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Abstract: Satellite altimeters have been used to monitor Arctic sea ice thickness since the early 2000s.
In order to estimate sea ice thickness from satellite altimeter data, leads (i.e., cracks between ice floes)
should first be identified for the calculation of sea ice freeboard. In this study, we proposed novel
approaches for lead detection using two machine learning algorithms: decision trees and random
forest. CryoSat-2 satellite data collected in March and April of 2011–2014 over the Arctic region
were used to extract waveform parameters that show the characteristics of leads, ice floes and ocean,
including stack standard deviation, stack skewness, stack kurtosis, pulse peakiness and backscatter
sigma-0. The parameters were used to identify leads in the machine learning models. Results show
that the proposed approaches, with overall accuracy >90%, produced much better performance
than existing lead detection methods based on simple thresholding approaches. Sea ice thickness
estimated based on the machine learning-detected leads was compared to the averaged Airborne
Electromagnetic (AEM)-bird data collected over two days during the CryoSat Validation experiment
(CryoVex) field campaign in April 2011. This comparison showed that the proposed machine learning
methods had better performance (up to r = 0.83 and Root Mean Square Error (RMSE) = 0.29 m)
compared to thickness estimation based on existing lead detection methods (RMSE = 0.86–0.93 m).
Sea ice thickness based on the machine learning approaches showed a consistent decline from
2011–2013 and rebounded in 2014.

Keywords: CryoSat-2; lead detection; sea ice thickness; machine learning

1. Introduction

Sea ice impacts the Earth’s radiation balance because thermal feedback between the Sun and the
Earth is highly sensitive to sea ice reflectivity. Thus, Arctic sea ice is considered an important factor in
understanding the global climate change process [1]. The reflectivity of sea ice strongly depends on the
spatial distribution and extent of the ice [2,3], which have rapidly changed due to global warming over
the past two decades [4,5]. Boe et al. [6] used various climate model simulations to predict that the
Arctic Ocean would probably be ice-free by the end of the 21st century. Furthermore, several studies
have shown that the decline of sea ice is occurring faster than model predictions [7,8]. Thus, there is an
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increasing need for accurate monitoring of sea ice concentration and thickness to better understand
polar and global climate systems and processes.

Sea ice thickness has been measured with various methods. While direct field measurements of
sea ice thickness using a submarine upward looking sonar [9,10] or an electromagnetic system (e.g.,
Airborne Electromagnetic (AEM)-31) [11–13] can provide accurate ice thickness information, such
techniques can only be applied to local areas within a very limited time frame. Observation of sea ice
thickness over vast areas has utilized various space-borne radar and laser altimeter sensors [14–20].
Laxon et al. [14] retrieved sea ice thickness using European Remote Sensing Satellite-1 (ERS-1) and
ERS-2 satellite data based on radar altimetry. Kwok et al. [15] also estimated sea ice thickness using Ice,
Cloud and land Elevation Satellite (ICESat) data based on laser altimetry. Unfortunately, the operation
of ICESat stopped in 2009 due to the failure of its main instrument. Since the launch of CryoSat-2 in
2010, researchers have developed various methods to use the radar altimetry observations to estimate
sea ice thickness from CryoSat-2 data [16–19].

Sea ice thickness can be estimated from sea ice freeboard based on isostasy [21]. Derivation
of sea ice freeboard is an important procedure for estimating the ice thickness by laser or radar
altimeter measurements. In particular, identification of leads (i.e., fractures between sea ice floes) is
crucial to estimate the freeboard. The height of leads extracted by such measurements enables the
calculation of the Local Sea Surface Height (LSSH), and then, freeboard can be estimated using LSSH,
actual sea surface height and the surface elevation of the ice extracted by altimetric measurements.
Kwok et al. [15] detected leads through direct comparison between the surface elevation profiles
extracted by ICESat data and near-coincident Synthetic Aperture Radar (SAR) images. Zwally et al. [22]
assumed that the lowest 2% values of the surface elevation profiles from ICESat would correspond to
leads. In addition to these relatively simple methods, Farrell et al. [23] proposed a threshold-based
method to distinguish leads from ice floes using various parameters extracted from ICESat level 1b
data, such as gain, reflectivity, radiance and waveform characteristics. In the case of CryoSat-2, Pulse
Peakiness (PP) and Stack Standard Deviation (SSD) parameters are frequently used for lead detection.
For example, Ricker et al. [19] used various waveform parameters, such as PP, SSD, stack kurtosis and
sea ice concentration, to distinguish leads from ice floes. Although these lead detection methods have
been developed in several studies, the determination of ice thickness from CryoSat-2 still suffers from
a lack of precise lead discrimination [24]. Simple thresholding methods might not perfectly distinguish
leads from ice floes because parameters, such as PP, SSD, stack skewness, stack kurtosis and backscatter
sigma-0 (Section 2.1) typically contain aliasing between leads and ice floes, which can result in large
errors and uncertainties in sea ice thickness estimates. Therefore, advanced techniques to optimize
such thresholds and minimize the associated errors are needed. This study proposes decision trees
and random forest machine learning approaches to identify leads and ice floes from CryoSat-2 and
Moderate Resolution Imaging Spectroradiometer (MODIS) in order to estimate sea ice thickness.

2. Observational Datasets

Freeboard height and ice thickness for March and April in 2011–2014 were calculated from
CryoSat-2 data based on machine learning-based lead detection approaches. MODIS and sea ice
type data were used as ancillary data when estimating sea ice thickness. The estimated ice thickness
was validated using CryoSat Validation experiment (CryoVex) field campaign data (i.e., airborne
electromagnetics data) over northwestern Greenland acquired in April 2011.

2.1. CryoSat-2

CryoSat-2 was launched in April 2010 and carries the space-borne Synthetic Aperture
Interferometric Radar Altimeter (SIRAL) developed by the European Space Agency (ESA) [25]. SIRAL
has a center frequency of 13.575 GHz (Ku-band) and a bandwidth of 320 MHz. It has three operation
modes: Low Resolution Mode (LRM), Synthetic Aperture Radar (SAR) and SAR Interferometry (SIN).
ESA explains that data collected in SAR and SIN modes are optimized to estimate sea ice thickness
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because the sensor in the operation modes can measure sea ice characteristics with high spatial
resolution comparable to the size of leads [26]. In the CryoSat-2 waveform data, the power of the
received microwave signal is recorded in 128 range bins in SAR mode and 512 range bins in SIN mode.
The interval of each range bin is almost 1.563 ns (~0.234 m). Detailed specifications of CryoSat-2 are
presented in Table 1.

Table 1. The specifications of CryoSat-2 (Synthetic Aperture Interferometric Radar Altimeter (SIRAL).
LRM, Low Resolution Mode; SIN, SAR Interferometry.

CryoSat-2

Center frequency 13.575 GHz
Bandwidth 320 MHz

Pulse Repetition Frequency (PRF) 1.97 kHz (LRM)/18.181 kHz (SAR and SIN)
Pulse duration 44.8 ms

Samples in echo 128 (LRM and SAR)/512 (SIN)
Antenna footprint 0.29 km
Range bin sample 0.4684 (LRM)/0.2342 m (SAR and SIN)

CryoSat-2 (Baseline B) and CryoSat-2 Level 1B (L1B) waveform data were used to estimate surface
elevation (ftp://science-pds.cryosat.esa.int). Five parameters (i.e., SSD, stack skewness, stack kurtosis,
PP and backscatter sigma-0) were used to distinguish leads from ice floes and ocean, as they can
represent surface characteristics, such as surface roughness and dielectric property. SSD was available
from L1B data; stack skewness and stack kurtosis were available from Level 2I (L2I) data, which are
provided by ESA. SSD is the variation of the stacked power distribution with an incidence angle [26].
Stack skewness and stack kurtosis measure the asymmetry and peakedness of the range stacked
power distribution, respectively [25]. PP is commonly used to identify leads and ice floes [16,18,19,27].
The equations to calculate SSD, stack skewness and kurtosis, as well as PP are summarized in Table 2.

Table 2. The equations to retrieve Stack Standard Deviation (SSD), stack skewness and kurtosis, as well
as Pulse Peakiness (PP) [26,28].

Parameter Equation

SSD 1
2

∑N
i=1 SP2(i)∑N

i=1 SP2(i)
∑N

i=1 SP4(i)

Stack skewness
1
N ∑N

i=1(SP(i)−µ)3

[ 1
N−1 ∑N

i=1(SP(i)−µ)2]
2/3 , µ = 1

N ∑N
i=1 SP (i)

Stack kurtosis
1
N ∑N

i=1(SP(i)−µ)4

[ 1
N−1 ∑N

i=1(SP(i)−µ)2]
3 − 3, µ = 1

N ∑N
i=1 SP (i)

Pulse peakiness k x Pmax
∑n

i=1 pi
n = 128 (SAR) and 512 (SIN)

where SP stands for integrated stacked power that is not obtainable in the L1b data. The integrated stacked
power is the summation of each single look echo power. pmax is the maximum power of the waveform from L1b
data, and pi is the power of i-th range bin. k is a multiplying factor based on the assumption that the waveform
is almost centered in the range bins. A k value of 1 was used in this study following [29].

The radar backscatter sigma-0 (i.e., backscatter coefficient) from Level 2 (L2) data, documenting
the observed surface, is a function of dielectric properties, the radar frequency, incidence angle,
the target surface roughness, geometric shape and volume scattering [25]. The SAR L1b waveforms
can be converted into watts using power scaling parameters that are available in the L1b product.
The radar equation is solved using transmit power, range and instrument gain and bias correction to
retrieve backscatter sigma-0. A bias correction value is then applied to remove any residual bias [30].
Since these parameters are sensitive to change in surface condition, they can be used to discriminate
leads from ice floes.
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2.2. MODIS

MODIS onboard the Terra and Aqua satellites, which were launched in 1999 and 2002, respectively,
has 36 spectral bands from 0.4–14.4 µm and plays a vital role in observing the Earth’s environments,
such as the land, lower atmosphere and oceans. MODIS images are an ideal way to separate leads
and ice floes because of the albedo difference between the two. MOD02QKM, one of the MODIS
L1B products, is a calibrated and geolocated dataset with two bands (0.645 µm and 0.858 µm) at a
250-m ground sample distance. In this study, training data of leads, ice and ocean for the machine
learning models were extracted from MOD02QKM images through visual interpretation based on
reflectance differences.

2.3. Sea Ice Type

The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean &
Sea Ice Satellite Application Facility (OSI SAF) provides sea ice type data (http://osisaf.met.no/p/ice/)
with 10-km resolution. The sea ice type includes First-Year Ice (FYI) and Multi-Year Ice (MYI) based on
differences in ice surface roughness. The sea ice type was used as an input variable to calculate sea ice
thickness from ice freeboard.

2.4. Airborne Electromagnetics Data

The CryoVex airborne and field campaign was conducted to validate the measurements of
CryoSat-2. As a part of the campaign, sea ice thickness was measured with an Airborne Electromagnetic
(AEM)-bird sensor onboard the Alfred-Wegener Institutes (AWI) Polar-5 aircraft. AEM uses electric
conductivity differences between sea water and ice to measure sea ice thickness with an accuracy
of ±0.1 m over level ice [13,31]. From 14–17 April 2011, AEM measured four tracks of ice thickness
around the Lincoln Sea. Considering the length of the tracks and sample size, two of the data tracks
were used to validate the sea ice thickness estimated from CryoSat-2 in this study.

3. Sea Ice Thickness Estimation and Machine Learning Algorithms for Lead Detection

3.1. Sea Ice Thickness Estimation

Estimation of the snow-covered Arctic sea ice thickness from CryoSat-2 measurements is based
on the assumption of hydrostatic equilibrium [18] (Figure 1). If the sea ice freeboard (h f b) is accurately
determined from altimeter measurements, the freeboard can be directly converted into sea ice thickness
by Equation (1).

hsi =
ρsw

ρsw − ρsi
h f b +

ρs

ρsw − ρsi
hs (1)

where ρsw, ρsi and ρs are the density of sea water, sea ice and snow, respectively, and hs is the
snow depth. Although the density parameters and snow depth should be observed concurrently
with the altimeter measurements to best estimate the ice thickness, this is challenging due to the
extreme weather conditions of the Arctic Ocean. Thus, studies have used typical values based on
field measurements or numerical simulation. For example, Giles et al. [32] and Wadhams [10] used
the density of sea water, sea ice and snow as 1023.8 ± 3, 915.1 ± 5 and 319.5 ± 3 kg/m3, respectively,
from field observations. In this study, 916.7 kg/m3 and 882 kg/m3 were used as the density of FYI
and MYI, respectively, according to Alexandrov et al. [33]. Snow depth simulated by the Warren 99
(hereafter W99) climatology model of Warren et al. [34] has been widely applied. However, the original
W99 data only capture the seasonal variability of snow depth. Kurtz and Farrell [35] thus applied a
modification to the snow depth data to reflect the significant decline in MYI over the last few years.
Kurtz and Farrell [35] suggested reducing the snow depth over FYI by 50%. In this study, FYI and MYI
were discriminated by the ice type products derived by EUMETSAT OSI SAF, and we used the typical
density and snow depth values derived by Kurtz and Farrell [35].
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Figure 1. Schematic diagram of the freeboard and thickness processing from CryoSat-2. SSHA,
Sea Surface Height Anomaly.

As mentioned above, it is important to determine the sea ice freeboard from CryoSat-2 data in
order to successfully estimate the ice thickness. Figure 2 shows the procedure to determine the sea ice
freeboard from CryoSat-2 L1B data. Initially, the surface height of the sea ice (i.e., the distance between
the sea ice surface and the WGS84 ellipsoid) is estimated by Equation (2).

ηsea ice = Hsat − Rwin − Rerr − ∆R (2)

where Hsat is the height of the satellite platform mass above the WGS84 ellipsoid. Rwin is the window
delay field, which means the distance between the mid-point of the range bin (i.e., 64th range bin in
SAR mode and 256th range bin in SIN mode) of the waveform data and the satellite platform. Rerr

is a range correction term associated with the phase range due to geophysical properties, such as
atmospheric effects. These variables are given in CryoSat-2 L1B data; detailed descriptions and
processing methods of the variables are well explained in [25]. ∆R is another correction term derived
by various retracking methods [36–39]. The aim of these terms is to determine the range offset between
the mid-point of the range bin and a realistic range point of the leading edge of sea ice. The retracking
method used in this study is the Threshold First Maximum Retracker Algorithm (TFMRA) [16,18,19].
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Davis [37] introduced the threshold retracking concept, which is useful for measuring the surface
elevations of ice sheets or sea ice from radar altimeter data [14,19]. The retracking method determines
the range point of the leading edge between the threshold level and the range point of the first
maximum power peak. The threshold level (ρl) is determined by:

ρl = Pn + α (Pmax − Pn) here, Pn =
1
5

n+4

∑
i=n

Pi (3)

where Pn is the thermal noise of the CryoSat-2 system. α is the threshold value, the percentage of
the maximum waveform amplitude above the thermal noise. Pmax is the first maximum power of
the waveform. n is the range bin of the first unaliased waveform. Pi is the power at the i-th range
bin of the waveform. Finally, the retracking point (nr) as the leading edge is estimated using the
following equation.

nr = (n̂ − 1) +
ρl − Pn̂−1

Pn̂ − Pn̂−1
(4)

where n̂ is the first range point exceeding the threshold level. It is essential to detect the first peak in
the range bin. Here, Rose [16] indicated that the maximum power peak in the range bin may not be
the first peak due to time delay effects of complicating factors, such as multiple scattering (i.e., in the
surface) and volume scattering. Thus, the true range point (i.e., local maxima in the waveform) is
detected by the peak detection algorithm, which identifies the range point using derivatives of the
waveform signal [19,40]. Lastly, ∆R, the retracking correction, is calculated using Equation (5).

∆R = C2m (nr − ntr) (5)

where nr is the retracking point and ntr is an on-board retracking point. C2m is a factor to convert
from range bins to meters, which is 23.24 cm/bin for CryoSat-2. Figure 3 shows an example of the
peak detection algorithm. This figure illustrates that the range point of the first maximum power
(the open square) was found prior to the maximum power peak, and the retracking point (the open
circle) was determined between the range point of the first maximum power and the threshold level
(the dotted line). While various threshold values (α) have been used in the literature, several studies
have found that thresholds of 40% and 50% give the best result for determining the leading edge of the
ice floe [16,40]. A threshold of 40% was used in the retracking method in this study as it was frequently
used in the literature [16,19].
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The next step removes the distance between the actual sea surface and the WGS84 ellipsoid
from the surface height (ηsea_ice) in order to estimate the sea ice freeboard. In general, the actual
Sea Surface Height (SSH) is estimated from the sum of the mean SSH and local Sea Surface Height
Anomaly (SSHA). Mean SSH data were obtained from the Technical University of Denmark 10 (DTU10)
product [41]; local SSHA data were derived from the proposed lead detection method (Section 3.2)
that extracts leads from CryoSat-2 data. The SSHA observations were discontinuous because leads
were detected at irregular intervals, thus linear interpolation and low-pass filtering were applied to
make spatially-continuous SSHA. The local SSHA was used to remove the surface height from the
mean SSH at the leads. Although many studies have tried to develop effective lead detection methods,
it is still very difficult to accurately identify leads due to limited reference data, the irregular shape and
size of leads and the characteristics leads share with ice or ocean. To overcome these challenges and
correctly identify leads, this study proposed a novel lead detection method explained in Section 3.2.

A correction to the sea ice thickness estimates from freeboard should be applied to account for the
penetration of microwave radiation on snow and lower propagation speed in the snow pack. First of all,
while typical microwave pulses do not penetrate the snow surface when the snow layer is wet during
the melting season, it is well known that a Ku-band microwave penetrates the air/snow interface of
dry and cold snow during the freezing season [42–44]. This complexity makes it difficult to determine
the optimum penetration depth to correct the sea ice freeboard. Nevertheless, Laxon et al. [18] believed
that microwaves fully penetrate the snow layer. Since the speed of microwave is typically lower in
the snow pack [45], it should also be corrected. However, given the uncertainty in these corrections,
we did not apply the correction terms in order to enable consistent comparison with Laxon et al. [18]
and Ricker et al. [19], who did not apply these corrections.

3.2. Machine Learning Algorithms for Lead Detection

In order to detect leads using machine learning approaches, reference samples were extracted
using MODIS data. All 5-min MOD02QKM images above latitude 65◦N in March and April 2011–2014
were downloaded. Cloud-free images were selected through visual interpretation. A total of
48 cloud-free March and April images were selected from MOD02QKM between 2011 and 2014
to clearly identify sea ice, leads and ocean based on visual interpretation of the images (Figure 4).
However, visual interpretation with MODIS is not always reliable because the leads in the MODIS
images could refreeze, and new thin ice is formed. CryoSat-2 paths were geolocated over the MODIS
images to extract five parameters (i.e., SSD, stack skewness, stack kurtosis, PP and backscatter sigma-0)
for each class (i.e., lead, sea ice and ocean). The time difference between CryoSat-2 paths and MODIS
images was set to within 30 min (12 min on average) to minimize sampling errors as sea ice sometimes
moves fast. Since there were more leads found in the Arctic in April than March, the number of
samples for April was larger than that for March. It should be noted that we could not extract samples
all over the Arctic Region because spatiotemporal coincidence between CryoSat-2 and MODIS was
limited during the given time period. Lead reference samples were not collected when the size of leads
was smaller than 250 m considering the movement velocity of sea ice.

Since the characteristics of the sea ice surface have monthly and annual variations, three schemes
were examined to develop machine learning models in this study. The first scheme was Classification
of Monthly data (CM), which used the reference samples by month regardless of year and developed
the machine learning models for both months (i.e., March and April). The second was Classification of
Annual data (CA), which divided the samples by year and developed the models separately for each
year (i.e., 2011, 2012, 2013 and 2014). Individual Classifications (IC) used all reference data to develop
the machine learning models to consider the tradeoff between transferability and accuracy.
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Figure 4. Overlay of a CryoSat-2 path on a MODIS image collected on 6 April 2011. The CryoSat-2 path
(red line) was geolocated on the MODIS image in the north of Svalbard. The time difference between
the two was six minutes. Based on visual interpretation, five parameters were extracted for target
features (i.e., leads, sea ice and ocean).

In order to detect leads, we used two rule-based machine learning approaches: decision trees
and random forest. Decision trees are one of the most widely-used machine learning algorithms for
inductive inference [46–48]. To implement decision trees, See 5.0 was used. See 5.0 recursively
splits training data into subdivisions based on a set of attributes defined at each node in a
tree [49]. An attribute is selected at each node and two branches that descend from that node
use a value of the attribute as a threshold. Selecting an attribute (i.e., STD, stack skewness, stack
kurtosis, PP or backscatter sigma-0 in this study) at each node is crucial for successful classification.
In general, statistical properties, such as information gain or the Gini index, are used to choose
an appropriate attribute in decision trees. See 5.0 uses information gain to select which candidate
attribute is used at each node. See 5.0 has been widely used for various remote sensing applications,
including land cover/land use classification [50–52], climate region delineation [53], vegetation species
mapping [54,55], ice mapping [56] and change detection [57,58]. Using a See 5.0 decision tree has
some advantages. First, it provides a non-parametric classification, and thus, it does not require
any assumptions in terms of the distribution of training data. See 5.0 can also handle non-linear
relationships between classes and features, even with missing values. In addition, See 5.0 transforms a
decision tree into a series of production rulesets, which makes it easier and more straightforward for
human interpretation of the results.

Random forest uses an ensemble approach that combines a boosting sampling strategy and
Classification And Regression Trees (CART) [59] to improve the weaknesses of a single CART such as
overfitting and sensitivity to training data configuration. CART uses a Gini index to measure impurity
from training samples, while See 5.0 uses the concept of entropy. The Gini index is defined as shown
in Equation (6)

Gini index (S) = 1 − ∑c
i=1 p2

i (6)

where c is the number of classes and pi is the proportion of S belonging to class i. The Gini gain is
used to identify the most appropriate attribute at each node. Since it is similar to the information
gain, it is defined by replacing the entropy with the Gini index in the Equation (6). However, a single
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CART is often unstable and tends to overfit training data. Bagging can overcome such weaknesses by
creating n independent trees and help minimize errors that can be caused from unstable classifiers [60].
Random forest produces numerous independent trees through two bagging-based randomization
processes: (1) using a random subset of training data for each tree; and (2) using a random subset of
input variables at each node of a tree. Breiman [58] pointed out that it is not necessary to use a separate
dataset for model validation, as random forest uses out-of-bag data (i.e., training data that are not
used) for internal cross-validation. A majority voting strategy is used to combine the results from
multiple classifiers to determine the final class for a given sample. In addition, random forest provides
the relative importance of a variable using out-of-bag data when the variable is permuted. Because of
these strengths, random forest has proven robust in various remote sensing applications [61–68].

4. Results and Discussion

4.1. Typical Waveform over Leads, Ice Floes and Ocean

Radar signals of each of the three target features have different characteristics because of the
impact of several factors, especially surface roughness, on the signals. In particular, flat surfaces
produce strong signals, and rough surfaces produce weak signals. The shape of the typical waveform
of ice floes is similar to that of ocean (Figure 5a,b). The sea ice waveform has large variation as it
contains both diffuse (e.g., from ice floes and ridges) and specular (e.g., from lead and new ice) signals.
In particular, since the surface of MYI is rougher than that of FYI, more diffuse reflection occurs on
MYI. Leads have a typical specular reflection and symmetric waveform because they are relatively flat
and there is little surface wave in leads (Figure 5c).
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Figure 5. Typical normalized echo power waveform of CryoSat-2 SAR mode data over: (a) sea ice;
(b) ocean; and (c) leads.

4.2. Characteristics of Five Parameters Based on CryoSat-2 Waveform

Figure 6 depicts the box plots of the five parameters (i.e., SSD, stack skewness, stack kurtosis,
PP and backscatter sigma-0) by feature (i.e., leads, sea ice and ocean) using the reference samples
(refer to Table 3). Among the three target features, ocean showed the narrowest distribution for all
parameters, except SSD. This is because the ocean surface is relatively homogeneous. Since the state
of the sea ice surface varies significantly, all parameters resulted in a wide distribution in the sea
ice plots. Waveform over ocean generally has higher backscattered signal intensity than that over
sea ice because of the higher diffuse reflection of ocean. However, the backscatter sigma-0 value of
ocean was lower than that of sea ice (Figure 6). This might be because the ocean samples were mostly
collected around the Svalbard islands, where strong winds frequently cause high waves, which may
reduce the backscattered intensity. Leads showed large variation for all parameters because the size
and shape of leads were diverse with different neighboring environments, such as sea ice melting
states, combined with the samples being collected in March and April across multiple years, which
undoubtedly increased the variation of the parameter values. The range stacked power of single look
echoes from leads are similarly high because leads are relatively flat with little waves, which makes
SSD of leads low with a narrow distribution in Figure 6. On the other hand, SSDs for sea ice and
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ocean have a broad distribution due to the surface roughness and waves. The median values of each
parameter seem to distinguish lead, sea ice and ocean. However, the distribution of the parameter
values of sea ice and leads partly overlapped, possibly due to off-nadir observations of CryoSat-2.
This implies that simple thresholding approaches are not suitable to clearly identify leads from sea ice.
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Figure 6. Box plots of five parameters (i.e., SSD, stack skewness, stack kurtosis, PP and backscatter
sigma-0) over leads, sea ice and ocean using the March and April samples from 2011–2014. The vertical
height of the boxes indicates the interquartile range of the samples. While a parallel line inside the
boxes means a median value of the samples for each parameter, the dots represent the outliers.

Table 3. Reference data used in the machine learning models by scheme and target feature. CM,
Classification of Monthly data; CA, Classification of Annual data; IC, Individual Classification.

Scheme
Target Feature (Number of Observations)

Leads Sea Ice Ocean

CM (March) 331 660 724
CM (April) 641 1284 1220
CA (2011) 179 357 357
CA (2012) 458 919 919
CA (2013) 209 419 420
CA (2014) 126 249 248

IC 972 1944 1944

4.3. Comparison of Lead Detection Performance

Both See 5.0 and random forest produced similar classification results for the three features.
Table 4 summarizes the overall accuracy by model and scheme through 10-fold cross-validation. All of
the cases produced very high overall accuracy (>90%). The most common misclassification for both
approaches was between leads and sea ice, possibly due to sampling around the boundaries between
them. Since CM and CA resulted in varied accuracy patterns and did not produce significantly
higher accuracy than IC, we focused the following discussion on IC. Using IC can reduce temporal
variability by including all samples in the subsequent analyses, including sea ice freeboard and
thickness estimation.

Table 5 presents relative variable importance for lead classification by model when using IC.
While stack skewness and sigma-0 were used at every node in See 5.0, SSD was not used at all. For the
random forest analysis, sigma-0 was identified as the predominant contributing variable, followed
by stack kurtosis, PP and stack skewness. Similar to See 5.0, SSD was the least contributing variable
to lead detection in random forest. Stack skewness was useful because it was able to distinguish
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ocean from leads and sea ice with very low error. Interestingly, backscatter sigma-0 was considered
a critical parameter for lead detection in both See 5.0 and random forest, but it has not been used
in previous studies for lead detection. Backscatter sigma-0 represents not only surface roughness,
but also dielectric properties, radar frequency, incidence angle and geometric shape, while the other
parameters are mainly sensitive to surface roughness [39]. Table 6 summarizes threshold-based rules
produced using See 5.0 by IC. Previous studies have used SSD, for example, Laxon et al. [18] and
Ricker et al. [19] used SSD <4 as one of the conditions to detect leads. However, SSD was not primarily
used in the threshold-based rules in this study. It should be noted that the rules were an integration of
multiple factors, which implies that the simple thresholding approaches might over- or under-estimate
leads resulting in uncertainty in sea ice thickness estimation.

Table 4. Accuracy assessment results of See 5.0 and random forest by scheme through 10-fold
cross-validation. The overall accuracy in percentage averaged for 10 folds is provided.

Scheme See 5.0 Random Forest

CA (March) 99.50 99.43
CA (April) 93.47 90.40
CM (2011) 92.49 94.80
CM (2012) 94.87 96.96
CM (2013) 95.07 95.48
CM (2014) 94.40 91.60

IC 94.20 94.05

Table 5. Relative variable importance (i.e., contribution) to lead detection using See 5.0 and random
forest by IC.

SSD Stack Skewness Stack Kurtosis PP Sigma-0

See 5.0 Usage (%) 0 100 21 40 100
Random forest mean
accuracy decrease (%) 19.97 20.44 36.75 20.50 97.72

Table 6. An example of threshold-based rules produced by See 5.0 using IC to classify leads, sea ice
and ocean.

SSD Skewness Kurtosis PP Sigma-0

Lead
>0.73 >17.53 >27.8

≤25.6 >0.73 ≤17.53 >27.8

Sea ice

≤0.73 ≤14.89
≤0.73 >0.043 14.89 < Sigma-0 < 16.48
>0.73 ≤27.8

≤25.6 >0.73 ≤17.53 27.8 < Sigma-0 < 31.47

Ocean
≤0.73 ≤0.043 >14.89
≤0.73 >0.043 >14.89

>25.6 >0.73 ≤17.53 >27.8

Figure 7 shows two examples of identifying leads using four different lead detection methods.
A simple thresholding approach based on PP and SSD (i.e., PP > 0.25 and SSD < 4 for leads and
PP < 0.45 and SSD > 4 for ice floes) used in Rose [16] was adopted to identify leads (Figure 7a,e).
The simple thresholding method resulted in somewhat over-identification of leads; some leads were
mistakenly found on the ice. Laxon et al. [18] also used a similar thresholding approach based on
PP [69] and SSD (leads: PP > 18 and SSD < 4; ice floes: PP < 9 and SSD > 4), which also resulted in
overestimation of leads on the ice (Figure 7b,f). Although PP and SSD are considered useful parameters
for lead detection, simple thresholding based on just two parameters appears insufficient for effectively
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distinguishing leads from ice. Since surface height on leads is considered as LSSH, if leads are
identified on the ice, then LSSH would be overestimated, which would result in an increased bias
towards smaller freeboard and thinner sea ice estimates. On the other hand, the two machine learning
approaches applied—See 5.0 decision trees and random forest—resulted in improved lead detection
and less overestimation of leads compared with the existing approaches (Figure 7c,g,d,h, respectively).
Different lead detection approaches were quantitatively assessed and compared (Tables 7–10) using
error matrices. Since the approaches by Rose [16] and Laxon et al. [18] considered ice floes and
leads only, i.e., excluding ocean, the accuracy assessment was conducted without ocean samples for
consistent comparison between the proposed approaches and the existing literature. The machine
learning approaches to lead detection resulted in higher overall accuracy and Kappa coefficients than
the approaches used by Rose [16] and Laxon et al. [18]. Both See 5.0 and random forest produced high
producer’s accuracy for leads and sea ice. However, the user’s accuracy for leads, as well as overall
accuracy and kappa coefficient of random forest were slightly higher than those of See 5.0. Random
forest uses an ensemble approach based on numerous independent trees through randomization,
which can avoid problems associated with sampling biases. On the other hand, See 5.0 uses only a
single tree, but provides more straightforward rules to understand the results at the cost of possible
overfitting and sampling biases. Based on the lead detection results in this study, both See 5.0 and
random forest can be used to identify leads with minimal difference in the performance. However,
in order to analyze the physical meaning among the parameters for lead detection, See 5.0 would
be better, as it provides rulesets in simple forms, compared to the ensemble results of random forest.
While all four lead detection methods have high producer’s accuracy for both leads and sea ice,
the existing approaches (i.e., Rose [16] and Laxon et al. [18]) produced much lower user’s accuracy for
leads than the proposed methods, implying the overestimation of leads.
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Figure 7. Examples of lead detection results around east Franz Josef Land on 11 April 2014 (a–d)
and Beaufort Sea on 11 April 2011(e–h) using four methods: (a,e) Rose [16]; (b,f) Laxon et al. [18];
(c,g) See 5.0 in the present study and (d,h) random forest in the present study. Red and blue dots
represent leads and sea ice, respectively.
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Table 7. The error matrix based on the See 5.0-based lead detection results for IC.

Reference Classified as Lead Sea Ice Sum User’s Accuracy (%)

Lead 36 5 41 87.8
Sea ice 6 192 198 96.7
Sum 42 197 239

Producer’s accuracy (%) 85.7 97.5
Overall accuracy (%) 95.4
Kappa coefficient (%) 84

Table 8. The error matrix based on the random forest-based lead detection results for IC.

Reference Classified as Lead Sea Ice Sum User’s Accuracy (%)

Lead 36 2 38 94.7
Sea ice 6 195 201 97.0
Sum 42 197 239

Producer’s accuracy (%) 85.7 98.9
Overall accuracy (%) 96.2
Kappa coefficient (%) 86.4

Table 9. The error matrix based on the lead detection results by the approach of Rose [16].

Reference Classified as Lead Sea Ice Sum User’s Accuracy (%)

Lead 36 28 64 56.2
Sea ice 6 169 175 96.7
Sum 42 197 239

Producer’s accuracy (%) 85.7 85.8
Overall accuracy (%) 85.7
Kappa coefficient (%) 59.3

Table 10. The error matrix based on the lead detection results by the approach of Laxon et al. [18].

Reference Classified as Lead Sea ice Sum User’s Accuracy (%)

Lead 41 45 86 47.7
Sea ice 1 152 152 99.3
Sum 42 197 239

Producer’s accuracy (%) 97.6 77.2
Overall accuracy (%) 80.7
Kappa coefficient (%) 53

Figure 8 shows the comparison of the SSHA and freeboard from the different lead detection
methods. SSHA is a subtraction of LSSH from the mean SSH, representing the relative vertical location
of leads. The proposed machine learning-based lead detection methods (Figure 8a,b) detected fewer
leads than the existing methods (Figure 8c,d) with few leads above the latitude of 87◦N, where leads
are rarely found in April. Almost all of the leads detected by the proposed See 5.0 and random
forest approaches were also detected by the approaches from Laxon et al. [18] and Rose [16]. SSHA
was linearly interpolated and smoothed using a 3 × 3 (pixel) moving average filter. The freeboard,
a derivation of surface height from the sum of SSHA and mean SSH, was smoothed by a 30 × 30 (pixel)
moving average filter to remove signal noise. While the overall shape of the freeboard lines with
latitudes looks similar, the average freeboards by approach—See 5.0, random forest, Rose [16] and
Laxon et al. [18]—were 0.095 m, 0.092 m, 0.089 m and 0.090 m, respectively. The average freeboards of
Rose [16] and Laxon et al. [18] were relatively underestimated compared to the freeboards by See 5.0
and random forest because of their over-identification of leads on the ice, especially over higher
latitudes (>85◦N; Figure 8c,d). Laxon et al. [18] found lower SSHA (Figure 8h) between 76◦–80◦N that
appeared to be ocean. However, since the proposed machine learning-based lead detection approaches
discriminate ocean from sea ice and leads, ocean was excluded in the SSHA.
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9 April 2012 based on IC: (a–d) are the interpolated and smoothed SSHA; (e–h) the smoothed freeboard.

4.4. Spatial Distribution of Arctic Sea Ice Freeboard and Thickness

Figures 9 and 10 present the IC ice freeboard and thickness maps, respectively, for March and
April from 2011–2014 using a polar stereographic projection with a 25 × 25 km2 grid. A typical MYI
zone near the Canadian Archipelago and northwestern Greenland has relatively thick freeboard and
thickness, except for 2012. The retrieval of freeboard and thickness in these regions appears to show
relatively poor LSSHA due to the very limited leads in the regions. On the other hand, sea ice freeboard
and thickness around the Kara Sea and Laptev Sea were consistently stable and low for all cases during
March and April from 2011–2014. Interestingly, unlike other years, sea ice thickness was relatively high
in the central Arctic in 2012, while it was generally low in the typical MYI zone. The annual variability
of sea ice thickness was high on the MYI zones, compared to the FYI zones. The amount of sea ice
freeboard and thickness apparently diminished from 2011–2013.
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on the IC scheme. Non-sea ice areas were masked out using the EUMETSAT Ocean & Sea Ice Satellite
Application Facility (OSI SAF) sea ice type data.

Laxon et al. [18] determined Arctic sea ice thickness from February–March 2012 using CryoSat-2
data. Although it was averaged for two months, the overall distribution of sea ice thickness over MYI
zones was similar to the results of this study. Sea ice freeboard and thickness maps for March 2013
from this study were slightly different from the results in Ricker et al. [19]. This is possibly because
the two studies used different smoothing approaches to waveform data, lead detection methods and
gridding approaches to CryoSat-2 track data. Farrell et al. [23] showed two-month averaged sea ice
freeboard maps from 2003–2008 using ICESat data. However, sea ice freeboard from ICESat will be
different from the sea ice freeboard determined in this study because the height of the sea ice freeboard
derived by laser altimetry (i.e., from ICESat) includes snow depth on the sea ice. Farrell et al. [23]
observed a slightly thicker sea ice freeboard between 2003 and 2008 (up to 0.75 m) than the 2011–2014
period in the present study. The major differences were found in the Canadian Archipelago, Northern
Greenland and the central Arctic, where the freeboard was observed as being high in Farrell et al. [23],
while it decreased from 2011–2013 in this study.

4.5. Comparison with AEM-Bird Data

The monthly ice thickness that was averaged by grid using the novel machine learning-based
lead detection approaches was compared to the averaged AEM-bird data collected 15 and 17 April
2011 during the CryoVex campaign, as well as the thickness derived by the lead detection methods
from Rose [16] and Laxon et al. [18]. This comparison considered the three schemes and two lead
detection methods (Figure 11). The sea ice thickness determined using See 5.0 with CA produced the
best validation performance on both days with r ~0.83 and root mean square error (RMSE) ~0.29 m
(Figure 11c).
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While Rose [16] and Laxon et al. [18] produced similar performance, the sea ice thickness from
See 5.0 generally showed better performance than that derived using the existing methods. However,
there are several uncertainty factors for sea ice thickness estimation using CryoSat-2 measurements [19],
including: (1) the error of range measurements from CryoSat-2; (2) the uncertainty of detection of
leads, resulting in over- or under-estimation of SSHA; (3) the uncertainty of mean scattering horizon
in the snow cover; and (4) the uncertainty of snow depth and the density of snow, ice and sea water.
Zygmuntowska et al. [70] estimated the uncertainty of Arctic sea ice thickness and volume in terms of
sea ice density and snow depth by using the Monte Carlo approach. They revealed that using snow
loading (i.e., W99) produced higher uncertainty with respect to the estimation of sea ice thickness than
using mean density. In the present study, we used the densities from Alexandrov et al. [33] that do
not have year-to-year variability. In order to more accurately estimate sea ice thickness, such changes
should be carefully considered, which requires further examination. Ricker et al. [19] analyzed random
and systematic uncertainties of Arctic sea ice thickness from CryoSat-2 using the partial derivative
of Equation (1) based on the assumption of hydrostatic equilibrium. They showed that random
uncertainty affects the estimation of sea ice thickness less than systematic uncertainty caused by the
selection of a retracker threshold and the unknown penetration level of the signals on snow. To remove
systematic uncertainty caused by the choice of a retracker threshold, Kurtz et al. [17] used a waveform
fitting approach to retrieve sea ice freeboard. Any of the above-mentioned factors could result in
uncertainty in this study. The lead detection models proposed in this study produced higher accuracy
than the existing approaches for lead detection, which implies a possible reduction of the uncertainty
caused by the second factor.

In order to examine the influence of snow penetration on the thickness estimation, we conducted
a simple sensitivity analysis on snow penetration by testing different penetration ratios with the
assumption that radar signals penetrate into the snow depth with the same rate over the entire Arctic
region. The results showed that higher accuracy (i.e., lower RMSE) was achieved with increasing
penetration depth ratios. Nevertheless, it is difficult to quantify how many centimeters of snow the
Ku-band penetrates simply because the snow penetration depth highly depends on the spatiotemporal
distribution of snow and whether it is dry or wet. In order to further enhance the sea ice freeboard and
thickness produced in this study, snow penetration depth should be considered.
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5. Conclusions

In this study, a novel machine learning-based lead detection approach was proposed to quantify
Arctic sea ice freeboard and thickness from CryoSat-2 data. The estimated sea ice thickness was
validated with AEM-bird data. Accurate lead detection is crucial in estimating LSSH, which is essential
to retrieve the freeboard and thickness [16,23]. The results showed that the proposed lead detection
approach successfully estimated the sea ice thickness, compared to the existing methods. The overall
accuracies by the proposed lead detection methods—decision trees (See 5.0) and random forest—were
95.4% and 96.2%, respectively, which were higher than those produced using the existing methods.

A total of five parameters were used to detect leads, including SSD, stack skewness, PP, stack
kurtosis and backscatter sigma-0. Among the parameters, backscatter sigma-0, which prior methods
had not considered, played a significant role in determining the threshold-based rules to distinguish
leads from ice floes. The lead detection models developed by year or month (i.e., CM and CA) did
not produce better performance than the combined model that used all samples for March and April
from 2011–2014. This suggests that sea ice thickness in other months such as May or June could be
retrieved when additional reference samples from the months were combined with the existing data.
That way, a standard lead detection model can be proposed, which can be applied for any year and
month. The results also showed that Arctic sea ice freeboard and thickness consistently decreased from
2011–2013, especially in the Canadian Archipelago region, but rebounded in 2014. Future research
includes developing a machine learning-based lead detection model that can be applied to any year
and month and modeling snow depth penetration using CryoSat-2 data.
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