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Abstract: Anthropogenic heat (AH) generated by human activities is an important factor affecting
the urban climate. Thus, refined AH parameterization of a large area can provide data support
for regional meteorological research. In this study, we developed a refined anthropogenic heat
flux (RAHF) parameterization scheme to estimate the gridded anthropogenic heat flux (AHF).
Firstly, the annual total AH emissions and annual mean AHF of Beijing municipality in the
year 2015 were estimated using a top-down, energy-consumption inventory method, which was
derived based on socioeconomic statistics and energy consumption data. The heat released from
industry, transportation, buildings (including both commercial and residential buildings), and
human metabolism were taken into account. Then, the county-scale AHF estimation model was
constructed based on multi-source remote sensing data, such as Suomi national polar-orbiting
partnership (Suomi-NPP) visible infrared imaging radiometer suite (VIIRS) nighttime light (NTL)
data and moderate resolution imaging spectroradiometer (MODIS) data. This model was applied
to estimate the annual mean AHF of the counties in the Beijing–Tianjin–Hebei region. Finally, the
gridded AHF data with 500-m resolution was obtained using a RAHF parameterization scheme.
The results indicate that the annual total AH emissions of Beijing municipality in the year 2015 was
approximately 1.704× 1018 J. Of this, the buildings contribute about 34.5%, followed by transportation
and industry with about 30.5% and 30.1%, respectively, and human metabolism with only about
4.9%. The annual mean AHF value of the Beijing–Tianjin–Hebei region is about 6.07 W·m−2, and the
AHF in urban areas is about in the range of 20 W·m−2 and 130 W·m−2. The maximum AHF value
is approximately 130.84 W·m−2, mostly in airports, railway stations, central business districts, and
other densely-populated areas. The error analysis of the county-scale AHF results showed that the
residual between the model estimation and energy consumption statistics is less than 1%. In addition,
the spatial distribution of RAHF results is generally centered on urban area and gradually decreases
towards suburbs. The spatial pattern of the RAHF results within urban areas corresponds well
to the distribution of population density, building density, and the industrial district. The spatial
heterogeneity of AHF within urban areas is well-reflected through the RAHF results. The RAHF
results can be used in meteorological and environmental modeling for the Beijing–Tianjin–Hebei
region. The results of this study also highlight the superiority of Suomi-NPP VIIRS NTL data for
AHF estimation.
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1. Introduction

The world is undergoing unprecedented urbanization. The process of urbanization is often
accompanied with urban area expansion, urban population growth, and energy consumption increase.
The increasing human activities release more and more anthropogenic heat (AH) into the atmosphere.
AH is involved in the energy exchange between the surface and atmosphere, hence the surface energy
balance is impacted by AH directly. Much research in recent years has shown that AH is one of the
key contributing factors to forming urban heat islands and has a significant influence on the regional
environment and climate [1–4]. Therefore, refined AH parameterization is required for both regional
climate change and urban heat island studies.

Anthropogenic heat flux (AHF) is a sophisticated measurement of the heat released into the
environment by human activities, i.e., AH emissions generated per unit time and area [5]. Currently,
there are three main approaches to estimating AHF: the energy budget closure method, building energy
modeling, and the energy-consumption inventory approach [6]. AHF is considered as a parameter of
the surface energy balance equation in the energy budget closure method [7] (p. 435). Many researchers
have used this method for AHF estimation at different spatial scales [8–11]. The building energy
modelling approach explicitly calculates the energy consumption from different types of buildings
and evaluates heat rejection based on the energy consumption model. AH from buildings is estimated
accurately based on this method, but it ignores the heat emissions from transportation, industry,
and so on [12–14]. The energy-consumption inventory approach is a classical method for regional AHF
estimation. It is generally classifies into either bottom-up or top-down approaches [6]. The bottom-up
approach relies on detailed statistics, such as traffic volume, building height, and occupied areas.
The city-scale or larger spatial-scale AHF is scaled-up based on the AHF of single buildings [3].
However, these detailed statistics are often difficult to obtain. Furthermore, the accuracy of AHF
estimation is often subject to the level of detail and reliability of the statistics. However, the top-down
method is usually used to estimate AHF based on socioeconomic data and energy consumption
data over a large area. Compared to the detailed statistical data required for the bottom-up method,
the statistics at city-scale or larger spatial-scales are more operable. Therefore, the AHF estimation
over a large area is more easily implemented based on the top-down method [10,15–17].

The statistics used in the top-down method are based on administrative divisions. Administrative
divisions are divided into different levels (e.g., provincial-level, prefecture-level, county-level, etc.).
The lower level corresponds to the smaller spatial scale, and the corresponding statistics are more
difficult to collect. Therefore, the spatial scale of AHF results depends on the scale of statistics
in the top-down method. In order to obtain AHF estimations in different areas and different
spatial scales, large amount of statistics need to be collected (e.g., socioeconomic data and energy
consumption data) [18–20]. An AHF estimation model needs to be established to realize large
spatial-scale AHF parameterization. In addition, AHF estimation based on the top-down method is
the mean AHF value within the administrative divisions. The real spatial distribution of AH cannot
be reflected by the mean AHF value. Then, spatial proxy data can be used to assign the mean AHF
to a finer spatial scale (e.g., a grid-scale with a spatial resolution from about 1 km to 9 km), such as
population density (PD) [15], gross domestic product (GDP) [21], land use types [22], etc. In other
words, the refined anthropogenic heat flux (RAHF) can be obtained by distributing AHF to every grid.
RAHF is needed in regional climate change and urban climate studies. Therefore, finding appropriate
spatial proxy data to obtain the RAHF is the focus of current scholars.

Nighttime light (NTL) data can detect low intensity light emitted by city residents. It has
a unique superiority in the monitoring of human activities at night, and it is also one of the ideal
spatial proxy data of socioeconomic statistics and energy consumption data [23–26]. Currently,
DMSP/OLS (defense meteorological satellite program’s operational linescan system) NTL data is
being used for AHF estimation. For example, Chen et al. [27] estimated the global grid-scale AHF
based on DMSP/OLS NTL data using the statistical regression relation between AHF and NTL data.
Yang et al. [28] further used DMSP/OLS NTL data to extract urban areas, and then the statistical
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regression relation between the urban areas and energy consumption was established to estimate
long-term AHF. In more recent studies by Dong et al. [15], DMSP/OLS NTL data was used to correct
population density data, and then global grid-scale AHF was estimated based on the corrected
population density data. However, due to the saturation of DMSP/OLS NTL data, the accuracy of
AHF estimation in the saturated region needs to be improved. Hence, Ma et al. [29] and Chen et
al. [30] calculated the human settlement index (HSI) based on DMSP/OLS NTL data corrected by
vegetation index to alleviate the saturated problem to some extent, but there is still some need for
further refinement on the spatial scale.

The National Aeronautics and Space Administration (NASA) launched the Suomi National
Polar-orbiting Partnership (Suomi-NPP) satellite at the end of 2011. A new generation of global NTL
data, hereinafter referred to as Suomi-NPP VIIRS NTL data, is obtained by a visible infrared imaging
radiometer suite (VIIRS) equipped with the Suomi-NPP satellite. Compared with DMSP/OLS NTL
data, Suomi-NPP VIIRS NTL data has a higher resolution and a greater range of radiance values.
The low intensity light information can be captured by Suomi-NPP VIIRS NTL data to reflect more
precisely the intensity and spatial distribution of human nighttime activities [31,32].

This research aims to establish the RAHF parameterization scheme over a large area and verify
the availability of Suomi-NPP VIIRS NTL data in AHF parameterization. First, the annual total AH
emissions and annual mean AHF of each district and county in Beijing municipality were calculated
using the energy-consumption inventory approach. Then, a county-scale AHF estimation model
was built based on the parameters characterizing human activities. In addition, multi-source remote
sensing data, such as Suomi-NPP VIIRS NTL data and moderate resolution imaging spectroradiometer
(MODIS) data were used to generate the spatial proxy data for grid-scale AHF parameterization within
the administrative division. Finally, the grid-scale RAHF with 500-m resolution was parameterized to
provide basic data support for regional climate change and urban climate studies.

2. Methodology and Procedure

2.1. Estimation of County-Scale Annual Mean AHF with a Top-Down Energy-Consumption Inventory

According to the emission sources of heat, AH emissions are divided into four parts: the energy
consumption from industry (labeled as QI), buildings (QB, including both commercial and residential
buildings), transportation (QV), and human metabolism (QM). Total AHF (QF) is equal to the sum of
the four parts [33].

The four parts were calculated after a comprehensive analysis of the statistical indicators of the
China Statistical Yearbook and the method of Grimmond et al. [16]. QI is distributed according to the
proportion of the second and third industrial GDP of each district and county. QB from commercial
buildings is distributed according to the proportion of the third industry GDP of each district and
county, and that from residential buildings is distributed according to the proportion of the population.
QV is calculated based on the total amount of civil automobiles from socioeconomic statistics with
an assumption of a car driving 2.5 × 104 km per year, consuming 12.7 L of fuel for every 100 km,
and discharging fuel heat of 45 kJ·g−1. QM is calculated based on the population from socioeconomic
statistics. Previous studies have divided one day into an active state (7:00~23:00), at which the
metabolic heat emission is 171 W per person, and sleeping state (23:00~7:00) with 70 W metabolic heat
emission per person [17]. See Appendix A for details.

Although there is a time lag between energy consumption and actual heat emissions released
into the atmosphere, due to the lack of accurate energy consumption efficiency data, this study
makes the same assumption as previous studies: the energy consumption eventually translates into
anthropogenic sensible heat with no time lag or consideration for environmental loads, and particular
locations that emit latent heat such as cooling towers are not taken into account [17,34,35].
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2.2. RAHF Parameterization of the Beijing–Tianjin–Hebei Region

2.2.1. County-Scale AHF Estimation Model from Multi-Source Remote Sensing Data

The energy-consumption inventory approach is time-consuming and labor-intensive for AHF
estimation over a large area. Moreover, the statistics are difficult to obtain for a large area. Thus some
researchers proposed an AHF estimation model based on HSI to achieve AHF estimation over a large
area [30]. HSI is calculated based on the highly negative correlation between vegetation index and
urban impervious surface. It is often used for the extraction of built-up areas at the regional or global
scale [36]. The equation is as follows:

HSI =
(1−NDVImax) + NTLnor

(1−NTLnor) + NDVImax + NTLnor × NDVImax
(1)

where NTLnor is the normalized NTL data, and NDVImax is the maximum normalized difference
vegetation index (NDVI).

NDVI and NTL data are complementary in the reflection of human activities and the extraction of
built-up areas. This supplementary relation can effectively reduce the saturation phenomenon of NTL
data. High-value HSI pixels often correspond to a low vegetation cover index, high NTL values and
high AHF values.

The relationship between AHF and HSI is established using statistical regression. The coefficient
of determination (R square) is used for the verification of the relationship between AHF and HSI,
i.e., Equation (3). It is the proportion of the variance in the dependent variable that is predictable from
the independent variable, hence the equation is shown as follows:

AHF =
1
n

n

∑
i=1

AHFi (2)

R2 =
∑n

i
(
AHF∗i −AHF

)2

∑n
i
(
AHFi −AHF

)2 (3)

n is the total number of samples. AHF is the mean of the AHF values computed as described in
Section 2.1. AHF∗ is the AHF modeled value (i.e., AHF computed using the relationship between AHF
and HSI). A high R square value indicates the good reliability of the forecast and goodness of fit.

2.2.2. RAHF Parameterized Model

There is a significant correlation between NTL data and the quantity and quality of the
urban factors, including social factors (e.g., population size, population density, urbanization, etc.),
economic factors (e.g., GDP, energy consumption, urban expansion, etc.), and ecological factors
(e.g., carbon emissions, surface coverings, urban disasters, etc.) [37,38]. The classification of Suomi-NPP
VIIRS NTL data can reflect the intensity of human activities at different levels. RAHF parameterization
based on the classification of Suomi-NPP VIIRS NTL data is conducive to generating grid-scale AHF
with about 500-m spatial resolution.

A K-means clustering algorithm was used to determine the category k of RAHF modeling.
The goal of this clustering algorithm is to achieve the highest similarity in class and the largest
difference between classes [39]:

m = arg min(
m

∑
k=1

n

∑
i=1

(NTLki
−NTLk)

2

n
) (4)

where k is the category number of the NTL data, NTLki
is the NTL radiance of the pixel i in the category

k, NTLk is the mean NTL radiance in the category k, n is the total number of the pixels in the category
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k, and m is the total number of the categories. Category m is taken for RAHF parameterization when
the sum of variances of all categories attains its smallest value (m equals 30 in this study). This is done
by seeking to minimize each NTL data category’s average deviation from the mean value of the NTL
data category, while maximizing each NTL data category’s deviation from the means of the other NTL
data groups.

Finally, to get the AHF value of each NTL data category, the HSI of each category is usually the
independent variable in the relation model between AHF and HSI mentioned in Section 2.2.1.

AHFk = ƒ
(
HSIki

)
(5)

where AHFk is the AHF of the category k. It is a function about the HSI of the category k. The HSI
is calculated by the Equation (1). The relationship between AHF and HSI has some uncertainty in
the statistical regression procedure. The relationship is built based on the AHF calculated by the
top-down energy-consumption inventory approach, which varies according to study area. Such as
the timetable, the car driving miles per year, industrial structure and so on, these factors are going to
lead to the diversity of this relationship model building. Therefore, ƒ

(
HSIki

)
is not a general function.

According to the related data of the study area in this paper, the detail of ƒ
(
HSIki

)
is shown as the

Equation (6) in Section 4.2.

2.3. Procedure of the RAHF Parameterization Scheme

The annual mean AHF estimation at the county-scale based on the energy-consumption inventory
approach is shown in a flowchart (Figure 1). AH is divided into QI, QB, QV, QM. Using a top-down
energy-consumption inventory approach, the annual total AH emissions and annual mean AHF are
estimated based on the socioeconomic statistics and energy consumption data of each district and
county of Beijing municipality in the year 2015.

Figure 1. Flowchart of the proposed refined anthropogenic heat flux (RAHF) parameterization scheme.

The county-scale AHF estimation modelling based on multi-source remote sensing images is
presented in Figure 1. First, the HSI of the Beijing–Tianjin–Hebei region is calculated based on
Suomi-NPP VIIRS NTL data and MODIS NDVI data. Then, the mean HSI in each district and county
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of Beijing municipality is calculated by zonal statistics. The correlation analysis between the mean
HSI and AHF of Beijing municipality districts and counties is performed to obtain the statistical
regression relation. The statistical regression relation between them is fitted to get the AHF estimation
model. The mean HSI in the counties of the Beijing–Tianjin–Hebei region is substituted into the AHF
estimation model to get the county-scale AHF.

Finally, the Suomi-NPP VIIRS NTL data is classified to get the AHF categories (i.e., k, the category
number of NTL data). The grid-scale RAHF of the Beijing–Tianjin–Hebei region is parameterized,
integrating the AHF estimation model and the HSI at grid scale. The HSI is calculated using Equation (1).

3. Study Area and Data

The Beijing–Tianjin–Hebei region, the economic development center in northern China, is located
at 113◦27′E–119◦50′E, 36◦05′N–42◦40′N, and includes Beijing municipality, Tianjin municipality and
11 prefecture-level cities of Hebei province (including Shijiazhuang, Cangzhou, Tangshan, Xingtai,
Qinghuangdao, Baoding, Zhangjiakou, Handan, Langfang, Hengshui, and Chengde city). In this
region, the city size is large and the urban heat island effect is evident. In 2014, the resident population
was about 110 million people, and the regional GDP was about 6.65 trillion yuan. The total energy
consumption was about 353.4 million tons of standard coal. The AH is mainly from the waste heat
of automobile exhaust emissions, the energy consumption of industrial production and the various
energy consumptions of buildings (e.g., winter heating and summer air-conditioning/refrigeration) [4].

The basic data for the energy-consumption inventory approach was derived from the statistical
yearbook of social economy and energy consumption in Beijing municipality, Tianjin municipality
and Hebei province in 2015, including China Energy Statistics Yearbook, China Population and
Employment Statistics Yearbook, and the statistical yearbook of energy and environment in Beijing
municipality, Tianjin municipality and Hebei province [40–43].

Multi-temporal Terra MODIS NDVI data (MOD13A1 product) and Suomi-NPP VIIRS NTL data
were used in this research. All the selected data sets were acquired in 2015. Terra MODIS NDVI
images (MOD13A1 product) with 500 m spatial resolution were downloaded from the United States
Geographic Survey (USGS) [44]. The product is a 16-day composite product [45]. Multi-temporal
NDVI mosaic images between April and October 2015 were collected to get high vegetation coverage
data. MODIS NDVI mosaic images of h26v04, h26v05, h27v04, and h27v05 scenes were obtained to
contain the full extent of the Beijing–Tianjin–Hebei region. The MODIS NDVI images with sinusoidal
projection were reprojected to transverse mercator projection, and the quality control was performed
based on the QC subset of the MOD13A1 product to obtain reliable NDVI images.

The monthly composites of Suomi-NPP VIIRS NTL data were downloaded from the National
Oceanic and Atmospheric Administration/National Geophysical Data Center (NOAA/NGDC) [46].
The monthly composite records the radiance value (in W·cm−2·sr−1) and excludes any data impacted
by stray light [47]. The NTL data with geographic (Lat/Lon) projection were reprojected to transverse
mercator projection, and the nearest neighbor resampling algorithm was used during the reprojection
procedure. The method of Ma et al. [48] was used to remove the outliers of NTL data. The annual
mean NTL data were calculated using a simple average value of the monthly mean NTL after the
quality control.

4. Results

4.1. Annual Total AH and Annual Mean AHF Results of Beijing Municipality

The annual total AH emissions and annual mean AHF results in the districts and counties of
Beijing municipality are shown in Figure 2. The bar graph in Figure 2 shows the annual total AH
emissions from different sources of Beijing in 2015, reflecting the characteristics of the annual total
AH emissions and proportions of different emission sources. On the one hand, the annual total AH
emissions in each district and county are quite different, and the annual total AH emissions of urban
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areas are significantly higher than those of suburbs. On the other hand, the emission source of AH is
mainly from vehicular traffic, industry and residential buildings. The annual mean AHF in the districts
and counties of Beijing municipality is in the range of 0.24 W·m−2 to 111.66 W·m−2, as shown in the
line graph in Figure 2.

According to the statistical analysis of the results, the annual total AH emissions of Beijing
municipality in 2015 is about 1.704 × 1018 J. Of this, the building sector contributes about 34.5%,
followed by the transportation and industrial sectors with 30.5% and 30.1% respectively, and human
metabolism with only 4.9%. The largest annual total AH emission is from the Chaoyang and Haidian
districts, accounting for 39.5% of the annual total AH emissions of Beijing municipality. The smallest
annual total AH emission is from Mentougou and the Yanqing counties, accounting for only 2% of the
annual total AH emission of Beijing municipality. The results are in general agreement with the annual
total AH emissions of Beijing municipality calculated by Wang et al. [19].

The annual mean AHF of Beijing municipality in 2015 is 18.33 W·m−2 based on the area of each
district and county, which is in line with the rule that the annual mean AHF of mid-latitude cities is
approximately in the range of 15 W·m−2 to 50 W·m−2 [49]. The largest annual mean AHF is in Xicheng
district with 111.66 W·m−2, and the smallest is in Yanqing county with 0.24 W·m−2. The sum of the
annual total AH emissions from the Dongcheng and Xicheng districts is smaller than that from the
Chaoyang and Haidian districts.

Figure 2. The annual total AH emissions and the annual mean AHF in the districts and counties of
Beijing municipality.

4.2. County-Scale Annual Mean AHF Estimation of the Beijing–Tianjin–Hebei Region

After the statistic regression analysis, it was found that there is a strong correlation between the
annual mean AHF and mean HSI (R2 = 0.989) (Figure 3). The AHF in Figure 3 is the average AHF
in each district and county of Beijing municipality, and the mean HSI was calculated based on the
zonal statistics of the grid-scale HSI in each district and county of Beijing municipality. The statistical
regression relation between them is

AHF = 48.287(HSI)2 − 17.716(HSI) + 2.541 (6)

The AHF estimation model was established based on the above statistical regression relation,
and the AHF values of the counties in the Beijing–Tianjin–Hebei region were calculated using this AHF
estimation model (Figure 4). The lowest AHF value in the 206 counties of the Beijing–Tianjin–Hebei
region is 0.92 W·m−2, and the highest AHF value is 125.93 W·m−2. The average AHF is about
6.07 W·m−2, and the AHF value of the high-value cluster area is between 80 W·m−2 and 130 W·m−2.



Remote Sens. 2017, 9, 1165 8 of 20

Figure 3. The statistical regression relation between the annual mean anthropogenic heat flux (AHF)
and the mean human settlement index (HSI).

Figure 4. The annual mean AHF of each county in the Beijing–Tianjin–Hebei region in the year 2015.

In order to quantitatively analyze the difference between the AHF value in urban areas and that
in suburbs, a prefecture-level AHF was obtained from the county-scale AHF. Then the average AHF
values of the districts (i.e., urban area) and counties (i.e., suburbs) in the cities of each municipality
were calculated respectively (Table 1). The districts are the areas with a high degree of urbanization that
are geographically located within the central city. Conversely, the counties are geographically far away
from the city’s center. The AHF value of an urban area is related to the city scale. The highest AHF
value is in the urban area of Tianjin municipality with 39.21 W·m−2, and the smallest is in Chengde
city with 1.02 W·m−2.
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Table 1. The annual mean AHF of municipalities, districts and counties in the Beijing–Tianjin–Hebei region.

Municipalities of
Beijing–Tianjin–Hebei Region

Mean AHF of Districts
(W·m−2)

Mean AHF of Counties
(W·m−2)

Mean AHF at Municipal
Level (W·m−2)

Beijing 24.22 1.10 18.44
Tianjin 39.21 1.02 32.85

Shijiazhuang 18.91 1.01 5.68
Cangzhou 5.16 1.05 1.56
Tangshan 20.49 0.97 6.55

Xingtai 7.80 1.03 1.74
Qinghuangdao 4.32 0.99 2.42

Baoding 3.47 1.02 1.31
Zhangjiakou 5.11 1.14 2.07

Handan 10.16 1.04 2.96
Langfang 1.18 0.97 1.05
Hengshui 1.15 1.18 1.17
Chengde 1.02 1.23 1.17

According to statistics, the sum of the populations of Shijiazhuang and Tangshan cities accounts
for 25.1% of the total population of Hebei province. The sum of these two cities’ GDP accounts for
37.6% of that in Hebei province. At the same time, the sum of these two cities’ AHF accounts for 44.15%
of the total AHF in the 11 prefecture-level cities of Hebei province. This is indicative that AHF is closely
related to population density, and to some extent to industrial and economic development levels.

4.3. RAHF Results and Validation of the Beijing–Tianjin–Hebei Region

The AHF estimation results shown in Figure 4 only represent the mean AHF within the
administrative division and it cannot reflect the spatial heterogeneity of AHF. In order to reflect
the spatial distribution characteristics of AHF within the administrative divisions, a grid-scale AHF
with higher spatial resolution was obtained using the RAHF parameterization scheme. The results
shown in Figure 5 conclusively demonstrate that the grid-scale RAHF is more reasonable than the
annual mean AHF at the county-scale (Figure 4). The county-scale AHF results only reflect the average
AHF value of the county area. The former more clearly reflects the AHF spatial distribution in the
Beijing–Tianjin–Hebei region, and intuitively demonstrates the intensity of AH emissions.

It also can be found that the distribution of AHF in the Beijing–Tianjin–Hebei region is not uniform
and has obvious aggregation characteristics. The distribution of AHF is consistent with that of human
settlements. The magnitude of AHF is closely related to the level of economic development and
population density.

The contribution of different AHF categories to the total AHF parameterization result is presented
in Table 2. The AHF category of 0–10 W·m−2 has the highest contribution to the overall AHF of the
Beijing–Tianjin–Hebei region, reaching 39.03%. It is mainly in the large non-urban area. Secondly,
a high AHF value, which is more than 100 W·m−2, is mainly in the city center with small area, and its
contribution to the overall AHF is approximately 21.66%. As per the remaining AHF categories, it was
shown that the contribution decreases gradually with the increase of the AHF value.

Considering the local characteristics of the RAHF results in the cities of Beijing, Tianjin
and Shijiazhuang (the capital of Hebei province) as an example (Figure 6), it is noted that the
spatially-distributed AHF in the urban area is well represented, especially for the major roadways
around the urban area. As shown in Figure 6d–f, compared with the same range of high-resolution
remote sensing images in Google Earth, most of the high AHF values are in airports, railway stations,
industrial and central business districts. The typical regional energy consumption and population
density is high and often accompanied with great heat emissions. This phenomenon further illustrates
the validity of the RAHF results in the representation of local detail information.

Currently, the sensible heat and latent heat generated by human activities are difficult to clearly
distinguish, hence it is hard to verify AHF results based on the situ measured flux data [5,6,50].
The validation is often conducted using a comparative study with the results of other studies.
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In addition, there are some AHF results at the global-scale or for the entire China. They can be used as
validated reference data. However, there is no absolute comparability because of the inconsistency in
research scale. Due to the lack of research on county-scale AH emissions for the Beijing–Tianjin–Hebei
region, the credibility of the RAHF parameterization scheme is demonstrated by comparing with the
AHF results for Beijing municipality.

Using the energy-consumption inventory approach, Tong et al. [4] results showed that the AHF in
urban areas of Beijing municipality was about 75–105 W·m−2, and the AHF near Chongwenmen
in Beijing municipality was between 130 W·m−2 and 170 W·m−2. Nie et al. [51] estimated the
AHF in Beijing municipality as having a peak value of 20 W·m−2 for low-intensity residential areas,
50 W·m−2 for high-intensity residential area and 90 W·m−2 for commercial areas. GDP and population
density were used to obtain the street-scale AHF in Beijing municipality in Wang et al.’s [19] research.
The results showed that the high AHF value was about 60–130 W·m−2. AHF results based on a RAHF
parameterization scheme is in the order of 80–130 W·m−2 in the urban area of Beijing municipality,
and 130.84 W·m−2 in Chongwenmen in the same municipality. The results are in agreement with the
historical research.

Figure 5. The RAHF results for the Beijing–Tianjin–Hebei region in the year 2015.

Table 2. The contribution of different AHF categories to the total AHF in the Beijing–Tianjin–Hebei region.

AHF Categories Percentage Contribution AHF Categories Percentage Contribution

(W·m−2) (%) (W·m−2) (%)

<0 0 50–60 5.11
0–10 39.03 60–70 2.57
10–20 6.34 70–80 2.69
20–30 6.21 80–90 2.45
30–40 4.26 90–100 5.31
40–50 4.36 >100 21.66
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Figure 6. RAHF results for typical cities in the Beijing–Tianjin–Hebei region and the validation of the high
value area distribution ((a) AHF results for Beijing city; (b) AHF results for Tianjin city; (c) AHF results
for Shijiazhuang city; (d–f) The corresponding high-resolution remote sensing images from Google Earth).
Note: 1 Beijing-Capital International Airport; 2 Beijing Nanyuan Airport; 3 Beijing West Railway Station;
4 Beijing South Railway Station; 5 Beijing Railway Station; 6 Beijing East Railway Station; 7,19,20 Central
Business District; 8 Tianjin Binhai International Airport; 9 Tianjin Railway Station; 10 Tanggu Railway Station;
11 Tianjin South Railway Station; 12–14,18 Industrial District; 15 Shijiazhuang Zhengding International
Airport; 16 Shijiazhuang Railway Station; 17 Shijiazhuang North Railway Station.

In this study, the residual between official energy consumption statistics and the AHF
model results was calculated for the verification of the county-scale AHF estimation model [27].
The county-scale statistics in the Beijing–Tianjin–Hebei region cannot be collected completely to verify
the county-scale AHF estimation results; hence the AHF result calculated from the inventory method
at the prefecture-scale was regarded as the actual AHF value to verify the model estimation results
computed using Equation (6). Based on the data provided by the Bureau of Statistics, the real annual
total AHF at the prefecture-scale were obtained using the energy-consumption inventory method.
Afterwards the model estimation results were scaled up to get the prefecture-scale AHF for AHF
verification on the same scale. Finally, on the prefecture-level, the residual between the AHF computed
based on official statistics and the AHF result scaled up from the county-scale AHF estimation result
computed using Equation (6) was calculated to verify the accuracy of the county-scale AHF estimation
model. The verification results are presented in Table 3. The mean residual of all municipalities is
0.65%. Therefore, it is possible to consider using the correlation between AHF and reliable spatial proxy
data to estimate AHF when there is lack of socioeconomic statistics and energy consumption data.

Table 3. Comparison between the AHF estimation results and the AHF computed based on official statistics.

Municipalities of the
Beijing–Tianjin–Hebei Region

Residual between AHF Estimation Result of the AHF Estimation
Model and AHF Computed Based on Official Statistics

Beijing 0.6
Tianjin 2.1

Shijiazhuang 0.7
Cangzhou 0.2
Tangshan 0.9

Xingtai 0.2
Qinghuangdao 0.5

Baoding 0.2
Zhangjiakou 1.4
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Table 3. Cont.

Municipalities of the
Beijing–Tianjin–Hebei Region

Residual between AHF Estimation Result of the AHF Estimation
Model and AHF Computed Based on Official Statistics

Handan 0.3
Langfang 0.1
Hengshui 0.2
Chengde 1.1

5. Discussion

5.1. Comparison of Three County-Scale AHF Estimation Models

NTL data is confirmed to be one of the ideal spatial proxy data in the spatialization of
socioeconomic data [23–26]. Grid-scale population density is often used as spatial proxy data for AHF
parameterization because of its close relation with AH [15,33,52,53]. Thus, here we used normalized
Suomi-NPP VIIRS NTL data (VIIRSnor), population density (PD), and the human settlement index
(HSI) as spatial proxy data to estimate county-scale AHF respectively. The feasibility of applying
the three kinds of spatial proxy data in the county-scale AHF estimation was made by comparing
the regression models between the three kinds of spatial proxy data and AHF (or the annual total
AH emissions), respectively.

PD is the global grid population density data set (GWP, V4) from the Columbia University
Socioeconomic Data Application Center (http://sedac.ciesin.columbia.edu/data/collection/gpw-v4)
with a spatial resolution of 30′′ × 30′′ (about 1 km × 1 km) [54].

The mean and cumulative values of the three kinds of spatial proxy data were counted
correspondingly as parameters for regression analysis.

First, the averages of the three kinds of spatial proxy data for each district and county in
Beijing municipality were calculated to make a statistical regression with the annual mean AHF
respectively. The R2 values are 0.963, 0.995 and 0.989, respectively. It is proven that the averages of the
three kinds of spatial proxy data have a significant correlation with annual mean AHF respectively.
The specific fitting equation is shown in Table 4, and the fitted curves are the red lines shown in
Figure 7a–c, correspondingly.

Table 4. Comparison of three statistical regression models for county-scale AHF estimation.

Parameters for Statistical Regression Fitting Equation R Square

AHF-VIIRSnor AHF = 198.94(VIIRSnor)2 − 59.311(VIIRSnor) + 3.470 0.963
AHF-PD AHF = 2 × 10−7(PD)2 + 0.002(PD) + 0.064 0.995
AHF-HSI AHF = 48.287(HSI)2 − 17.716(HSI) + 2.541 0.989

Note: AHF-VIIRSnor represents the anthropogenic heat flux (AHF) and the mean Suomi-NPP VIIRS nighttime light
data normalized value (VIIRSnor) at the county level in Beijing municipality; PD represents the mean population
density at the county level in Beijing municipality; his represents the mean human settlement index at the county
level in Beijing municipality.

The county-scale AHF’s in the Beijing–Tianjin–Hebei region were estimated respectively by the
three AHF estimation models mentioned above. Then, the prefecture-level AHFs were obtained from
the county-scale AHFs (Figure 7d). It can be seen that the difference between the three results is small
in the areas with a low AHF value and greater in the areas with a high AHF value (such as Tianjin
municipality and Tangshan city). Compared with the AHF computed based on socioeconomic statistics
and energy consumption data, which is regarded as the actual value, the estimation result based on
HSI is closer to the actual value. The residuals of the three estimation models were calculated by using
the accuracy verification method mentioned in Section 4.3. The residuals are 0.9% (AHF-VIIRSnor),
0.7% (AHF-PD) and 0.6% (AHF-HSI), respectively. It is shown that the accuracy of the estimation
model based on HSI is slightly higher.

Secondly, the cumulative values of the three kinds of spatial proxy data for each district and
county in Beijing municipality were calculated to produce a statistical regression with the annual total

http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
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AH emissions, respectively (Figure 7a–c). The results show that there is no significant correlation
between them. As such, the cumulative value used for the model is not feasible in this study.

Comparison of the results for the three county-scale AHF estimation models suggest that VIIRSnor,
grid-scale PD, and HSI can all be used to estimate county-scale AHF to some extent. According to the
estimation of county-scale AHF in the Beijing–Tianjin–Hebei region as spatial proxy data, HSI can
achieve slightly better performance than PD and VIIRSnor.

Figure 7. The statistical regression model between annual mean AHF and the average and cumulative
values of the three kinds of proxy data respectively, and the accuracy comparison of each model.
((a) The correlation between anthropogenic heat flux (AHF) and anthropogenic heat emission (AHE)
with Suomi-NPP VIIRS nighttime light data normalized value (VIIRSnor); (b) The correlation between
AHF and AHE with population density (PD); (c) The correlation between AHF and AHE with
human settlement index (HSI); (d) Estimation and residual between official statistics and estimation
at the prefecture-level in the Beijing–Tianjin–Hebei region). Note: The meanings of AHF-MVIIRSnor,
AHF-MPD and AHF-MHSI are shown in Table 4. AHE-CVIIRSnor represents AHE and cumulative
Suomi-NPP VIIRS nighttime light data normalized value (CVIIRSnor) at the county level in Beijing
municipality; AHE-CPD represents AHE and cumulative population density (CPD) at the county
level in Beijing municipality; AHE-CHSI represents AHE and the cumulative human settlement index
(CHSI) at the county level in Beijing municipality.

5.2. Accuracy Comparison between RAHF Results and Other AHF Products

This paper compares the spatial morphology of the grid-scale AHF results estimated by the RAHF
parameterization scheme, the AHF results of Flanner et al. [53] and the AHF results estimated by the
large scale urban consumption of the energy model (LUCY model) [52]. The difference between the
RAHF estimation and other AHF products can be revealed in this comparison.

Flanner et al. [53] used the energy consumption data of the US Bureau of Energy Information
Statistics [55] for the period of 2005–2040 and the population density data of the Columbia University
Socioeconomic Data Application Center [56] to estimate the global grid-scale AHF with 3-km resolution
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from 2005 to 2040. The AHF results in typical areas in 2015 shown in Figure 8a–c correspond to the
cities of Beijing, Tianjin and Shijiazhuang city and their surrounding areas, respectively. The range
of AHF results in these areas is from 0 W·m−2 to 49.58 W·m−2, and the high AHF value is about
38.70–49.58 W·m−2.

The LUCY model estimated the heat emissions from buildings, transportation and human
metabolism using the energy-consumption inventory method. National energy consumption and
traffic data, high-resolution population density data, and temperature data were used in this model [57].
The AHF results with a 1-km resolution for the Beijing–Tianjin–Hebei region in 2015 were estimated
based on various energy economic statistics and high-resolution population density data. The AHF
results in typical areas are shown in Figure 8d–f. The range of AHF results in these areas is from
0 W·m−2 to 79.89 W·m−2, and the high AHF value is within 42.31–79.89 W·m−2.

AHF results with a 500-m resolution estimated by the RAHF parameterization scheme in typical
areas are shown in Figure 6a–c. The range of the AHF results in these areas is from 0 W·m−2 to
130.84 W·m−2, and the high AHF value is about 80–130.84 W·m−2.

Comparing the AHF results of these three AHF parameterization schemes, it can be seen that
the AHF spatial variability of the RAHF parameterization scheme is the largest. Furthermore, the
high values from the typical areas shown in Figure 6 are unapparent in the Flanner and LUCY model
AHF results. The reason is that AHF is the anthropogenic heat released per unit area. For the AHF
results, the value of AHF represents the mean value in one grid. Airports are often located in suburbs.
The non-artificial land around airports had no anthropogenic heat emission, hence if the size of the
grid is large, the AHF value of this grid will be attenuated by the non-artificial area. Therefore,
the characteristics of AHF within an urban area can be clearly expressed by the RAHF result shown
in Figure 6.

Figure 8. The AHF results of Flanner et al. and the LUCY model. (a) AHF results for Beijing city;
(b) AHF results for Tianjin city; (c) AHF results for Shijiazhuang city.

In addition, land cover types and impervious surface percent (ISP) data were also used to further
quantitatively analyze the accuracy of the RAHF results and other AHF products in this study.

First, the mean and maximum values of the three AHF results in different land cover types
were calculated. The land cover data is the 300-m resolution global land cover classification system
(LCCS) from the European Space Agency (ESA) [58]. The land cover data was resampled to 500-m
resolution and reprojected to transverse mercator projection. The statistical results are shown in
Table 5. The mean AHF value in the settlement type is higher than that in the other land cover types.
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The mean AHF in the settlement type of the RAHF parameterization scheme is 11.1 W·m−2, and those
of the LUCY model and Flanner are 1.24 W·m−2 and 3.00 W·m−2, respectively. For the RAHF results,
the gap of the mean AHF between the settlement type and other land cover types is the highest, up to
25 times, and those of the results of LUCY model and Flanner et al. [53] are the second and the lowest,
respectively. Furthermore, Flanner’s model results for agriculture and other land cover types are
slightly higher.

Table 5. The mean and maximum values of different AHF results for different land cover types.

LCCS Mean AHF (W·m−2) Max AHF (W·m−2)

Type Percent
RAHF LUCY Flanner RAHF LUCY Flanner(%)

Agriculture 55.07 0.81 0.24 1.04 0.99 34.10 20.06
Forest 12.57 0.09 0.05 0.43 0.92 9.54 13.30

Grassland 22.81 0.45 0.07 0.37 1.13 13.30 34.60
Settlement 7.85 11.10 1.24 3.00 130.84 79.89 49.58
Water and
Wetland 1.14 0.03 0.17 0.90 0.99 14.53 35.20

Others 0.56 0.97 0.27 1.04 4.30 21.77 35.20

The mean AHF values of the three results in each ISP category were calculated based on ISP data.
ISP is the proportion of total coverage by impervious surfaces in a total land area. The ISP in the
Beijing–Tianjin–Hebei region was obtained by referring to the method of Xian et al. [59]. The method
is also adopted by the USGS to produce ISP products for America [60].

The ISP results have been divided into four categories: high-density impervious cover (70–100%),
medium-density impervious cover (40–70%), low-density impervious cover (10–40%), and natural
cover (0–10%). The statistical results are shown in Table 6. It can be noted that the highest mean AHF
values for the three results are all for high-density impervious cover. It is revealed that the AHF value
for larger ISP areas is greater, which also means more AH emissions. Xiao et al.’s [61] results showed
that the mean AHF value in the high-density impervious cover area is 41.3 W·m−2. The mean AHF
value of RAHF results in the high-density impervious cover area is 33.57 W·m−2. The accuracy of
RAHF results is significantly higher than that of the other two results.

Table 6. The mean AHF of different results in different impervious surface percent (ISP) categories.

Impervious Surface Percent (%)
Mean AHF (W·m−2)

RAHF LUCY Flanner

0–10 1.18 0.23 1.03
10–40 3.68 0.53 1.72
40–70 9.41 0.96 2.63
70–100 33.57 2.86 5.81

5.3. Novelty and Opportunities of Suomi-NPP VIIRS Nighttime Light Data in RAHF Parameterization

The single-valued phenomenon within the urban area is caused by the saturation problem of
DMSP/OLS NTL data (Figure 9a). However, differences of human activity intensity within urban areas
can be performed by the new generation of NTL data, i.e., Suomi-NPP VIIRS NTL data (Figure 9b).
In this study, the regression relation between the NTL data and AHF was indirectly constructed by the
HSI, calculated based on NTL data and the NDVI. The negative correlation between the vegetation
index and human activity reflected by the NTL data was used to effectively eliminate the saturation of
the NTL data. Therefore, the residual between the estimated energy consumption and actual energy
statistics is low when AHF estimation model is applied to an AHF estimation in a large area (Table 3).
The spatial distribution of AHF within an urban area based on Suomi-NPP VIIRS NTL data is more
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in line with the distribution of the anthropogenic heat emission sources than that of the previous
study [29,62], as shown in Figures 6 and 8.

Figure 9. The profile of the nighttime light data in Beijing city. ((a) DMSP/OLS (defense meteorological
satellite program’s operational linescan system) nighttime light data; (b) Suomi-NPP VIIRS (Suomi national
polar-orbiting partnership visible infrared imaging radiometer suite) nighttime light radiance).

6. Conclusions

In this paper, the 500-m resolution grid-scale AHF over the Beijing–Tianjin–Hebei region in the
year 2015 was estimated based on a RAHF parameterization scheme. The RAHF parameterization
scheme was established to provide AHF data for regional climate change and urban climate studies.
The conclusions are as follows:

1. For the county-scale AHF estimation model, the mean residual between the AHF estimation result
and AHF computed based on the top-down energy-consumption inventory of all municipalities
is less than 1%, indicating that the model can be used to estimate the county-scale AHF in the
Beijing–Tianjin–Hebei region.

2. According to the statistical regression analysis, Suomi-NPP VIIRS NTL data, grid-scale PD,
and HSI can all be used to estimate county-scale AHF to some extent. For the estimation of
county-scale AHF in the Beijing–Tianjin–Hebei region, the residuals were 0.9%, 0.7% and 0.6%,
respectively. HSI can achieve slightly better performance than Suomi-NPP VIIRS NTL data and
grid-scale PD.

3. The spatial proxy data used to get grid-scale AHF within the districts and counties was established
from multi-source remote sensing images. The 500-m resolution grid-scale RAHF was ultimately
generated. According to a comparison of RAHF results and other AHF products, the RAHF
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parameterization scheme can get more refined AHF, and it has obvious advantages in the
representation of spatial detail. Furthermore, the RAHF results of different underlying surfaces
are also more reasonable.

4. After population density, GDP, land use data and DMSP/OLS NTL data, the validity of the
Suomi-NPP VIIRS NTL data used in RAHF parameterization has been confirmed. It can produce
more accurate and higher spatial resolution AHF results than DMSP/OLS NTL data. The results
of this study indicate that Suomi-NPP VIIRS NTL data has a good application prospect for
AHF estimation.

The RAHF parameterization scheme proposed in this paper used multi-source remote sensing
data to simplify the labor-intensive county-scale inventory approach to some extent and has an
ideal accuracy. However, the amount of training samples used to build the model was relative
small, due to the deficiency of county-scale statistics. The model was preliminarily applied in the
Beijing–Tianjin–Hebei region. The uncertainty still cannot be ignored in the inventory method. Further
validation is needed for AHF parameterization in other areas. This is also a research direction for
the future.
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Appendix A

Heat from industry (QI): Industrial energy consumption can be obtained from the energy statistical
data. The heat from industry energy consumption is distributed based on the proportion of the second
and third industrial GDP of each district or county. The equation is

QI =
Ei ×C
A× T

(A1)

Ei is the industrial energy consumption (unit: ten thousand tons of standard coal, tce); C is
standard coal heat, equal to 29,306 kJ·kg−1; T is one year; A is the land area (unit: m2).

Heat from vehicles (QV): The total amount of the civil automobiles from economical statistical data
were used to represent the heat from vehicle energy emissions, with an assumption of a car driving
2.5 × 104 km average every year, an automobile consumption 12.7 L fuel every 100 km, and automobile
fuel waste heat discharged 45 kJ·g−1. The equation is

Qv =
d× FE× ρ×NHC×V

A× T
(A2)

V is the total amount of the civil automobiles; d is the annual average driving distance per vehicle
(unit: km); FE is the combustion efficiency (unit: L·km−1); ρ is the combustion density (unit: kg·L−1);
NHC is the net heat combustion, (unit: kJ·g−1).

Heat from buildings (QB, including commercial and residential buildings): The energy
consumption (including coal, liquefied petroleum gas, natural gas, heat and electricity) from wholesale
and retail trade, accommodation, the catering industry and living consumption are obtained in
the province’s energy balance sheet. Heat from commercial buildings is distributed according to the
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proportion of the third industry of each district or county. Heat from residential buildings is distributed
according to the proportion of the population distribution. The equation is

QB =
(EBr + EBc)×C

A× T
(A3)

EBr, EBc are the energy consumption from commercial and residential buildings respectively
(unit: tce).

Heat from human metabolism (QM): According to the previous research, one day contains
the active state (7:00~23:00), the metabolic heat emissions for 171 W per person, and sleeping state
(23:00~7:00) with 70 W metabolic heat emissions. The equation is

QM =
(P1t1 + P2t2)×N

A× (t1 + t2)
(A4)

P1, P2 are the metabolic rate of sleeping and active state respectively. t1, t2 are hours of sleeping
and active time respectively. N is the population.
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