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Abstract: Satellite retrievals of the atmospheric dry-air column-average mole fraction of CO2

(XCO2) based on hyperspectral measurements in appropriate near (NIR) and short wave infrared
(SWIR) O2 and CO2 absorption bands can help to answer important questions about the carbon
cycle but the precision and accuracy requirements for XCO2 data products are demanding.
Multiple scattering of light at aerosols and clouds can be a significant error source for XCO2 retrievals.
Therefore, so called full physics retrieval algorithms were developed aiming to minimize scattering
related errors by explicitly fitting scattering related properties such as cloud water/ice content,
aerosol optical thickness, cloud height, etc. However, the computational costs for multiple scattering
radiative transfer (RT) calculations can be immense. Processing all data of the Orbiting Carbon
Observatory-2 (OCO-2) can require up to thousands of CPU cores and the next generation of CO2

monitoring satellites will produce at least an order of magnitude more data. For this reason, the Fast
atmOspheric traCe gAs retrievaL FOCAL has been developed reducing the computational costs by
orders of magnitude by approximating multiple scattering effects with an analytic solution of the RT
problem of an isotropic scattering layer. Here we confront FOCAL for the first time with measured
OCO-2 data and protocol the steps undertaken to transform the input data (most importantly,
the OCO-2 radiances) into a validated XCO2 data product. This includes preprocessing, adaptation of
the noise model, zero level offset correction, post-filtering, bias correction, comparison with the CAMS
(Copernicus Atmosphere Monitoring Service) greenhouse gas flux inversion model, comparison with
NASA’s operational OCO-2 XCO2 product, and validation with ground based Total Carbon Column
Observing Network (TCCON) data. The systematic temporal and regional differences between
FOCAL and the CAMS model have a standard deviation of 1.0 ppm. The standard deviation of the
single sounding mismatches amounts to 1.1 ppm which agrees reasonably well with FOCAL’s average
reported uncertainty of 1.2 ppm. The large scale XCO2 patterns of FOCAL and NASA’s operational
OCO-2 product are similar and the most prominent difference is that FOCAL has about three times
less soundings due to the inherently poor throughput (11%) of the MODIS (moderate-resolution
imaging spectroradiometer) based cloud screening used by FOCAL’s preprocessor. The standard
deviation of the difference between both products is 1.1 ppm. The validation of one year (2015)
of FOCAL XCO2 data with co-located ground based TCCON observations results in a standard
deviations of the site biases of 0.67 ppm (0.78 ppm without bias correction) and an average scatter
relative to TCCON of 1.34 ppm (1.60 ppm without bias correction).
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1. Introduction

Satellite retrievals of the atmospheric dry-air column-average mole fraction of CO2 (XCO2) based
on hyperspectral measurements in appropriate near (NIR) and short wave infrared (SWIR) O2 and CO2

absorption bands can help to answer pressing questions about the carbon cycle (e.g., [1]). However,
the precision and even more the accuracy requirements for applications like surface flux inversion or
emission monitoring are demanding (e.g., [2–4]). As an example, large scale biases of a few tenths of a
ppm can already hamper an inversion with mass-conserving global inversion models [2,3].

The Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY, [5,6])
became operational in 2002 and its radiance measurements allowed to start the time series of NIR/SWIR
XCO2 retrievals. With an overlap of about three years, the Greenhouse Gases Observing Satellite
(GOSAT, [7]) allowed complementation and continuation of this time series in 2009.

The Orbiting Carbon Observatory-2 (OCO-2) was launched in 2014 also aiming at continuing and
improving XCO2 observations from space. As part of the A-train satellite constellation, OCO-2 flies
in a sun-synchronous orbit crossing the equator at 13:36 local time. It measures one polarization
direction of the solar backscattered radiance in three independent wavelength bands: the O2-A band
at around 760 nm (band1) with a spectral resolution of about 0.042 nm and a spectral sampling of
about 0.015 nm, the weak CO2 band at around 1610 nm (band2) with a spectral resolution of about
0.080 nm and a spectral sampling of about 0.031 nm, and the strong CO2 band at around 2060 nm
(band3) with a spectral resolution of about 0.103 nm and a spectral sampling of about 0.040 nm. OCO-2
is operated in a near-push-broom fashion and has eight footprints across track and an integration time
of 0.333 s. The instrument’s spatial resolution at ground is 1.29 km across track and 2.25 km along track.
More information on the OCO-2 instrument can be obtained from the publications of Crisp et al. [8,9].

Several XCO2 retrieval algorithms exist for the SCIAMACHY and GOSAT observations covering
the whole mission periods (e.g., [10–18]). Because of the sparse ground based validation sites,
the analyses of an ensemble of independently developed algorithms can give important insights
in the quality of the retrievals, especially, remote from the validation sites [19] and strengthen the
geophysical interpretation of the data [20]. Nevertheless, so far only the operational NASA algorithm
exists for OCO-2 [21,22] covering the whole mission period.

One reason for this is that many of the existing algorithms require computationally expensive
multiple scattering radiate transfer (RT) calculations and the data rate of OCO-2 is about two orders
of magnitude larger than for GOSAT. In part 1 of this publication [23], the Fast atmOspheric traCe
gAs retrievaL (FOCAL) has been introduced. It approximates multiple scattering effects with an
analytic solution of the scalar RT problem of an isotropic scattering layer and a Lambertian surface.
This enhances the computational efficiency by orders of magnitude making it possible to process the
whole OCO-2 data stream on few CPU cores in real time and will allow also the analyses of future
satellite missions which will provide at least an order of magnitude more data.

In part 1, Reuter et al. [23] tested various retrieval setups with simulated OCO-2 measurements
and concluded that their 3-Scat setup is a promising candidate for further studies with measured
OCO-2 data. The 3-Scat retrieval setup fits the OCO-2 measured radiance simultaneously in
four fit windows: SIF (∼758.26–759.24 nm), O2 (∼757.65–772.56 nm), wCO2 (∼1595.0–1620.6 nm),
and sCO2 (∼2047.3–2080.9 nm). This is achieved by iteratively optimizing the state vector including
the following geophysical parameters: five layered CO2 and H2O concentration profiles, the pressure
(i.e., height), scattering optical thickness at 760 nm, and the Ångström exponent of a scattering layer,
solar induced chlorophyll fluorescence (SIF), and polynomial coefficients describing the spectral albedo
in each fit window.
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In this publication, we confront the 3-Scat retrieval setup with actually measured OCO-2 data and
protocol the steps undertaken to transform the input data (most importantly, the OCO-2 radiances)
into a validated XCO2 data product. This includes preprocessing (Section 2), adaptation of the noise
model (Section 3.1), zero level offset correction (Section 3.2), post-filtering (Section 4.1), bias correction
(Section 4.2), comparison with CAMS (Copernicus Atmosphere Monitoring Service) greenhouse
gas flux inversion model (Section 5.1), comparison with NASA’s operational OCO-2 XCO2 product
(Section 5.2), and validation with ground based Total Carbon Column Observing Network (TCCON)
data (Section 5.3). The complete retrieval chain including adaptations, pre-, and postprocessing will be
referred to as FOCAL v06 in the following.

2. Preprocessing

During preprocessing, we collect all datasets that are needed to run the retrievals and pre-filter
soundings with potentially degraded quality or potential cloud or aerosol contamination. Due to the
demanding precision and accuracy requirements for XCO2 retrievals (e.g., [2–4]) and the large amount
of OCO-2 data, we prioritize quality over quantity in the course of pre-filtering.

The primary input data used for this publication are global OCO-2 L1b calibrated radiances
(i.e., a single linear component of the polarization of the incoming light) version 7r [9,24] of the year
2015 in glint (GL), nadir (ND), target (TG), and transition (XS) mode which have been obtained from
https://daac.gsfc.nasa.gov. Each of OCO-2’s three bands consists of 1016 spectral pixels which we
group into the four fit windows illustrated in Figure 1 showing a typical OCO-2 measurement fitted
with FOCAL.

Each L1b orbit file includes information on spectral pixels with potentially reduced quality, e.g.,
due to radiometric problems. Based on the last nadir orbit in 2015 (oco2_L1bScND_07974a_151231
_B7200r_160121043229.h5), we generated a dead or bad pixel mask which we use for the O2 and both
CO2 fit windows. For the SIF fit window, we ignore the dead or bad pixel mask because it is located in
a spectral region generally flagged as potentially bad.

Figure 1. OCO-2 measurement of June 6, 2015, 12:01 UTC near Hamburg, Germany (sounding ID:
2015060512011938) fitted with FOCAL. (Top) Simulated and fitted radiance measurement in gray and
red, respectively. (Bottom) Adapted measurement noise (see Section 3.1) and fit residual (fit minus
measurement) in gray and red, respectively; χj is an estimate of the goodness of fit (relative to the
noise) in fit window j and is computed as defined in part 1 [23].

https://daac.gsfc.nasa.gov
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We reject all soundings flagged to have potentially reduced quality (quality flag 6= 0) or failing a
data integrity test (e.g., unreasonable sounding ID or time). We filter out potentially “tricky” scenes
with solar or satellite zenith angles greater than 70°, latitudes beyond ±70°, or extreme surface
roughnesses (standard deviation of the surface elevation) greater than 1000 m. In Figure 2, this filter is
referred to as LAT/SUZ/SAZ/σALT.

We use the spike EOF analysis provided with the OCO-2 L1b data [24] and accept only soundings
with less than 60 spectral pixels with potentially poor quality (referred to as bad colors) in the O2 and
no bad colors in the CO2 bands. This primarily filters out soundings above South America and the
South Atlantic because of contamination by cosmic rays within the South Atlantic Anomaly (SAA)
caused by the shape of the inner Van Allen radiation belt (Figure 2).

Potentially aerosol contaminated scenes are filtered using OMI (Ozone Monitoring Instrument
aboard Aura lagging OCO-2 by 30 min) L3 global daily gridded 1° × 1° UV aerosol index data
(OMAERUVd v003 obtained from https://daac.gsfc.nasa.gov) with a filtering threshold of one.
As described by Stammes [25], the UV aerosol index is derivedby comparing the measured reflectance
ratio at two wavelengths (342.5 nm and 388.0 nm) to the calculated reflectance ratio using a Rayleigh
atmosphere with an assumed surface albedo. The UV index is relatively insensitive to scattering aerosol
layers or clouds, because it is mainly determined by the reduction of Rayleigh multiple scattering
due to aerosol absorption. As illustrated in Figure 2, this filter most prominently impacts regions
contaminated with desert dust aerosols.

Figure 2. Pre-filtering statistics of the 24 days data subset used for the noise model analysis (Section 3.1).
The filters are applied in the order: Sounding quality, LAT/SUZ/SAZ/σALT, Spike EOF, OMI UV
aerosol idx, MODIS clouds, and Radiance level (see main text for a description). The colors represent
filter activity and soundings passing all filters are shown in white. Numbers in brackets represent
filter throughputs.

Potentially cloud contaminated scenes are filtered using MODIS Aqua (moderate-resolution
imaging spectroradiometer aboard Aqua) L2 cloud mask data [26] with about 1 km × 1 km resolution
(collection 6, MYD35, obtained from https://ladsweb.modaps.eosdis.nasa.gov). All MODIS ground
pixels which are not flagged as clear or probably clear are considered as potentially cloudy. Aqua is
lagging OCO-2 by 15 min and in order to account for the parallax effect and potential cloud movements,
we use only OCO-2 data with at least 10 km distance to the nearest MODIS cloud. Even though 10 km

https://daac.gsfc.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
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is not overly conservative, this filter has a throughput of only about 11% and dominates the total
pre-filtering throughput of about 4% (Figure 2).

Additionally, we filter out very dark or bright scenes, i.e., extreme detector fillings. Specifically,
we ensure that the continuum radiance in each band is between 5% and 95% of the maximum band
radiance as specified in the OCO-2 L1b ATBD (Algorithm Theoretical Basis Document, [24]).

Meteorological profiles come from ECMWF operational analysis data (http://apps.ecmwf.int)
and have a resolution of six hours, 0.75° × 0.75°, and 137 height layers. As part of the preprocessor,
these profiles are corrected for the actual surface height of the OCO-2 soundings and split into 20
layers containing the same number of dry-air particles.

3. Retrieval Adaptations

The theoretical bases of FOCAL’s retrieval method is described in detail in part 1 of this
publication [23]. However, in order to analyze actually measured data instead of simulations, we made
the following adaptations.

3.1. Noise Model

The measurement error covariance matrix [23] has to account not only for the measurement noise
but for the total error including also the forward model error. The measurement noise of the instrument
is well known from laboratory measurements and in-flight estimates. In theoretical studies (as in
part 1, [23]), it is often assumed for convenience, that the measurement noise dominates and that other
error components can be neglected, i.e., the noise model is approximated by the measurement noise.

Especially when analyzing measured data, unknown inaccuracies of the forward model can violate
this assumption and lead to larger fit residuals and unrealistic results (and error estimates) because the
optimal estimation retrieval puts too much trust in the measurement. This may happen, e.g., due to
imperfect knowledge of the instrumental line shape function (ILS), unconsidered spectroscopic effects
such as Raman scattering, inaccuracies of the spectroscopic data bases, approximations of the radiative
transfer model, or imperfect meteorology.

Ideally, one would reduce the fit residuals to the instrument’s noise level by improving the
forward model, but this is often not possible. A potential solution is to fit parts of the residuum
by empirical orthogonal functions (EOF) computed from a representative set of measurements
[21].Another approach is to adjust the noise model so that it accounts for measurement noise plus
forward model error (e.g., [16,17,27]) and a variant of this approach is also used by us.

Most forward model errors can be interpreted to result from inaccuracies of the computed
(effective) atmospheric transmittance. However, the largest scene-to-scene variability of the simulated
radiance is due to changes of, e.g., albedo and solar zenith angle. Therefore, it is reasonable to assume
forward model errors to be approximately proportional to the continuum signal Icont which we obtain
from up to nine spectral pixels at the fit windows’ lower wavelength length ends.

We model the root mean square residual to continuum signal ratio RSR by

RSR =
√

NSR2 + δF2, (1)

where NSR represents the root mean square of the spectral 1σ radiance noise (as reported in the OCO-2
L1b data) to continuum signal ratio and δF the relative forward model error.

In order to estimate the free parameter δF, we analyzed a representative set of pre-filtered
soundings (Figure 3) with a modified FOCAL setup for which we (quadratically) added 2% of the
continuum radiance to the measurement noise. This overestimation of the expected total error effects
that the retrieval usually converges towards values being not very far away from the a priori, i.e.,
values being more or less realistic. Additionally, we switched off the SIF retrieval (which is basically
identical to a zero level offset retrieval in the SIF fit window) and switched on the retrieval of zero

http://apps.ecmwf.int
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level offsets in all four fit windows.

If the instrument noise would dominate the total error, RSR and NSR would (statistically) lie on
a 1:1 line. After the removal of outliers (Figure 4, gray dots), this is basically the case for the SIF fit
window with forward model errors estimated to be about 0.5‰ of the (continuum) signal (Figure 4).
The forward model error within the other fit windows is estimated to be between 2.5‰ and 3.2‰
(Figure 4). This means, the total error in dark scenes (large NSR) is still dominated by the instrumental
noise but in bright scenes (small NSR), the forward model error dominates.

Figure 3. Sampling of all pre-filtered soundings analyzed in order to determine the noise model.
The data set consists of 10% of all pre-filtered OCO-2 soundings (randomly selected) of 24 days
in 2015 (13.01., 15.01., 14.02., 16.02., 10.03., 20.03., 03.04., 19.04., 08.05., 23.05., 08.06., 24.06., 15.07.,
16.07., 15.08., 16.08., 15.09., 16.09., 15.10., 16.10., 15.11., 17.11., 12.12., 18.12.). This results in a
manageable but still representative data set with respect to nadir/glint observation geometry, season,
and spatial distribution.

Outliers are removed as follows: The data set is grouped in 35 NSR bins. Only bins with more
than 500 samples are further considered. Within each bin, RSR should follow a χ2-distribution with as
many degrees of freedom as spectral pixels of the fit window. The number of spectral pixels is always
large enough to approximate the χ2-distribution with a Gaussian distribution. Outliers represent
poor fits, e.g., due to complicated atmospheric conditions which cannot be well described by the
forward model. As they usually enhance the RSR, we have to approach the expectation value of RSR
from the lowermost values. The 2.28th and 15.9th percentile (Figure 4, red and orange points) of the
Gaussian distribution are two and one standard deviations smaller than the expectation value. We used
this to estimate the expectation value (Figure 4, green points) from which we determined the free fit
parameter δF of Equation (1) (numerical values are shown in Figure 4). Note that adding 4% instead of
2% of the continuum radiance to the measurement noise gave similar results (not shown here).

Soundings with a RSR being more than two standard deviations larger than expected from
Equation (1) are considered outliers. For this purpose, we fitted the second order polynomial

2 σ = a0 + a1 NSR + a2 NSR2 (2)

and use it as threshold for the maximal allowed deviation from the RSR model (Figure 4, gray lines).
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We define the noise model which modifies the reported OCO-2 L1b radiance noise N
analog to Equation (1):

N′ =
√

N2 + I2
cont δF2. (3)

Figure 4. Root mean square noise to signal ratio NSR versus root mean square residual to signal
ratio RSR for all four fit windows. red points: 2.28th percentile within bins with more than 500
samples (35 bins in total). orange points: 15.9th percentile. green points: expectation value estimated
from the 2.28th and 15.9th percentile. solid green line: RSR as computed from the RSR model
(Equation (1)). gray points: RSR model plus 2σ estimated from the 2.28th and 15.9th percentile.
gray line: outlier threshold. gray dots: potential outliers. dashed green line: one-to-one line.

3.2. Zero Level Offset Correction

We define as zero level offset (ZLO) an additive fit window-wide radiance offset. An apparent
or effective ZLO can have various reasons such as residual calibration errors or unconsidered
spectroscopic effects. Many of these effects can be expected to result in ZLOs being approximately
proportional to the fit window’s continuum radiance. In order to study potential ZLOs, we used
the same modified FOCAL setup as in the last section but with the just defined noise model.
The simultaneous retrieval of ZLOs reduce the uncertainty reduction for XCO2 and renders the
SIF retrieval impossible. Therefore, we aimed at a ZLO correction rather than a ZLO retrieval
per sounding. We analyzed the same 24 days of OCO-2 data as in the last section but filtered
for potential contamination with chlorophyll fluorescence because in the SIF fit window it is not
possible to disentangle ZLO and SIF (Figure 5). For this purpose, we used monthly L3 MODIS Aqua
chlorophyll-a data (obtained from https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php, [28])
over ocean and normalized difference vegetation index (NDVI) data over land (obtained from
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php).

https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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Figure 5. Sampling of all pre-filtered soundings analyzed in order to determine the ZLO correction.
The data set consists of all pre-filtered OCO-2 soundings of 24 days in 2015 (13.01., 15.01., 14.02., 16.02.,
10.03., 20.03., 03.04., 19.04., 08.05., 23.05., 08.06., 24.06., 15.07., 16.07., 15.08., 16.08., 15.09., 16.09., 15.10.,
16.10., 15.11., 17.11., 12.12., 18.12.) additionally filtered for potential contamination with chlorophyll
fluorescence (see main text).

Figure 6 shows that we find a reasonably linear relationship (with correlations around 0.9) between
the retrieved ZLO and the continuum radiance within the SIF and both CO2 fit windows hinting at
ZLOs in the range of 0.8–1.8% of the continuum radiance. In the following, we use the fitted linear
relationship as ZLO correction for these three fit windows. In the O2 fit window, the correlation
between ZLO and continuum radiance is poor and the linear fit suggests a small negative slope.
Therefore, we decided to not apply a ZLO correction for this fit window.

Figure 6. Cont.
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Figure 6. Retrieved zero level offset (ZLO) versus continuum radiance (Icont) for all four fit windows.
gray dots: potential outliers, (i.e., no convergence, χ2 > 2, or RSR exceeding threshold (see Figure 4)).
green line: linear fit.

4. Postprocessing

4.1. Filtering

First of all, we check for convergence, i.e., the state vector increment has to be small compared
to the a posteriori uncertainty, the maximum number of iterations must not exceed 15, and χ2 must
not exceed 2 (for more details, see part 1 [23]).Convergence is achieved in about 74% of all pre-filtered
OCO-2 soundings. Many non-converging soundings can be found near the SAA, the Saharan desert,
and the Arabian peninsula (Figure 7).

In the next step, we check for each fit window if the RSR is smaller than the threshold for potential
outliers defined in Section 3.1. The throughput of this filter, which is most active above the tropical
oceans (Figure 7), is about 68%.

Additionally, we filter for potential outliers by parameters that have a unexpectedly large influence
on the retrieved local XCO2 variability. For the example data shown in Figure 7, this filter is most
active in high latitudes and has a throughput of about 84%.

This filter bases on the idea that XCO2 outliers increase the local retrieved XCO2 variability and
are likely correlated with extreme values of some of the candidate parameters: XCO2 uncertainty
σXCO2, lowermost layer of the CO2 column averaging kernel, XH2O, XH2O uncertainty σXH2O,
XH2O difference to the a priori, continuum radiance in the O2 (IO2

cont), wCO2 (IwCO2
cont ), and sCO2 (IsCO2

cont )
fit window, gradient between first and second CO2 layer ∇CO2, albedo difference between the O2 and
sCO2 fit window, and all non CO2 and H2O state vector elements [23].

For a representative two months data set (April and August 2015), we estimated the local retrieved
XCO2 variability VAR(∆XCO2) as follows: For each sounding, we computed the difference ∆XCO2

between XCO2 and its 5° × 5° daily median and subsequently, we computed the variance of all ∆XCO2

values falling in grid boxes with more than 100 samples. Now we searched for an upper or lower
threshold for that candidate parameter which reduces VAR(∆XCO2) most when removing 1‰ of
all data points. We repeated this until 15% of all data points were removed. In order to reduce the
complexity of the postprocessing filter procedure, we now identified the 10 most promising parameters
separately for land and ocean and repeated the whole exercise to find filter thresholds for these
10 parameters.
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Figure 7. Post-filtering statistics for April and August 2015. The filters are applied in the order:
convergence, residual, and potential outliers (see main text for a description). The colors represent
filter activity and soundings passing all filters are shown in white. Numbers in brackets represent filter
throughputs.

Figure 8 shows (especially for land) that the decrease in variability somewhat reduces after the
removal of the first 5–10%. A potential interpretation is that in this range indeed primarily outliers
are removed. After the removal of approximately 15% the decrease in variability is relatively constant
over a larger range before it drops to zero when the last data points are removed. As the curves do not
show a distinct kink, the choice to remove 15% of all data points is a bit arbitrary but seems to be a
good compromise.

Figure 8. Variance versus filter throughput for the 10 most promising parameters identified for
the potential outliers filter. The colors represent the prorated variance reduction of the individual
parameters. See part 1 [23] and the main text for a description of the individual parameters. (left) Land;
(right) Sea.
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Above land (Figure 8, left), the potential outliers filter reduces the variance of ∆XCO2 from
2.05 ppm2 to 1.68 ppm2. The Ångström exponent Å is the dominant parameter, contributing 38% to
the variance reduction. All parameter thresholds found for the potential outliers filter above land are
listed in Table 1 (left).

Above sea (Figure 8, right), this filter reduces the variance of ∆XCO2 from 1.22 ppm2 to 1.09 ppm2.
In glint geometry, scattering is less important and the dominant parameter is the wavelength squeeze
in the wCO2 fit window λwCO2

sq , contributing 32% to the variance reduction. All parameter thresholds
found for the potential outliers filter above land are listed in Table 1 (right).

The combined throughput of all three post-filters (convergence, residual, and potential outliers) is
about 42%.

Table 1. Thresholds and prorated variance reduction of the 10 parameters of the potential outliers
filter for soundings above land (top) and sea (bottom). In total, the variance of ∆XCO2 is reduced from
2.05 ppm2 to 1.68 ppm2 above land and reduced from 1.22 ppm2 to 1.09 ppm2 above sea. See part 1 [23]
and the main text for a description of the individual parameters.

Parameter Lower
Threshold

Upper
Threshold

Variance Reduction [%]

Å 1.6669 - 38

Land

σXCO2 [ppm] - 1.2963 17
ILSsCO2

sq - 1.0022 16
ps [p0] −1.6435 × 10−1 2.2603 × 10−1 11

∇CO2 [ppm] 5.2509 5.9995 11
λwCO2

sq [nm] −5.2186 × 10−4 3.9367 × 10−5 2
ILSwCO2

sq - 1.0041 1
λO2

sq [nm] - −2.5907 × 10−5 2
λO2

sh [nm] −6.6146 × 10−4 9.2043 × 10−4 1
σXH2O [ppm] - 15.705 1

λwCO2
sq [nm] −3.1372 × 10−4 −8.2869 × 10−5 32

Sea

αPSIF
1 −2.3184 × 10−3 3.4846 × 10−3 20

αPO2
2 - 1.7900 × 10−4 19

λwCO2
sh [nm] - 2.1023 × 10−3 9

ILSO2
sq - 1.0175 4

αPwCO2
2 - −2.1247 × 10−4 5

αPwCO2
1 3.2736 × 10−4 - 4

IsCO2
cont [1.25 × 1020 Ph/s/m2/µm] 5.6468 × 10−2 - 4

λO2
sh [nm] −3.4860 × 10−4 - 2

Å 1.9014 - 2

4.2. Bias Correction

The basic assumption of the bias correction scheme is that on average XCO2 has little variations
on small scales so that correlations to more variable parameters can be used to quantify biases.
As a consequence, the bias correction does not require any ground truth data except for the
quantification of a globally constant offset.

The final bias model consists of four components: a footprint bias Bf, a land/sea bias Bls, a linear
bias model Blin, and a globally constant bias Bg:

B = Bf + Bls + Blin + Bg . (4)

These four components are successively derived from analyses of the same two months data set
(April and August 2015) used to determine the thresholds of the potential outliers filter (Section 4.1).

The swath of OCO-2 consists of eight neighboring footprints across track. In order to determine
the mean footprint anomaly, we used only soundings belonging to complete sets of eight neighboring
soundings which all passed the post-filtering and which were entirely over land or sea. Figure 9 (right)
shows the sampling of the roughly 180,000 soundings where this is the case. For each of these sets of
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eight soundings, we compute the footprint anomaly and subsequently the average footprint anomaly
of all sets which we then use as bias function. Figure 9 (left) shows the footprint bias pattern at the
example of all soundings passing the post-filtering in August 2015 and the corresponding bias function
depending on the footprint f is:

Bf( f ) =



−0.974 ppm if f = 1,

−0.336 ppm if f = 2,

−0.234 ppm if f = 3,

−0.315 ppm if f = 4,

−0.856 ppm if f = 5,

1.013 ppm if f = 6,

0.484 ppm if f = 7,

1.219 ppm if f = 8.

(5)

Figure 9. FOCAL v06 OCO-2 footprint bias pattern (Equation (5)) at the example of August 2015 (left)
and sampling of soundings used to determine the footprint bias (right).

In order to determine the land/sea bias, we corrected all post-filtered results for the footprint bias
and analyzed all coastline overpasses with a maximum duration of 120 s (≈800 km along track), at least
100 soundings, and a land fraction between 30% and 70%. For each of these coastline overpass (162 with
about 102,000 soundings, Figure 10, right) we computed the land/sea anomaly and hence the average
land/sea anomaly (±0.8986 ppm). Figure 10 (left) shows the land/sea bias pattern corresponding to
the bias function

Bls(l) = 0.8986 ppm (2 l − 1) (6)

with l being the land/sea fraction.
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Figure 10. FOCAL v06 land/sea bias pattern (Equation (6)) at the example of August 2015 (left) and
sampling of soundings used to determine the land/sea bias (right).

In addition to the footprint and land/sea biases, we found a small correlation (ρ = 0.16) between
small scale anomalies of XCO2 and the retrieved ILS squeeze in the wCO2 fit window ILSwCO2

sq .
The small scale anomalies have been computed from 60 s chunks (≈400 km) of post-filtered and
footprint and land/sea bias corrected OCO-2 orbit data with more than 10 soundings. In total about
5000 chunks with one million soundings (Figure 11, right) have been analyzed to compute the linear
bias model (Figure 11, left):

Blin(ILSwCO2
sq ) = 107.936 ppm · ILSwCO2

sq − 107.862 ppm . (7)

Figure 11. FOCAL v06 bias pattern of the linear bias model (Equation (7)) at the example of August
2015 (left) and sampling of soundings used to determine the linear bias model (right).

Finally, we correct for a global offset in respect to the optimized CO2 concentration fields of
the CAMS (Copernicus Atmosphere Monitoring Service) greenhouse gas flux inversion model [29]
obtained from http://apps.ecmwf.int. CAMS is the CO2 atmospheric inversion product of the
European Union programme Copernicus that develops information services based on satellite Earth
observation and other data (http://www.copernicus.eu/). The product is released twice per year and
each time covers the full period from 1979 until the year before the release. It results from an analysis
of CO2 surface air sample measurements over the corresponding period and consists of optimized
CO2 surface fluxes over the globe and of associated 3D CO2 concentrations. Version 15r4 used here
analyzed 37 years of surface measurements (1979–2015). Its spatial resolution is of 3.75° in longitude
and 1.875° in latitude, with 39 hybrid layers in the vertical. A full description of v15r4 is given by
Chevallier [30], showing also, among other validation results, that its root-mean-square fit to TCCON

http://apps.ecmwf.int
http://www.copernicus.eu/
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measurements is usually close to 1 ppm. The global offset of FOCAL v06 relative to the CAMS model
amounts:

Bg = −1.673 ppm . (8)

Figure 12 (left) shows an example of the total bias pattern consisting of all four components
(footprint bias, land/sea bias, linear bias model, global bias). As can be seen, the large scale pattern of
the total bias is dominated by the land/sea bias followed by the footprint bias and the linear bias model
plays only a minor role. For comparison, Figure 12 (right) shows the total bias pattern of NASA’s
operational OCO-2 L2 product v7.3.05b [21,22] obtained from https://daac.gsfc.nasa.gov and in the
following referred to as NASA v7.3.05b. The overall variability is similar (0.82 ppm and 0.71 ppm for
FOCAL v06 and NASA v7.3.05b, respectively) and the NASA product also has a distinct land/sea bias
but with opposite sign, i.e., with largest values over sea (note the reversed color bar in Figure 12, right).

Figure 12. FOCAL v06 total bias pattern (Equation (4)) at the example of August 2015 (left) and
NASA OCO-2 v7.3.05b total bias pattern (right).

5. Comparison and Validation

5.1. Model Comparison

In this section, we compare two months (April and August 2015) of post-filtered and bias
corrected FOCAL v06 XCO2 results with corresponding values of the CAMS v15r4 model accounting
for FOCAL’s column averaging kernels (e.g., [31]). Figure 13 shows 5°× 5° monthly gridded values for
both months, FOCAL, and CAMS. The main spatial and temporal patterns are similar for FOCAL and
CAMS with largest and smallest values in the northern hemisphere in April and August, respectively.
Differences become larger at smaller scales, e.g., FOCAL sees larger values in natural and anthropogenic
source regions of Sub-Saharan Africa and East Asia in April but also above the Sahara in August.
However, it shall be noted that often only few data points are in the corresponding grid boxes.

Figure 13. Cont.

https://daac.gsfc.nasa.gov
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Figure 13. Monthly mean XCO2 at 5° × 5°. (Top) FOCAL v06. (Bottom) CAMS v15r4 sampled as
FOCAL. (Left) April 2015. (Right) August 2015.

In grid boxes with more than 100 soundings, the standard error of the mean becomes negligible
(≈0.1 ppm). Therefore, the difference between FOCAL and CAMS in such grid boxes can be interpreted
as systematic temporal and regional mismatch or bias. The standard deviation of this systematic
mismatch (including also representation errors) amounts to 1.0 ppm. The standard deviation of the
single sounding mismatch after subtracting the systematic mismatch amounts to 1.1 ppm which agrees
reasonably well with the average reported uncertainty of 1.2 ppm.

5.2. Comparison with NASA’s Operational OCO-2 L2 Product

In this section, we compare the same two months (April and August 2015) of post-filtered and bias
corrected FOCAL v06 XCO2 results with NASA’s operational OCO-2 L2 product. Comparing Figure 14
with Figure 13 (top) shows similar large scale temporal and spatial patterns and also the relative
enhancement in the anthropogenic source regions of East Asia in April are similar. The most obvious
difference is that the NASA product has about three times more soundings. The primary reason for
this is the inherently poor throughput (11%) of the MODIS based cloud screening of the preprocessor
(see discussion in Section 2).

Figure 14. NASA v7.3.05b monthly mean XCO2 at 5° × 5°. Left: April 2015. Right: August 2015.

Analyzing only the same soundings in both data sets and considering the column
averaging kernels, the NASA product has on average 0.7 ppm larger values than FOCAL which is (due
to the used color table) most noticeable in the northern hemisphere of Figure 14 (right). The standard
deviation of the difference is 1.1 ppm. As done in the last section, we separate the systematic
mismatch from the stochastic mismatch by analyzing grid boxes with more than 100 co-locations.
The standard deviation of the stochastic and the systematic mismatch amounts 0.91 ppm and 0.83 ppm,
respectively. It is no surprise, that the stochastic mismatch is smaller than expected from the combined
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reported uncertainties because both data products base on the same L1b input data including the same
noise spectra.

5.3. Validation with TCCON

In this section, we show validation results for one year (2015) of FOCAL v06 and NASA’s
operational OCO-2 L2 data and analyze the influence of the bias corrections. We used ground based
TCCON [32] GGG2014 data obtained from http://tccon.ornl.gov as reference data set and a similar
validation protocol as Reuter et al. [19,33]. We considered the column averaging kernels of all data
products and co-located OCO-2 and TCCON measurements with a maximum time difference of 2 h,
a maximum distance of 500 km, and a maximum surface elevation difference of 250 m. In cases with
multiple TCCON measurements of the same site co-locating with an OCO-2 sounding, we averaged
the TCCON measurements. In total we found about 179,000 and 378,000 co-locations for FOCAL and
the NASA product, respectively.

Figure 15 shows the co-locations of all 19 sites with more than 250 co-locations. Per site statistics
(bias and scatter, i.e., single sounding precision measured by the standard deviation of the difference to
TCCON) are shown from north to south in Figure 16. Note that global offsets have been removed for
both figures (−0.29 ppm, 0.35 ppm, −0.62 ppm, and −0.94 ppm for NASA, NASA not bias corrected,
FOCAL, and FOCAL not bias corrected).

Both algorithms show a somewhat similar bias site-to-site pattern regardless whether the bias
correction is applied or not. The largest differences of the bias corrected satellite products can be
found in Sodankylä and Tsukuba with larger than 1 ppm biases of the NASA product and FOCAL.
The standard deviations of the site biases are 0.82 ppm and 0.67 ppm for the NASA product and FOCAL
(0.69 ppm and 0.78 ppm if no bias correction is applied). These algorithm-to-algorithm differences are
barely significant because TCCON’s per site accuracy is about 0.4 ppm (1σ) [32].

The analyzed algorithms also show a similar site-to-site pattern for the scatter with lowest values
for the southern hemispheric sites probably due to smaller natural variability and, consequently,
smaller representation errors. Both algorithms have a similar average scatter relative to TCCON before
bias correction (1.62 ppm and 1.60 ppm for NASA and FOCAL) and after bias correction (1.31 ppm and
1.34 ppm for NASA and FOCAL). This means, both bias corrections primarily reduce the scatter rather
than the site biases. However, according to Figure 12, the influence of the bias correction on the spatial
bias pattern may be larger elsewhere.

FOCAL’s retrieved XH2O has also been initially compared with TCCON in the same manner.
However, due to the much larger natural variability of water vapor (typically spanning a range from
500 ppm to 7000 ppm), we used stricter co-location criteria (1h maximum time difference and 150 km
maximum distance) reducing the number of co-locations roughly by a factor of five. The global offset
amounts to −150 ppm, the standard deviation of the site biases is 206 ppm, and the average single
sounding precision is 293 ppm. It should be mentioned that, in contrast to XCO2, the agreement
significantly reduces when relaxing the co-location criteria. Conversely, a significant part of the
observed deviations could still be due to representation errors which are expected to reduce for even
stricter co-location criteria. This, however, would also further reduce the number of co-locations.

http://tccon.ornl.gov
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Figure 15. Validation of FOCAL v06 and NASA’s operational OCO-2 L2 product (both with and
without bias correction) with TCCON data from sites with more than 250 co-locations. The sites are
ordered from north (top/left) to south (bottom/right): Sodankylä [34], Białystok [35], Bremen [36],
Karlsruhe [37], Paris [38], Orleans [39], Garmisch-Partenkirchen [40], Park Falls [41], Lamont [42],
Anmeyondo [43], Tsukuba [44], Dryden [45], Pasadena [46], Saga [47], Ascension Island [48],
Darwin [49], Reunion Island [50], Wollongong [51], and Lauder [52].
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Figure 16. Validation statistics bias and scatter per TCCON site with more than 250 co-locations
for FOCAL v06 and NASA’s operational OCO-2 L2 product (both with and without bias correction).
The summarizing values (“overall”) represent the standard deviation of the site biases and the average
scatter relative to TCCON, respectively.The sites are ordered from north (top) to south (bottom).

6. Conclusions

We used the fast atmospheric trace gas retrieval FOCAL v06 to retrieve XCO2 from one year
(2015) of OCO-2 measurements and presented the applied pre- and post-processing methods
including pre-filtering, noise model, zero level offset correction, post-filtering, and bias correction.

The strict pre-filtering bases on sounding quality, NASA’s spike EOF analyses, OMI UV
aerosol index, and MODIS Aqua cloud coverage. Due to the wider swath, MODIS cloud masking has
the potential advantage to better account for 3D-effects caused by neighboring cloud contamination.
However, as Aqua is lagging OCO-2 by 15 min, we chose a cloud filtering radius of 10 km, to prevent
potential cloud movement from introducing cloud contamination. As a result this filter has a
throughput of only about 11% and dominates the total pre-filtering throughput of about 4%. This makes
this filter the main reason for FOCAL v06 having about three times less data points than NASA’s
operational product and an OCO-2 based cloud filtering as also done by NASA [53] is a potential
solution for future FOCAL versions.

In order to consider not only instrumental noise but also (pseudo) noise of the forward model,
we set up a noise model that depends on the instrument noise and one free fit parameter which we
determined from the residuals of a set of relatively unconstrained retrievals. The noise model suggests
that forward model errors (plus potential pseudo noise of the instrument) have a magnitude of
0.5–3.2‰ of the continuum radiance. This means that in dark scenes the mismatch of simulated
and measured radiance is still dominated by the noise of the instrument but in bright scenes
(e.g., above deserts) the forward model error dominates.

Apparent or effective zero level offsets can have various reasons such as residual calibration
errors or unconsidered spectroscopic effects. For the SIF, and both CO2 fit windows, we found
linear relationships between the retrieved zero level offsets and the continuum radiances with slopes
between 0.8% and 1.8%. As FOCAL v06 usually does not retrieve the ZLO per sounding, we correct
the measured radiance with the derived linear relationships before the retrieval.

Post-filtering checks for convergence, for fit window residuals being smaller than the thresholds
derived from the noise model analyses, and for potential outliers. Non converging soundings are
often found near the SAA, the Saharan desert, and the Arabian peninsula. Soundings with too large
residuals are often found above the tropical oceans. The filter for potential outliers is most active in
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high latitudes and its dominant input parameter (above land) is the retrieved Ångström exponent.
The total post-filtering throughput is about 42%. The average RSR is 2.2‰, 3.0‰, 2.8‰, and 3.4‰ for
the SIF, the O2, the wCO2 and the sCO2 fit window, respectively.

A bias correction has been applied to the post-filtered results which primarily bases on the
assumption that XCO2 has (on average) little variations on small scales so that correlations to more
variable parameters can be used to quantify biases. As a consequence, the bias correction does not
require any ground truth data except for a globally constant offset of −1.67 ppm. We found a distinct
OCO-2 footprint dependent bias in the range between−0.97 ppm and 1.22 ppm but the most prominent
global bias pattern results from the land/sea bias of 1.80 ppm. One could speculate that the land/sea
bias has its origin in FOCAL’s assumption of Lambertian surfaces. However, retrievals of simulated
ocean observations done in part 1 [23] do not support this hypothesis.

We compared FOCAL v06 XCO2 results with co-located values of the CAMS v15r4 model.
Both data sets show similar large scale spatial patterns and the systematic temporal and regional
differences have a standard deviation of 1.0 ppm. The standard deviation of the single sounding
mismatches amounts to 1.1 ppm which agrees reasonably well with the average reported uncertainty
of 1.2 ppm.

We also compared FOCAL’s v06 XCO2 with the operational NASA OCO-2 product. Large scale
patterns of both data sets are similar and the most prominent difference is that the NASA product
has about three times more soundings. The primary reason for this is the inherently poor throughput
(11%) of the MODIS based cloud screening of FOCAL’s preprocessor. The NASA product has on
average 0.7 ppm larger values than FOCAL v06. The standard deviation of the difference between both
products is 1.1 ppm.

Finally, we validated one year (2015) of FOCAL v06 XCO2 data with and without bias correction
as well as NASA’s operational OCO-2 XCO2 product with and without bias correction with co-located
ground based TCCON observations. The algorithms show similarities in the site-to-site patterns
of bias and scatter. The standard deviations of the site biases are 0.82 ppm and 0.67 ppm for
the NASA product and FOCAL, respectively (0.69 ppm and 0.78 ppm without bias correction).
These algorithm-to-algorithm differences are barely significant because TCCON’s per site accuracy is
about 0.4 ppm (1σ) [32]. The average scatter relative to TCCON is 1.31 ppm and 1.34 ppm for NASA
and FOCAL, respectively (1.62 ppm and 1.60 ppm without bias correction).

Additionally, we performed an initial validation of one year (2015) of FOCAL v06 XH2O data with
co-located ground based TCCON observations and found site-to-site biases with a standard deviation
of 206 ppm and an average single sounding precision of 293 ppm. However, due to the much larger
natural variability of XH2O compared to XCO2, future studies are needed to quantify or minimize the
influence of representation errors.

Processing an entire year of OCO-2 data with FOCAL v06 took about two weeks on a small
cluster with 8 Intel Xeon E5-2687W CPUs with eight cores running at 3.1 GHz (released in 2012).
This means that FOCAL is fast enough to process data from current and future satellites similar to
CarbonSat [4,54] providing at least an order of magnitude more data with a reasonable amount of
CPU cores - especially, when taking into account the to be expected CPU developments until launch
date.Additionally, FOCAL’s computations are simple enough for an adaptation to GPU architecture
with reasonable effort which has the potential for a further substantial acceleration.
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