As an important branch of the deep learning family, RNNs have recently shown promising
results in many machine learning and computer vision tasks [39,40]. However, it has been observed
that training RNN models to model the long-term sequence data is difficult. As can be seen from
Equation (1), the contribution of recurrent hidden node hm at time m to itself hn at time n may approach
infinity or zero as the time interval increases whether |Whh| < 1 or |Whh| > 1. This will lead to the
gradient vanishing and exploding problem [41]. To address this issue, Hochreiter and Schmidhuber
proposed LSTM to replace the recurrent hidden node by a memory cell. The memory cell contains a
node with a self-connected recurrent edge of a fixed weight one, ensuring that the gradient can pass
across many time steps without vanishing or exploding. The LSTM unit consists of four important
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parts: input gate it, output gate ot, forget gate ft, and candidate cell value C̃t. Based on these parts,
memory cell and output can be computed by:

ft = σ(Wh f · ht−1 + Wx f · xt + b f )

it = σ(Whi · ht−1 + Wxi · xt + bi)

C̃t = tanh(WhC · ht−1 + WxC · xt + bC)

Ct = ft ◦ Ct−1 + it ◦ C̃t

ot = σ(Who · ht−1 + Wxo · xt + bo)

ht = ot ◦ tanh(Ct),

(2)

where σ is the logistic sigmoid function, ‘·’ is a matrix multiplication operator, ‘◦’ is a dot product
operator, and b f , bi, bC as well as bo are bias terms. The weight matrix subscripts have obvious
meanings. For instance, Whi is the hidden-input gate matrix, and Wxo is the input-output gate
matrix etc.

3. Methodology

The flowchart of the proposed Bi-CLSTM model is shown in Figure 2. Suppose an HSI can be
represented as a 3D matrix X ∈ Rm×n×l with m× n pixels and l spectral channels. Given a pixel at the
spatial position (i, j) where 1 ≤ i ≤ m and 1 ≤ j ≤ n, we can choose a small sub-cube Xij ∈ Rp×p×l

centered at it. The goal of Bi-CLSTM is to learn the most discriminative spectral-spatial information
from Xij. Such information is the final feature representation for the pixel at the spatial position
(i, j). If we split the sub-cube across the spectral channels, then Xij can be considered as an l-length
sequence {(x1

ij, x2
ij, · · · , xl

ij)|xk
ij ∈ Rp×p×1, 1 ≤ k ≤ l}. The image patches in the sequence are fed into

the CLSTM one by one to extract the spectral feature via a recurrent operator and the spatial feature
via a convolution operator simultaneously.

Neighborhood of

the pixel vector

CLSTM
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Softmax

Probability of each label

⋯

⋯

⋯
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CLSTM CLSTM
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Figure 2. Flowchart of the Bi-CLSTM network for HSI classification. For a given pixel, a local cube
surrounding it is first extracted, and then unfolded across the spectral domain. The unfolded images
are fed into the Bi-CLSTM network one by one.
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CLSTM is a modification of LSTM, which replaces the fully-connected operators by convolutional
operators [36]. The structure of CLSTM is shown in Figure 3, where the left side zooms in its core
computation unit, called a memory cell. In the memory cell, ‘⊗’ and ‘⊕’ represent dot product and
matrix addition, respectively. For the k-th image patch xk

ij in the sequence Xij, CLSTM firstly decides

what information to throw away from the previous cell state Ck−1
ij via the forget gate Fk

ij. The forget

gate pays attention to hk−1
ij and xk

ij, and outputs a value between 0 and 1 after an activation function.
Here, 1 represents “keep the whole information” and 0 represents “throw away the information
completely”. Secondly, CLSTM needs to decide what new information to store in the current cell
state Ck

ij. This includes two parts: first, the input gate Ik
ij decides what information to update by

the same way as forget gate; second, the memory cell creates a candidate value C̃k
ij computed by

hk−1
ij and xk

ij. After finishing these two parts, CLSTM multiplies the previous memory cell state Ck−1
ij

by Fk
ij, adds the product to Ik

ij ◦ C̃k
ij, and updates the information Ck

ij. Finally, CLSTM decides what

information to output via the cell state Ck
ij and output gate Ok

ij. The above process can be formulated
as the following equations:

Fk
ij = σ(Wh f ∗ hk−1

ij + Wx f ∗ xk
ij + b f )

Ik
ij = σ(Whi ∗ hk−1

ij + Wxi ∗ xk
ij + bi)

C̃k
ij = tanh(Whc ∗ hk−1

ij + Wxc ∗ xk
ij + bc)

Ck
ij = Fk

ij ◦ Ck−1
ij + Ik

ij ◦ C̃k
ij

Ok
ij = σ(Who ∗ hk−1

ij + Wxo ∗ xk
ij + bo)

hk
ij = Ok

ij ◦ tanh(Ck
ij),

(3)

where σ is the logistic sigmoid function, ‘∗’ is a convolutional operator, ‘◦’ is a dot product, and b f , bi, bc

and bo are bias terms. The weight matrix subscripts have the obvious meaning. For example, Whi is the
hidden-input gate matrix, and Wxo is the input-output gate matrix etc. To implement the convolutional
and recurrent operator in CLSTM simultaneously, the spatial size of hk−1

ij and Ck−1
ij must be the same

as that of xk
ij (we use zero-padding [42] to ensure that input will keep the original spatial size after

convolution operation).
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Figure 3. The structure of CLSTM.

In the existing literature [43–45], LSTM has been well acknowledged as a powerful network to
address the orderly sequence learning problem based on the assumption that previous states will affect
future states. However, different from the traditional sequence learning problem, the spectral channels
in the sequence are correlated with each other. In [46], bidirectional recurrent neural networks (Bi-RNN)
was proposed to use both latter and previous information to model sequential data. Motivated by it,
we use a Bi-CLSTM network shown in Figure 2 to sufficiently extract the spectral feature. Specifically,
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the image patches are fed into the CLSTM network one by one with a forward and a backward
sequence, respectively. After that, we can acquire two spectral-spatial feature sequences. In the
classification stage, they are concatenated into a vector denoted as G and a Softmax layer is used to
obtain the probability of each class that the pixel belongs to. Softmax function ensures the activation of
each output unit sums to 1, so that we can deem the output as a set of conditional probabilities. Given
the vector G, the probability that the input belongs to category c equals

Pij(y = c|G, W, b) =
eWcG+bc

∑m eWmG+bm
, (4)

where W and b are weights and biases of the Softmax layer and the summation is over all the output
units. The pseudocode for the Bi-CLSTM model is given in Algorithm 1, where we use simplified
variables to make the procedure clear.

It is well known that the performance of DL algorithms depends on the number of training
samples. However, there often exists a small number of available samples in HSIs. To this end,
we adopt two data augmentation methods. They are flipping and rotating operators. Specifically,
we rotate the HSI patches by 90, 180, and 270 degrees anticlockwise and flip them horizontally and
vertically. Furthermore, we rotate the horizontally and vertically flipped patches by 90 degrees
separately. Figure 4 shows some examples of flipping and rotating operators. As a result, the number
of training samples can be increased by eight times. In addition, the data augmentation method,
dropout [47] is also used to improve the performance of Bi-CLSTM. We set some outputs of neurons to
zeros, which means that these neurons do not propagate any information forward or participate in
the back-propagation learning algorithm. Every time an input is sampled, network drops neurons
randomly to form different structures. In the next section, we will validate the effectiveness of data
augmentation and dropout methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The example of data augmentation. (a) the original image; (b–d) the images after rotation
of 90, 180, and 270 degrees anticlockwise; (e) vertical flip of (c); (f) horizontal flip of (d); (g–h) the
horizontally and vertically flipped images of (c,d).
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Algorithm 1: Algorithm for the Bi-CLSTM model.

Input: Training data X = {Xi}n
i=1, batch size m, the number of training samples n, the number

of spectral bands l, model parameters w.
Output: The trained model.

1 Randomly initialize w;
2 for each iteration do
3 for all k ∈ {1, 2, · · · , b n

m c} do
4 Sample a batch Xk from X; // m samples per batch
5 Split every sample in the batch to the sequence {X1

k , X2
k , · · · , Xl

k};
6 Feed sequential batch into CLSTM forward and backward, respectively, and get two

output sequences {h1
f k, h2

f k, · · · , hl
f k}, {h

1
bk, h2

bk, · · · , hl
bk}; // Equation (3)

7 Concatenate bidirectional sequences together: {[h1
f k, hl

bk], [h
2
f k, Xl−1

bk ], · · · , [hl
f k, h1

bk]}
and flatten it into a vector G;

8 Feed the vector G into the Softmax layer and obtain the classification result Pij; //
Equation (4)

9 Update w by minimizing the crossentropy loss −∑ Yij log Pij, using Adam algorithm
[48];

10 End for;

11 End for;

4. Experimental Results

4.1. Datasets

We test the proposed Bi-CLSTM model on three HSIs, which are widely used to evaluate
classification algorithms.

• Indian Pines: The first dataset was acquired by the AVIRIS sensor over the Indian Pine test site
in northwestern Indiana, USA, on 12 June 1992 and it contains 224 spectral bands. We utilize
200 bands after removing four bands containing zero values and 20 noisy bands affected by water
absorption. The spatial size of the image is 145× 145 pixels, and the spatial resolution is 20 m.
The false-colour composite image and the ground truth map are shown in Figure 5. The available
number of samples is 10,249 ranging from 20 to 2455 in each class.

• Pavia University: The second dataset was acquired by the reflective optics system imaging
spectrometer (ROSIS) sensor during a flight campaign over Pavia, northern Italy, on 8 July 2002.
The original image was recorded with 115 spectral channels ranging from 0.43 µm to 0.86 µm.
After removing noisy bands, 103 bands are used. The image size is 610× 340 pixels with a spatial
resolution of 1.3 m. A three band false-colour composite image and the ground truth map are
shown in Figure 6. In the ground truth map, there are nine different classes of land covers with
more than 1000 labeled pixels for each class.

• Kennedy Space Center (KSC): The third dataset was acquired by the AVIRIS sensor over Kennedy
Space Center (KSC), Florida, on 23 March 1996. It contains 224 spectral bands. We utilize 176 bands
of them after removing bands with water absorption and low signal noise ratio. The spatial size
of the image is 512× 614 pixels, and the spatial resolution is 18 m. Discriminating different
land covers in this dataset is difficult due to the similarity of spectral signatures among certain
vegetation types. For classification purposes, thirteen classes representing the various land-cover
types that occur in this environment are defined. Figure 7 demonstrates a false-colour composite
image and the ground truth map.
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Figure 5. Indian Pines scene dataset. (a) false-color composite of the Indian Pines scene; (b) ground
truth map containing 16 mutually exclusive land cover classes.
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Figure 6. Pavia University scene dataset. (a) false-color composite of the Pavia University scene;
(b) ground truth map containing nine mutually exclusive land cover classes.
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Figure 7. KSC dataset. (a) false-color composite of the KSC. (b) ground truth map containing
13 mutually exclusive land cover classes.

For Indian Pines and KSC datasets, we randomly select 10% pixels from each class as the training
set, and use the remaining pixels as the testing set. The same as the experiments in [3,49], we randomly
choose 3921 pixels as the training set and the rest of pixels as the testing set for the Pavia University
dataset. The detailed numbers of training and testing samples are listed from Tables 1–3.
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4.2. Experimental Setup

We compared the proposed Bi-CLSTM model with several FE methods, including regularized
local discriminant embedding (RLDE) [50], matrix-based discriminant analysis (MDA) [3], 2D-CNN,
3D-CNN, LSTM [49], and CNN+LSTM. We train DL models on a single TITAN X GPU and implement
them in TensorFlow. Additionally, we also directly use the original pixels as a benchmark. The optimal
reduced dimension for RLDE is chosen from [2, 30]. For MDA, the optimal window size is selected
from a given set {3, 5, 7, 9, 11}. For 2D-CNN and 3D-CNN, we take the same configuration as described
in [34]. For LSTM, we build a single recurrent layer with 128 hidden nodes. For CNN+LSTM, we apply
CNN to extract spatial features from each band and then employ LSTM to fuse them. The configuration
of CNN is the same as that in [34], and the number of hidden nodes in LSTM is 128. For Bi-CLSTM,
we build a bidirectional network with two CLSTM layers to extract features. Similar to CNN, the
convolution operation are followed by max-pooling in Bi-CLSTM, and we empirically set the size of
convolution kernel to 3× 3 and the number of convolution kernel to 32. Without loss of generality,
we initialize the state of CLSTM to zeros. The detailed configuration of Bi-CLSTM is listed in Table 4.
The dimension of each layer in Bi-CLSTM is detailed in Table 5, where l and C indicate the number of
spectral bands and classes, respectively, and F-CLSTM and B-CLSTM indicate forward and backward
CLSTM, respectively. When training Bi-CLSTM, we set the loss function to cross entropy and optimize
it by Adam algorithm with a learning rate of 10−3.

Table 1. Number of pixels for training/testing and the total number of pixels for each class in the
Indian Pines ground truth map.

No. Class Total Training Test

C1 Alfalfa 46 5 41
C2 Corn-notill 1428 143 1285
C3 Corn-mintill 830 83 747
C4 Corn 237 24 213
C5 Grass-pasture 483 48 435
C6 Grass-trees 730 73 657
C7 Grass-pasture-mowed 28 3 25
C8 Hay-windrowed 478 48 430
C9 Oats 20 2 18

C10 Soybean-notill 972 97 875
C11 Soybean-mintill 2455 246 2209
C12 Soybean-clean 593 59 534
C13 Wheat 205 21 184
C14 Woods 1265 127 1138
C15 Buildings-Grass-Trees-Drives 386 39 347
C16 Stone-Steel-Towers 93 9 84

Table 2. Number of pixels for training/testing and the total number of pixels for each class in the Pavia
University ground truth map.

No. Class Total Training Test

C1 Asphalt 6631 548 6083
C2 Meadows 18,649 540 18,109
C3 Gravel 2099 392 1707
C4 Trees 3064 524 2540
C5 Painted metal sheets 1345 265 1080
C6 Bare Soil 5029 532 4497
C7 Bitumen 1330 375 955
C8 Self-Blocking Bricks 3682 514 3168
C9 Shadows 947 231 716
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Table 3. Number of pixels for training/testing and the total number of pixels for each class in the KSC
ground truth map.

No. Class Total Training Test

C1 Scrub 761 76 685
C2 Willow swamp 243 24 219
C3 Cabbage palm hammock 256 26 230
C4 Cabbage palm/oak hammock 252 25 227
C5 Slash pine 161 16 145
C6 Oak/broadleaf hammock 229 23 206
C7 Hardwood swamp 105 11 94
C8 Graminoid marsh 431 43 388
C9 Spartina marsh 520 52 468

C10 Cattail marsh 404 40 364
C11 Salt marsh 419 42 377
C12 Mud flats 503 50 453
C13 Water 927 93 834

Table 4. Detailed configuration of Bi-CLSTM.

Direction Convolution MaxPooling Dropout

Forward 3 × 3 × 32 2 × 2 0.6
Backward 3 × 3 × 32 2 × 2 0.6

Table 5. The dimension of each layer in Bi-CLSTM.

Layer Input Conv-Output Pool-Output

F-CLSTM 64× 64× l 32× 32× l 16× 16× l
B-CLSTM 64× 64× l 32× 32× l 16× 16× l

Layer Input Output

Softmax 2× 16× 16× l C

In order to reduce the effects of random selection, all the algorithms are repeated five times and
the average results are reported. The classification performance is evaluated by the overall accuracy
(OA), the average accuracy (AA), the per-class accuracy, and the Kappa coefficient κ. OA defines the
ratio between the number of correctly classified pixels to the total number of pixels in the testing set,
AA refers to the average of accuracies in all classes, and κ is the percentage of agreement corrected by
the number of agreements that would be expected purely by chance. Clearly, larger values of the three
metrics correspond to better performance.

4.3. Parameter Selection

There are four important influence factors in Bi-CLSTM, including dropout, data augmentation,
network framework, and the size of input image patches. Firstly, to find the optimal size of image
patches, we fix the other three factors and select the size from four candidate values {8, 16, 32, 64}.
Table 6 demonstrates the effects of different sizes on OA of the KSC dataset. From this table,
we can observe that OA increases as the patch size increases, and 64× 64 size can achieve a high
enough accuracy. Since larger size will dramatically increase the computation time and the accuracy
improvement is limited, the optimal size can be chosen as 64× 64.

Secondly, to investigate the performance of bidirectional network structure, we fix the other
influence factors and compare forward CLSTM (F-CLSTM) with Bi-CLSTM on the KSC dataset. Here,
F-CLSTM is a forward network with the same configuration as Bi-CLSTM listed in Table 4. As shown
in Table 7, the bidirectional network indeed outperforms the ordinary forward network. This result
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certifies the effectiveness of Bi-CLSTM as compared to the forward CLSTM. Finally, we also validate
the effectiveness of dropout and data augmentation operators. We set the probability of dropout to the
common value 0.6, and fix the other influence factors. Table 8 reports the OA values with or without
dropout operator on the KSC dataset. It can be observed that using dropout can significantly improve
the accuracy from 94.41% to 99.13%. Similarly, we expand the number of training samples by eight
times as described in Section II and fix the other influence factors. Table 8 demonstrates that data
augmentation can improve the accuracy from 95.07% to 99.13%.

Table 6. OA of Bi-CLSTM with different sizes of input image patches on the KSC dataset.

Size 8 × 8 16 × 16 32 × 32 64 × 64

OA(%) 96.12 97.78 98.57 99.13

Table 7. OA of F-CLSTM and Bi-CLSTM on the KSC dataset.

Network F-CLSTM Bi-CLSTM

OA(%) 95.44 99.13

Table 8. OA of Bi-CLSTM on the KSC dataset with and without dropout and data augmentation.

Operator Yes No

Dropout 99.13 94.41
Data augmentation 99.13 95.07

4.4. Performance Comparison

To demonstrate the superiority of the proposed Bi-CLSTM model, we quantitatively and
qualitatively compare it with the aforementioned methods. Table 9 reports the quantitative results
acquired by eight methods on the Indian Pines dataset. From these results, we can observe that most
of the DL methods perform better than traditional methods. For 2D-CNN, it only uses the principal
component of all spectral bands, leading to the loss of spectral information. Therefore, the performance
obtained by 2D-CNN is inferior to that by MDA. For LSTM, it takes the hyperspectral pixel vector as
input without considering spatial-domain information, achieving the worst performance among all
methods. Different from 2D-CNN and LSTM, CNN+LSTM attempts to feed spatial features from each
band into the LSTM model to capture the spectral information, obtaining better performance than
MDA. This is because, as a neural network, CNN+LSTM is able to capture the nonlinear distribution
property of hyperspectral data, while the linear FE method MDA may fail. Nevertheless, the spectral
FE and spatial FE processes are independent, making the trained parameters in CNN+LSTM may
be not the optimal ones. 3D-CNN and Bi-CLSTM can address this issue by extracting spectral and
spatial features simultaneously, and achieve the higher OA, AA, and κ than CNN+LSTM. For 3D-CNN,
a specific number of spectral bands is taken as an input of the network every time. Therefore, it cannot
learn the relationships between non-adjacent spectral bands. Via recurrent connections, Bi-CLSTM can
model the correlations across all the spectral bands. Thus, compared to 3D-CNN, Bi-CLSTM improves
OA from 95.30% to 96.78%. Figure 8 demonstrates the classification maps achieved by eight different
methods on the Indian Pines dataset. It can be observed that Bi-CLSTM obtains more homogeneous
maps than other methods.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Classification maps using eight different methods on the Indian Pines dataset: (a) original;
(b) RLDE; (c) MDA; (d) 2D-CNN; (e) 3D-CNN; (f) LSTM; (g) CNN+LSTM; (h) Bi-CLSTM.

Similar results are demonstrated in Table 10 and Figure 9 on the Pavia University Scene
dataset. Again, 3D-CNN, CNN+LSTM, and Bi-CLSTM achieve better performance than other
methods. Specifically, OA, AA and κ obtained by 3D-CNN and CNN+LSTM are higher than MDA,
and Bi-CLSTM obtains better performance than 3D-CNN and CNN+LSTM. It is worth noting that the
improvement of OA, AA and κ from MDA to Bi-CLSTM is not remarkable as those on the Indian Pines
dataset because MDA has already obtained a high performance and a further improvement is very
difficult. Table 11 and Figure 10 show the classification results of different methods on the KSC dataset.
Similar to the other two datasets, Bi-CLSTM achieves the highest OA, AA and κ than other methods.

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 9. Classification maps using eight different methods on the Pavia University dataset: (a) original;
(b) RLDE; (c) MDA; (d) 2D-CNN; (e) 3D-CNN; (f) LSTM; (g) CNN+LSTM; (h) Bi-CLSTM.
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Table 9. OA, AA, per-class accuracy (%), κ and standard deviations after five runs performed by eight methods on the Indian Pines dataset using 10% pixels from each
class as the training set.

Label Original RLDE MDA 2D-CNN 3D-CNN LSTM CNN+LSTM Bi-CLSTM

OA 77.44 ± 0.71 80.97 ± 0.60 92.31 ± 0.43 90.14 ± 0.78 95.30 ± 0.34 72.22 ± 3.65 94.15 ± 0.84 96.78 ± 0.35
AA 74.94 ± 0.99 80.94 ± 2.12 89.54 ± 3.08 85.66 ± 3.24 92.02 ± 2.09 61.72 ± 3.38 90.30 ± 4.13 94.47 ± 0.83

κ 74.32 ± 0.78 78.25 ± 0.70 91.21 ± 0.50 88.73 ± 0.90 94.65 ± 0.39 68.24 ± 4.13 93.50 ± 1.00 96.33 ± 0.40

C1 56.96 ± 10.91 64.78 ± 15.25 73.17 ± 17.92 71.22 ± 15.75 92.68 ± 10.63 25.85 ± 17.47 91.06 ± 7.45 93.66 ± 6.12
C2 79.75 ± 2.77 78.39 ± 1.34 93.48 ± 1.42 90.10 ± 2.33 95.41 ± 2.58 66.60 ± 5.16 94.26 ± 2.58 96.84 ± 2.05
C3 66.60 ± 3.03 68.10 ± 2.16 84.02 ± 3.11 91.03 ± 2.73 96.16 ± 1.82 54.83 ± 8.31 95.29 ± 3.02 97.22 ± 2.02
C4 59.24 ± 7.14 70.80 ± 6.04 83.57 ± 2.23 85.73 ± 5.02 92.49 ± 4.48 43.94 ± 13.29 93.80 ± 7.08 96.71 ± 3.59
C5 90.31 ± 1.45 92.17 ± 1.97 96.69 ± 1.39 83.36 ± 5.75 87.89 ± 3.32 83.45 ± 4.45 84.78 ± 5.45 92.28 ± 3.82
C6 95.78 ± 1.64 94.90 ± 2.04 99.15 ± 0.51 91.99 ± 3.25 95.23 ± 2.21 87.76 ± 4.02 90.87 ± 6.10 99.39 ± 0.61
C7 80.00 ± 7.82 85.71 ± 6.68 93.60 ± 6.07 85.60 ± 12.20 86.67 ± 12.22 23.20 ± 20.47 84.00 ± 11.31 92.00 ± 9.80
C8 97.41 ± 0.84 99.12 ± 0.95 99.91 ± 0.13 97.35 ± 3.75 99.84 ± 0.27 95.40 ± 1.86 99.07 ± 1.57 99.91 ± 0.21
C9 35.00 ± 10.61 73.00 ± 21.10 63.33 ± 24.72 54.45 ± 23.70 72.22 ± 20.03 30.00 ± 15.01 55.56 ± 23.57 76.67 ± 21.66

C10 66.32 ± 3.18 69.73 ± 1.07 82.15 ± 2.23 75.38 ± 8.97 91.24 ± 1.77 71.29 ± 3.97 93.35 ± 5.45 95.93 ± 2.00
C11 70.77 ± 2.42 79.38 ± 0.56 92.76 ± 1.45 94.36 ± 0.48 97.59 ± 0.96 75.08 ± 5.53 98.82 ± 0.35 96.31 ± 1.46
C12 64.42 ± 3.92 72.28 ± 3.42 91.35 ± 2.26 78.73 ± 8.00 93.01 ± 3.09 54.49 ± 8.73 89.78 ± 4.43 93.33 ± 3.12
C13 95.41 ± 2.62 97.56 ± 1.38 99.13 ± 0.49 95.98 ± 4.82 96.56 ± 3.62 91.85 ± 3.90 95.65 ± 3.03 95.76 ± 3.72
C14 92.66 ± 1.77 92.36 ± 0.92 98.22 ± 0.39 96.80 ± 1.08 98.83 ± 0.89 90.37 ± 4.93 95.36 ± 4.35 99.49 ± 0.35
C15 60.88 ± 6.27 67.10 ± 6.39 87.84 ± 4.00 96.54 ± 2.54 90.01 ± 7.21 30.49 ± 2.02 95.53 ± 7.08 98.67 ± 1.11
C16 87.53 ± 1.95 89.68 ± 3.28 94.29 ± 6.43 81.90 ± 17.71 86.51 ± 5.36 62.86 ± 10.43 87.62 ± 4.00 87.38 ± 9.09

Table 10. OA, AA, per-class accuracy (%), κ and standard deviations after five runs performed by eight methods on the Pavia University Scene dataset using
3921 pixels as the training set.

Label Original RLDE MDA 2D-CNN 3D-CNN LSTM CNN+LSTM Bi-CLSTM

OA 89.12 ± 0.26 88.82 ± 0.25 96.95 ± 0.29 96.55 ± 0.85 97.65 ± 0.40 93.20 ± 0.71 97.11 ± 0.95 99.10 ± 0.16
AA 90.50 ± 0.06 90.45 ± 0.06 96.86 ± 0.23 97.19 ± 0.51 97.74 ± 0.48 93.13 ± 0.42 98.27 ± 0.77 99.20 ± 0.17

κ 85.81 ± 0.32 85.43 ± 0.31 95.93 ± 0.52 95.30 ± 1.13 96.80 ± 0.54 90.43 ± 0.91 96.09 ± 1.29 98.77 ± 0.21
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Table 10. Cont.

Label Original RLDE MDA 2D-CNN 3D-CNN LSTM CNN+LSTM Bi-CLSTM

C1 87.25 ± 0.57 87.20 ± 0.52 96.69 ± 0.41 96.72 ± 1.48 95.33 ± 3.73 91.33 ± 2.05 98.54 ± 0.94 98.56 ± 0.58
C2 89.10 ± 0.54 88.40 ± 0.52 97.76 ± 0.47 96.31 ± 1.75 97.99 ± 0.94 94.58 ± 1.77 95.51 ± 1.92 99.23 ± 0.39
C3 81.99 ± 1.05 81.69 ± 0.80 90.69 ± 1.44 97.15 ± 1.58 95.27 ± 1.81 83.93 ± 3.72 97.64 ± 3.68 99.27 ± 0.47
C4 95.65 ± 0.59 95.79 ± 0.56 98.44 ± 0.27 96.16 ± 1.29 98.49 ± 1.07 97.78 ± 2.36 98.80 ± 0.60 98.21 ± 0.92
C5 99.76 ± 0.14 99.87 ± 0.08 100.00 ± 0.00 99.81 ± 0.32 98.67 ± 1.26 99.46 ± 0.24 99.28 ± 0.59 99.87 ± 0.15
C6 88.78 ± 1.01 88.67 ± 0.67 96.26 ± 0.45 94.87 ± 3.62 99.21 ± 0.74 91.73 ± 4.17 98.40 ± 1.05 99.56 ± 0.29
C7 85.92 ± 0.93 86.06 ± 1.04 97.95 ± 0.62 97.44 ± 1.68 97.90 ± 1.36 90.76 ± 2.85 98.91 ± 1.86 99.75 ± 0.30
C8 86.14 ± 1.02 86.42 ± 0.73 93.98 ± 0.97 98.23 ± 0.91 97.84 ± 2.55 88.78 ± 2.44 98.48 ± 1.16 99.82 ± 0.55
C9 99.92 ± 0.05 99.94 ± 0.06 100.00 ± 0.00 98.04 ± 0.96 98.97 ± 0.93 99.83 ± 0.23 98.83 ± 0.90 99.53 ± 0.47

Table 11. OA, AA, per-class accuracy (%), κ and standard deviations after five runs performed by eight methods on the KSC dataset using 10% pixels from each class
as the training set.

Label Original RLDE MDA 2D-CNN 3D-CNN LSTM CNN+LSTM Bi-CLSTM

OA 93.16 ± 0.38 93.50 ± 0.31 96.81 ± 0.17 92.55 ± 0.84 97.14 ± 0.49 84.96 ± 1.26 96.12 ± 0.45 98.29 ± 0.98
AA 89.15 ± 0.55 90.09 ± 0.71 95.30 ± 0.83 89.20 ± 1.50 95.92 ± 0.64 82.87 ± 1.67 94.91 ± 0.86 97.77 ± 1.37

κ 92.38 ± 0.42 92.77 ± 0.34 96.45 ± 0.18 91.69 ± 0.95 96.82 ± 0.55 83.24 ± 1.41 95.68 ± 0.50 98.10 ± 1.09

C1 95.43 ± 2.54 95.30 ± 1.64 96.93 ± 1.03 94.86 ± 1.30 96.06 ± 1.24 96.53 ± 1.35 96.00 ± 2.53 98.87 ± 1.36
C2 91.44 ± 4.43 92.26 ± 5.48 97.26 ± 1.29 77.53 ± 5.05 98.48 ± 0.95 80.25 ± 2.67 89.04 ± 8.90 93.61 ± 5.93
C3 90.86 ± 6.55 88.44 ± 2.00 98.92 ± 0.30 84.52 ± 5.31 95.79 ± 3.93 95.36 ± 2.89 92.96 ± 6.29 99.35 ± 0.56
C4 79.52 ± 5.74 76.90 ± 5.48 90.31 ± 0.62 77.71 ± 11.85 90.89 ± 5.73 58.00 ± 11.42 87.31 ± 6.13 94.71 ± 2.07
C5 68.20 ± 7.71 77.64 ± 2.45 80.00 ± 7.80 80.97 ± 9.54 80.92 ± 2.87 60.00 ± 11.78 90.48 ± 3.91 97.24 ± 2.93
C6 67.34 ± 3.90 77.82 ± 0.72 92.47 ± 2.40 72.62 ± 14.78 97.25 ± 1.22 60.52 ± 7.35 93.30 ± 2.58 94.54 ± 9.01
C7 84.19 ± 5.33 82.67 ± 16.06 94.68 ± 6.01 93.19 ± 5.35 96.45 ± 6.14 57.45 ± 20.11 99.36 ± 1.43 99.74 ± 0.53
C8 95.17 ± 1.26 91.97 ± 2.39 96.26 ± 4.19 93.87 ± 2.41 96.65 ± 2.11 90.40 ± 4.87 92.11 ± 2.53 97.23 ± 3.16
C9 95.92 ± 1.69 98.08 ± 1.50 99.89 ± 0.15 95.85 ± 3.03 98.22 ± 0.62 92.74 ± 2.10 99.44 ± 1.24 97.81 ± 1.08

C10 96.78 ± 1.56 96.78 ± 1.20 98.35 ± 0.39 96.81 ± 1.79 98.72 ± 0.97 93.96 ± 3.60 95.71 ± 2.53 99.66 ± 0.52
C11 98.14 ± 0.87 98.23 ± 1.38 99.33 ± 0.19 94.27 ± 2.21 99.73 ± 0.46 98.63 ± 1.16 99.84 ± 0.36 98.94 ± 2.12
C12 95.90 ± 1.23 95.39 ± 1.31 94.59 ± 1.72 97.35 ± 2.09 97.86 ± 1.21 93.47 ± 2.63 98.28 ± 2.87 99.28 ± 0.89
C13 100.00 ± 0.00 99.68 ± 0.40 99.94 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Classification maps using eight different methods on the KSC dataset: (a) original; (b) RLDE;
(c) MDA; (d) 2D-CNN; (e) 3D-CNN; (f) LSTM; (g) CNN+LSTM; (h) Bi-CLSTM.

To test the computational efficiency of different deep learning methods, we train and test them on
a personal computer with CPU of Intel Core i7-4790 and GPU of GTX TITAN X, using the TensorFlow
framework. As shown in Table 12, 3D-CNN and Bi-CLSTM cost more training and testing time than
2D-CNN, LSTM and CNN+LSTM because their inputs are sub-cubes while others are vectors or
matrices. In addition, compared to 3D-CNN, training or testing Bi-CLSTM is faster. This is because the
convolutional kernel sizes (i.e., 3× 3× 32) in each direction of Bi-CLSTM are smaller than those of
3D-CNN (i.e., 4× 4× 32× 128), and the depth of Bi-CLSTM is shallower than it.

Table 12. Computation time (min.) of five deep learning methods on three datasets.

Dataset
2D-CNN 3D-CNN LSTM CNN+LSTM Bi-CLSTM

Train Test Train Test Train Test Train Test Train Test

Indian Pines 10.00 0.07 1435.33 70.57 75.00 0.55 260.00 3.38 535.50 12.62
Pavia University 15.00 0.23 818.33 18.38 85.00 0.52 291.67 4.23 432.00 12.95

KSC 5.00 0.03 183.33 3.73 25.00 0.18 65.00 1.07 112.50 2.65

5. Conclusions

In this paper, we propose a novel bidirectional-convolutional long short term memory (Bi-CLSTM)
network to automatically learn the spectral-spatial feature from hyperspectral images (HSIs). The input
of the network is the whole spectral channels of HSIs, and a bidirectional recurrent connection operator
across them is used to sufficiently explore the spectral information. In addition, motivated by the widely
used convolutional neural network (CNN), fully-connected operators in the network are replaced by
convolution operators across the spatial domain to capture the spatial information. By conducting
experiments on three HSIs collected by different instruments (AVIRIS and ROSIS), we compare
the proposed method with several feature extraction methods including deep learning algorithms,
i.e., CNN, LSTM and CNN+LSTM. The experimental results indicate that using spatial information
improves the classification performance and results in more homogeneous regions in classification
maps compared to only using spectral information. In addition, the proposed method can improve
the OA, AA, and κ on three HSIs as compared to other methods. We also evaluate the influences of
different components in the network, including dropout, data augmentation and patch size.
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