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Abstract: Wide area acoustic remote sensing often involves the use of coherent receiver arrays to

determine the spatial distribution of sources and scatterers at any instant. The resulting acoustic

intensity images are typically corrupted by signal-dependent noise from Gaussian random field

fluctuations arising from the central limit theorem and have a spatial resolution that depends on the

incident direction, sensing array aperture and wavelength. Here, we use the maximum likelihood

method to deconvolve the intensity distribution measured on a coherent line array assuming a

discrete angular distribution of incident plane waves. Instantaneous wide area population density

images of fish aggregations measured with Ocean Acoustic Waveguide Remote Sensing (OAWRS)

are deconvolved to illustrate the effectiveness of this approach in improving angular resolution over

conventional planewave beamforming.

Keywords: acoustic remote sensing; maximum likelihood; deconvolution; OAWRS; signal-

dependent noise; planewave beamforming

1. Introduction

Coherent receiver arrays are often used to generate acoustic images of the undersea environment

to chart the spatial distribution of acoustic scatterers or sources, such as fish, marine mammals,

plankton, submerged objects and bathymetric features [1–3]. In a typical wide-area application, such

as Ocean Acoustic Waveguide Remote Sensing (OAWRS), involving a horizontal, coherent line array,

an acoustic image is formed by charting the acoustic intensity received from scatterers or sources

in range by travel time analysis and in azimuth by plane-wave beam forming [4–7]. Conventional

time-harmonic plane wave beamforming [2,3] on a line array by Fourier transform from the spatial to

the wavenumber domain can non-linearly blur the angular distribution of incident plane waves for

array geometries that lack spherical symmetry due to the nonlinear relationship between the incident

direction and wavenumber components along the array caused by foreshortening.

Here, we develop and apply a maximum likelihood (ML) approach for the spatial deconvolution

of acoustic intensity images generated by a coherent acoustic array. We take advantage of the

relatively pervasive circular complex Gaussian random (CCGR) statistics of acoustic fields in the

ocean that follow from the central limit theorem for many typical scenarios of propagation, radiation

or scattering [4–6,8–14]. Instantaneous intensity then follows a negative exponential distribution

with a standard deviation proportional to the mean [9]. This leads to intensity images that have
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inherent signal-dependent noise known as speckle [8,9,11,15], as well as possible independent

additive noise in the CCGR fields. Given these statistics, the ML estimator is then derived to resolve

the angular distribution of incident plane waves from coherent array measurements. We focus on

OAWRS applications [4–6,11,13,14] where side lobes are sufficiently low such that distinct beams are

statistically independent of each other and far field signal and noise sources dominate. Many past

statistical models for beamforming in the ocean [16–21] are less well suited to OAWRS applications,

because they assume deterministic signals that are inconsistent with observations and additive noise

with spatial correlations that are inconsistent with nonuniform far field origins. While the approach

presented here is general, a line array geometry is used in examples both for simplicity and because

line arrays are typically used in OAWRS applications. The examples show that the ML method

leads to significant increases in angular resolution over conventional space-wavenumber Fourier

transform-based planewave beamforming.

2. Methods: Theoretical Formulation

2.1. Beamformed Intensity Measurement on a Receiver Array

Let Pi(r, t) = P(ki, ω)ej(ki · r−ωt) denote the pressure field at point r and time t due to

a time-harmonic plane wave propagating in the direction of the acoustic wavenumber vector

ki = ki
x îx + ki

y îy + ki
z îz, where P(ki, ω) is the complex plane wave amplitude, k = |ki| = ω/c is

the acoustic wavenumber, ω is the radial frequency, c is the speed of sound and i is an index for

i = 1, 2, 3, ..., M directions. A plane wave from any of these directions is incident on a discrete receiver

array of length L containing N elements. The pressure field from any direction received on the n-th

element of the array located at rn = (0, yn, 0) (Figure 1) is Pi(rn, t) = P(ki, ω)ej(ki
y yn−ωt).

Coherent line array

P (ki, ω)ej(ki·r−ωt)

Incident
plane wave

y

x

∆y

n = N−1
2

n = 0

n = −
N−1

2

rn ≡ (0, n∆y, 0)

Figure 1. A sketch of the array geometry and incident plane wave field.

The y-component of the wavenumber vector can be expressed as a function of the vertical

inclination angle ψ and horizontal azimuthal angle θ of the incident plane wave as ki
y = k sin ψi sin θi.

Then, in the presence of M incident plane waves, assuming the inclination angle ψi = π/2, the total

pressure field received on the n-th element of the receiver array is:

P(rn, t) =
M

∑
i=1

P(ki, ω)ej(k yn sin θi−ωt) (1)
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The total beamformed pressure field at scan angle θ in terms of plane wave incident angle θi is:

PB(θ, t, ω) =
M

∑
i=1

N−1
2

∑
n=− N−1

2

P(ki, ω)ej(k yn[sin θi−sin θ]−ωt)

=
M

∑
i=1

P(ki, ω)B(sin θ − sin θi, ω)e−jωt (2)

where B(sin θ, ω) is the discrete array beam pattern given [1–3] by B(sin θ, ω) = 1
N

sin ( k
2 N∆y sin θ)

sin ( k
2 ∆y sin θ)

for

θ spanning [−π, 2, π/2] and array element spacing ∆y = L
N−1 .

The beamformed pressure field in Equation (2) is the convolution of the complex pressure

amplitude of incident plane waves from different directions and the receiver array beam pattern.

In the case of a single incident plane wave from direction θ0, Equation (2) simplifies to

PB(θ, t, ω) = P(k0, ω)B(sin θ − sin θ0, ω)e−jωt, which is proportional to the beam pattern steered in

the direction of the incident plane wave, as illustrated in Figure A1 for a single incident plane wave

at 30◦.

The beamformed plane wave intensity measured on the array is then:

W(θ, ω) =

∣∣∣∣PB(θ, t, ω)

∣∣∣∣
2

=

∣∣∣∣
M

∑
i=1

P(ki, ω)B(sin θ − sin θi, ω)

∣∣∣∣
2

(3)

By the central limit theorem, the incident plane wave complex amplitude P(ki, ω)

follows circular complex Gaussian random (CCGR) statistics with zero mean due to random

fluctuations arising from waveguide propagation, scattering, source mechanisms or a combination

of these [4–6,11–14], such that 〈P(ki, ω)〉 = 0. Moreover, incident plane wave fields

from different directions are assumed to be independent of each other as found in typical

OAWRS applications [4–6,13,14], such that 〈P(ki, ω)P∗(kj, ω)〉 = 〈P(ki, ω)〉〈P∗(kj, ω)〉 for i 6= j.

The expected beamformed intensity is then given by:

σ(θ, ω) = 〈W(θ, ω)〉 =
M

∑
i=1

S(ki, ω)|B(sin θ − sin θi, ω)|2 (4)

where S(ki, ω) = 〈|P(ki, ω)|2〉 is the expected intensity of the incident plane wave propagating in the

direction ki.

2.2. Deconvolution of Beamformed Intensity from a Line Array: Maximum Likelihood Estimate of Expected
Source Intensity

Beamformed intensity measurements (Equation (3)) at j = 1, 2, 3, ..., J discrete scan angles can be

expressed as:

Wj = W(θj, ω) =

∣∣∣∣
M

∑
i=1

P(ki, ω)B(sin θj − sin θi, ω)

∣∣∣∣
2

(5)

which, in matrix form, can be written as:

Wj =

∣∣∣∣
M

∑
i=1

PiBij

∣∣∣∣
2

(6)

where Pi = P(ki, ω) are the elements of a vector P and Bij = B(sin θj − sin θi, ω) are the elements of

the scanning matrix B. The expected beamformed intensity from Equation (4) then becomes:

σ
T = ST

B (7)
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where the vector σ contains expected beamformed intensities 〈Wj〉, the vector S contains the expected

plane wave intensities Si = S(ki, ω) = 〈P(ki, ω)P∗(ki, ω)〉 from all horizontal azimuths and the

elements of matrix B are Bij = |Bij|
2.

The expected values of measurements 〈Wj〉 = σj(S) depend on the expected incident plane

wave intensity vector S, which in general varies in space, and is to be estimated from W. In typical

operational scenarios for OAWRS imaging, the combination of a sufficiently large, densely-sampled

and spatially-tapered aperture [4–7] leads to low enough side lobes that non-overlapping beams are

effectively independent for far field signal and noise sources. The conditional probability distribution

for all measurements in vector W given S is then the product of gamma distributions [9,15]:

P(W|S) =
J

∏
j=1

[
µ j

σj(S)

]µ j
W

µ j−1

j exp
[
−µj

Wj

σj(S)

]

Γ(µj)
(8)

where µj is the number of coherence cells in the intensity average derived from a sum of independent

measurements, which is also equal to the signal-to-noise ratio 〈Wj〉
2/(〈W2

j 〉 − 〈Wj〉
2) [9,15].

The log-transformed vector L defined by Lj = ln(Wj/Ire f ), where Ire f is the reference intensity,

obeys the conditional distribution [15]:

P(L|S) =
J

∏
j=1

[
µ j

σ
′
j (S)

]µ j

exp

[
−µj

exp(Lj)

σ
′
j (S)

+ µjLj

]

Γ(µj)
(9)

which is also the likelihood function, where σ
′

j (S) = σj(S)/Ire f . The log-likelihood function is then:

ln P(L|S) =
J

∑
j=1

µj ln

[
µj

σ
′

j (S)

]
+

[
−µj exp(Lj)

σ
′

j (S)
+ µjLj

]
− ln Γ(µj) (10)

The value of S for which the log-likelihood function attains its global maxima is the maximum

likelihood estimate (MLE) of S,

Ŝ = arg max
S

[ln P(L|S)] (11)

which is also the value of Ŝ for which the derivative of ln P(L|S) with respect to S vanishes:

d ln P(L|S)

dS
=

J

∑
j=1

−
µj

σ
′

j (S)

dσ
′

j (S)

dS
+

µj

σ
′

j (S)
2

Wj

Ire f

dσ
′

j(S)

dS
= 0

∣∣∣∣
S=Ŝ

(12)

The MLE of S is then:

Ŝ =
[
Bd̂σB

T
]−1

Bd̂σW (13)

where the elements of diagonal matrix d̂σ are
[

d̂σ

]
ji
= δjiµj/W

′2
j and W

′

j = Wj/Ire f , as shown in

Appendix A.2.

When the number of scan angles J is equal to the number of incident plane wave directions M,

then matrices B and d̂σ are square matrices, and Equation (13) simplifies to:

Ŝ = B
T−1

W (14)

and the solution of Ŝ is linear in W.
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2.3. Statistics of the Maximum Likelihood Estimator

A criterion to determine the performance of an estimator Ŝ obtained from measurement vectors

W or L is the Cramer–Rao Lower Bound (CRLB) on the parameter’s variance [22,23] given by:

Var(Ŝi) ≥ [I−1((S))]ii (15)

where Si is the true parameter value and I(S) is the Fisher information matrix with elements:

[I]in(S) = −

〈
∂2

∂Si∂Sn
ln P(L|S)

〉
(16)

The Fisher information matrices for W and L are identical and equal to [11,15]:

[I]in(S) =
J

∑
j=1

µj

σ
′

j (S)
2

∂σ
′

j (S)

∂Si

∂σ
′

j (S)

∂Sn
(17)

which can be further simplified using Equation (7) to:

[I]in(S) =
N

∑
j=1

µj

σj(S)2
BijBnj

I = BΞBT (18)

where Ξ is a diagonal matrix with elements Ξjj =
µ j

σj(S)2 .

In the case of M = J, Var(Ŝi) can be obtained from Equation (14) as:

Var(Ŝi) = Var(BT−1
W)

=
M

∑
j=1

B
2
ij

σj(S)
2

µj

= Diagonal(BΞ−1
B

T) (19)

where the matrix B = B
T−1

and Var(Wj) =
σj(S)

2

µ j
from the Gamma distribution of Wj in Equation (8).

The variance of the MLE when J = M then attains the CRLB, since it equals the diagonal elements of

the inverse of I from Equation (18):

I
−1 = B

T−1
Ξ−1

B
−1

= BΞ−1
B

T (20)

For sufficiently large µ, the ML estimator’s probability distribution Ŝ is asymptotically Gaussian

given by [22,23]:

Ŝ ∼a N (S, J−1(S)) (21)

where the variance is asymptotically equal to the CRLB given in Equation (15), and the mean

converges to the true parameter value making the ML estimator asymptotically optimal since it

becomes unbiased and attains minimum variance [22,23].

3. Results: Illustrative Examples

Here, we use the maximum likelihood method to estimate the angular intensity distribution

of incident plane waves from coherent line array measurements with analytic, synthetic and actual

wide-area OAWRS imagery data [4–6]. In all of the examples shown in this section, N = 64 array

elements spaced 0.75 m apart are used at a frequency of 950 Hz, as is consistent with some
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typical OAWRS imaging scenarios [4,5]. The array element spacing corresponds to half the acoustic

wavelength for a cutoff frequency of 1000 Hz and speed of sound in water c = 1500 m/s.

3.1. Analytic Solutions

For a single incident plane wave with no signal dependent noise, the ML deconvolution of

the conventional beamformed measurement results in the ground truth incident plane wave by

invariance of the ML estimator [22,23], as illustrated for both broadside and end-fire incidence

examples in Figure 2. This can be seen by noting that in the absence of randomness, the beamformed

measurement is its expected value W = σ. The ML estimate can be then found analytically either

via Equation (14) or via Equation (7), where resulting ML estimate Ŝ becomes S, which is unity in

the direction of the plane wave and zero elsewhere. Reversing the process, the convolution of this

pressure field with the receiver array beam pattern yields the conventional beamformed data, which

is the beam pattern itself shifted to the direction of the incident pressure field.
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Figure 2. A comparison between ground truth expected plane wave intensity S(ki, ω), conventional

beamforming W(θj, ω) and beamforming using ML deconvolution Ŝ(ki, ω) using an array with a

rectangular taper for synthetically-generated plane waves in the limit of no signal-dependent noise

incident at (a) array broadside and (b) array endfire. The ML deconvolution estimate can be

determined analytically by inspection of Equation (14) in the absence of noise for a single incident

plane wave.

3.2. Synthetic Data

We now illustrate ML deconvolution of angular or spatial features sensed by nonuniform

distributions of incident CCGR fields with synthetic data and numerical simulation (Figures 3–5).

For prominent and relatively narrow angular box-like features, a roughly 50% improvement in

angular resolution is found (Figures 3 and 4). For a box-like feature of roughly 1◦ width at broadside,
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the 3-dB beamwidth of the deconvolved plane wave intensity distribution is found to be roughly

1.2◦ (Figure 3). This is roughly two times smaller than that from conventional beamforming of

roughly 3◦. Similarly, near array end-fire for a box-like feature of roughly an 8◦ width, the 3-dB

beamwidth of the deconvolved plane wave intensity distribution is roughly 9◦ (Figure 4), which is

roughly two-times smaller than the 20◦ width found in conventional beamforming. Only at much

lower values at least 5–7 dB down from the peak intensity does the match between ground truth and

ML deconvolved estimate deteriorate. This deterioration, however, is barely perceivable in a linear

intensity scale. The expected intensity of the ML deconvolved estimate matches the ground truth well,

within roughly ±1 dB for the broadside case and ±0.5 dB for the end-fire case. This comprises roughly

an order of magnitude improvement over conventional beamforming, as shown in Figures 3 and 4.

In Figures 3 and 4, a spatial Hanning window taper is applied; beamformed intensity is averaged over

five independent and instantaneous realizations, such that µ = 5 for each W(θj, ω), as is consistent

with typical OAWRS imaging [4,5]; simulations are performed as described in Appendix A.4; and the

beamformed data W(θj, ω) is deconvolved using the algorithm in Appendix A.5.

For a prominent and relatively wide two-dimensional box-like feature that extends both in

azimuth and range from the receiver array center, a roughly 40% improvement in angular resolution

over conventional beamforming is found (Figure 5). Such features are representative of actual fish

distributions in the ocean [4–6]. The improvement in angular resolution is measured in terms of

the spatial span or the area within the 3-dB down contour from the peak intensity of the feature

after conventional beamforming and subsequent ML deconvolution with respect to the true areal

coverage of the feature. For a feature centered at 50◦ from an array broadside of roughly a 9◦

width and a 1-km extent in range, the error in the spatial span of the ML deconvolved feature is

roughly 8% of the true feature area. In comparison, the error in the spatial span of the feature from

conventional beamforming is several times higher at roughly 50% of the true feature area. In Figure 5,

a spatial Hanning window taper is applied; beamformed intensity is averaged over 10 independent

and instantaneous realizations, such that µ = 5 for each W(θj, ω), as is consistent with typical OAWRS

imaging [4,5]; simulations are performed as described in Appendix A.4; and the beamformed data

W(θj, ω) are deconvolved using the algorithm in Appendix A.5.

−80 −60 −40 −20 0 20 40 60 80

−15

−10

−5

0

5

10

15

 

 

10
lo

g 10
 In

te
ns

ity

−80 −60 −40 −20 0 20 40 60 80

−15

−10

−5

0

5

10

15

Azimuthal Angle θ (degrees)

10
lo

g 10
 In

te
ns

ity

 

 

Ground truth Expected Plane Wave Intensity

Intensity with signal−dependent noise averaged over 5 realizations

Conventional Beamforming (normalized)

Conventional Beamforming

Beamforming with ML Deconvolution

(a)

Figure 3. Cont.



Remote Sens. 2016, 8, 694 8 of 18

−6 −4 −2 0 2 4 6

−15

−10

−5

0

5

 

 

10
lo

g 10
 In

te
ns

ity

−6 −4 −2 0 2 4 6

−15

−10

−5

0

5

Azimuthal Angle θ (degrees)

10
lo

g 10
 In

te
ns

ity

 

 

(b)

Figure 3. For a narrow feature at broadside, (a) a comparison between ground truth expected

plane wave intensity S(ki, ω), plane wave intensity with signal dependent noise averaged over five

realizations, conventional beamforming W(ω, θj), conventional beamforming with normalization

(Appendix A.3) and beamforming using ML deconvolution Ŝ(ki, ω) for synthetically-generated

plane waves with signal-dependent noise spanning all scan angles with signal dependent noise;

(b) a zoomed in version of (a) within the highlighted box shown. The horizontal bars in

(b) represent the 3-dB down widths from the peak expected value of the true intensity distribution

(red), the ML deconvolved intensity estimate (blue) and the conventional beamforming intensity

measurement (black).
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Figure 4. Same as Figure 3, except for a feature close to the array end-fire. (a) A comparison

between ground truth expected plane wave intensity S(ki, ω), plane wave intensity with signal

dependent noise averaged over five realizations, conventional beamforming W(ω, θj), conventional

beamforming with normalization (Appendix A.3) and beamforming using ML deconvolution Ŝ(ki, ω)

for synthetically-generated plane waves with signal-dependent noise; (b) a zoomed in version of

(a) within the highlighted box shown.

Figure 5. A comparison between the (a) ground truth plane wave intensity distribution,

(b) conventional beamformed measurement normalized for scan-angle-dependent beamwidth

variation (Appendix A.3) and (c) beamforming using ML deconvolution (bottom) for a synthetic

two-dimensional plane wave intensity distribution. The color bar shows the logarithm of the plane

wave intensity distribution in dB. In (b,c), the solid green curves represent the 3-dB down contour

from the average intensity within the ground truth plane wave distribution, and the blue lines

represent the true boundary of the plane wave intensity distribution. The receiver array is set to

be positioned along the x-axis centered at the origin (0, 0).
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3.3. Ocean Acoustic Waveguide Remote Sensing Images of Fish Shoals

In the fall of 2006, vast shoals of spawning Atlantic herring were imaged using OAWRS in the

Gulf of Maine (Figure 6) [5,6]. During evening hours, small clusters or schools of fish aggregated

together to form large shoals spanning several tens of kilometers in length.

Figure 6. Gulf of Maine showing the OAWRS imaging area (gray box) and the more specific region

corresponding to Figures 7 to 10 (blue box).

Maximum likelihood deconvolution of OAWRS fish shoal imagery leads to a roughly

10%–50% improvement in angular resolution over conventional beamforming (Figures 7–10). For

features located 20–50◦ from the array end-fire with population density >0.5 fish/m2 (Figures 7–10),

a 40%–50% improvement in resolution is found. Similarly, for features located close to the

array broadside, a 10%–25% improvement in resolution is found. The results indicate that ML

improvements in angular resolution over conventional beamforming depend strongly on array

beamwidth and the actual angular extent of the features. These results are consistent with synthetic

data deconvolution results shown in Figures 3–5.

In the OAWRS images shown in this section, N = 64 receiver array elements are spaced 0.75 m

apart; the sensing frequency is 950 Hz; and a spatial Hanning window taper is applied to the receiver

array elements [4,5]. The array element spacing corresponds to half the acoustic wavelength for

a cutoff frequency of 1000 Hz and c = 1500 m/s. The OAWRS beamformed measurements are

deconvolved using the algorithm in Appendix A.5.
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Figure 7. Comparison of (a) ML deconvolved and (b) conventional beamformed areal population

density of a large spawning Atlantic herring shoal measured on 29 September 2006 at 18:43 EDT,

as shown in Figure 4b, of Makris et al. [5]. The beamformed intensity shown is averaged over six

independent and instantaneous image realizations, such that µ = 6 for each pixel [5]. The measured

conventional beamformer data W are deconvolved using the algorithm in Appendix A.5 and then

converted to areal density maps as in Makris et al. [4,5].

Figure 8. Same as Figure 7 showing a comparison of (a) ML deconvolved and (b) conventional

beamformed areal population density of a herring shoal measured on 29 September 2006 at 19:53 EDT,

as shown in Figure 4c of Makris et al. [5].
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Figure 9. Same as Figure 7 showing a comparison of (a) ML deconvolved and (b) conventional

beamformed areal population density of a herring shoal measured on 3 October 2006 at 18:15 EDT,

as shown in Figure 1g of Makris et al. [5].

Figure 10. Same as Figure 7 showing a comparison of (a) ML deconvolved and (b) conventional

beamformed areal population density of a herring shoal measured on 3 October 2006 at 19:33 EDT, as

shown in Figure 1h of Makris et al. [5].
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4. Discussion

Following experimental observations from OAWRS measurements, we assume the demodulated

field of incident plane waves from a discrete set of directions follows circular complex Gaussian

random statistics (CCGR) arising from random wave propagation, scattering or radiation via

the central limit theorem [4–6,11–14]. Intensity measurements then have signal-dependent noise.

By time-harmonic plane-wave beamforming [2,3,22], the received intensity at the array center from

different scan directions is determined and obeys a Gamma distribution [15,24]. Such standard

plane-wave beamforming by Fourier transform from the spatial to the wavenumber domain, however,

can non-linearly blur the angular distribution of incident plane waves for array geometries that

lack spherical symmetry due to the nonlinear relationship between the incident direction and

wavenumber components along the array caused by foreshortening.

By employing a sufficiently large aperture and applying a spatial taper function across the array

as in OAWRS applications, distinct directional beams are effectively statistically independent [4–7] for

the far field signals and noise sources typically encountered in OAWRS. Maximizing the likelihood

function for these independent beams then yields the maximum likelihood estimate of intensity

incident from a given parameterized angular sector, which acts as a deconvolution process to

extract the angular distribution of the incident planewave field from blurring caused by the array’s

diffraction limited beam pattern.

The far field signal and noise sources encountered in OAWRS typically have correlation along

the array [4–6,13,14] that is not known a priori. Past statistical models for acoustic beamforming,

including past maximum likelihood approaches, in the ocean are not well suited to OAWRS

applications, because they have overwhelmingly assumed a deterministic signal model in additive

Gaussian noise with a priori knowledge of the noise’s spatial correlation, which is most often

assumed to be spatially uncorrelated for horizontal apertures’ element spacing exceeding half the

wavelength [16–21]. Neither of these assumptions is consistent with those observed in OAWRS

sensing, where both signal and noise fields are random and highly correlated in space across the

array due to their far field origins. Additionally, it has been noted [25] that some persistent confusion

and misidentification has occurred between maximum likelihood [22,23] and other methods [19–21]

in beamforming applications.

5. Conclusions

A maximum likelihood method is developed to deconvolve underwater acoustic intensity

images corrupted with signal-dependent noise. The images are assumed to be generated by

planewave beamforming of data received from a coherent spatial receiving array. The method

is shown to enable significant improvements in resolving the directions of incident plane waves

over conventional planewave beamforming by theoretical analysis, numerical simulation and the

application to experimental data. Deconvolution of experimentally-measured Ocean Acoustic

Waveguide Remote Sensing (OAWRS) images of fish areal population density show an angular

resolution improvement of 40%–50% for fish clusters close to the array end-fire and 10%–25% for fish

clusters close to the array broadside. The approach developed is generally applicable to planewave

beamforming on multidimensional arrays of arbitrary geometry. Line array implementations are

presented here for simplicity and to provide examples relevant to typical OAWRS scenarios.
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Appendix A.

Appendix A.1 Beamformed Pressure Field for a Single Plane Wave

The beamformed pressure field PB(θ, t, ω) (Equation (2)) for a single plane wave is proportional

to the beam pattern steered in the direction of the plane wave and depends on the number of sensors

N, element spacing ∆y and incident wavenumber k = 2π f
c , where f is the sensing frequency and c the

speed of sound. Figure A1 shows the beamformed pressure field due to a single plane wave incident

from 30◦ from broadside for a typical OAWRS mid-frequency aperture configuration for a range of

sensing frequencies where N = 64, ∆y = 1
2

c
f0

for a cutoff frequency f0 = 1000 Hz [4,5]. The main lobe

width is narrowest and, so, has the best angular resolution when the sensing frequency equals the

cutoff frequency of 1000 Hz. As the sensing frequency decreases and the aperture remains the same,

the angular resolution becomes proportionally worse.
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0

0.2
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)

 

 

1000 Hz

950 Hz
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Figure A1. Beamformed pressure field PB(θ, t, ω) due to a single plane wave of unit amplitude

incident from a direction 30◦ from broadside measured on a discrete line array as shown in Figure 1

for various plane wave frequencies. Here, the array contains N = 64 elements and ∆y = 1
2

c
f0

, where

the array cutoff frequency f0 = 1000 Hz and speed of sound c = 1500 m/s.

Appendix A.2 Derivation of the Matrix form of MLE of Deconvolved Plane Wave Intensity

From Equation (7), the derivative of the expected beamformed intensity vector normalized with

respect to Ire f is given by:

dσ
′

j(S)

dSi
= |Bij|

2/Ire f = Bij/Ire f (A1)

Then, Equation (12) can be written in vector form as:

J

∑
j=1

Bij

µj

σ
′

j (S)

∣∣∣∣
S=Ŝ

=
J

∑
j=1

Bij

µjW
′
j

σ
′

j (S)
2

∣∣∣∣
S=Ŝ

(A2)
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or: [
Bdσσ

′
(S)

] ∣∣∣∣
S=Ŝ

=
[
BdσW′]

∣∣∣∣
S=Ŝ

(A3)

where W′ = W/Ire f and [dσ]ji = δjiµj/σ
′

j (S)
2 are the elements of a diagonal matrix. By inserting

Equations (7) into (A3) and given dσ, the MLE of S is:

Ŝ =
[
BdσB

T
]−1

BdσW (A4)

Typically, dσ is not known a priori and, so, needs to be estimated. If the MLE of σ
′

j (S) is W ′
j ,

then by the invariance of the MLE, d̂σ is the MLE of dσ with elements
[
d̂σ

]
ji
= δjiµj/W

′2
j . The MLE

of S is then:

Ŝ =
[
Bd̂σB

T
]−1

Bd̂σW (A5)

Appendix A.3 A Conventional Beamformer Normalization Useful for Continuous and Relatively Uniform
Incident Plane-Wave Distributions

A uniform distribution of incident plane waves P(θi, ω) results in scan-angle θj-dependent

conventional beamformed intensities W(θj, ω), as shown in Figure A2, due to the nonuniform

angular resolution across scan angles caused by foreshortening. This is because of the convolution

of the uniformly-spaced incident plane wave pressure field with a beam pattern that has a narrower

beamwidth at the array broadside and wider beamwidth at the array end-fire in the θ domain.
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Figure A2. A comparison between incident plane wave intensity distribution, the corresponding

conventional beamforming and the beamforming with a scan-angle-dependent normalization

(Equation (A6)) applied to it.

A scan-angle-dependent intensity normalization:

Inorm,j = Inorm(θj) =
M

∑
i=1

|B(sin θj − sin θi)|
2 (A6)

is applied to conventional beamformed measurement, such that Wnorm(θj, ω) = Wj/Inorm,j. The effect

of this normalized beam pattern is shown in Figures 3 and 4. This normalization is also applied in

Figure 5.
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Appendix A.4 Numerical Simulation of Synthetic Beamformed Data

For the synthetic data deconvolution results presented in Section 3.2, a ground truth incident

plane wave distribution P(ki, ω) for i = 1, 2, 3...M incident angles is convolved with the array beam

pattern B(sin θ, ω) to yield the synthetic beamformed pressure field PB(θ, t, ω) given in Equation (2).

The beamformed plane wave intensity W(θ, ω) and its expected value σ(θ, ω) are then determined

using Equations (3) and (4), respectively. Maximum likelihood deconvolution of the expected plane

wave intensity distribution S(ki, ω) is then performed using the approach outlined in Appendix A.5.

Appendix A.5 Numerical Implementation of the Deconvolution Algorithm

An iterative scheme involving steepest descent and simulated annealing [26] is used to

determine the deconvolved source distribution estimate Ŝ from beamformed data W.

Step 1. The beamformed intensity vector is given by W(θj, ω) for j = 1, 2, ..., J scanning directions.

Select starting solution vectors:

Pstart = P0

Sstart = S0 = |P0|
2 (A7)

for pressure field and intensity vectors, respectively, of length M for M azimuthal directions.

A CCGR field with variance equal to the background signal-independent noise intensity is

a reasonable starting point for P.
Step 2. Every iteration vector attempts to move the log-likelihood function in Equation (10) to its

global maximum. Specifically, at the q-th iteration, determine the log likelihood function

ln P(Ltrial|S
q
trial) for the trial solution matrix:

S
q
trial = (P

q
trial)

2 (A8)

containing 2M trial solutions. The matrix (P
q
trial) is of size M× 2M where the rows represent

a given trial solution vector for M azimuthal directions and columns represent 2M trial

solutions. Each trial solution contains a positive or negative increment to the trial solution

of the (q − 1)-th iteration in only one azimuthal direction, which makes the 2M increment

vectors in the trial solutions orthogonal to each other. Specifically, the pressure field at the

jth azimuthal direction of the ith trial solution is given by:

p
q

trial,(j,i)
= p

q−1
j,i + ǫαδij + β (A9)

and the corresponding intensity is given by:

S
q

trial,(j,i)
= |p

q

trial,(j,i)
|2 (A10)

where ǫ = 1 for i = 1, 2, ..., M and ǫ = −1 for i = M + 1, M + 2, ..., 2M, j = 1, 2, ..., M for M

azimuthal directions. At every step, a single trial solution is updated. Once all trial solutions

are updated sequentially, that is the end of the q-th iteration. Here, δij is the Kronecker delta

function and, so, takes the value of one if i = j and is zero otherwise, and α is the step size.

To move a solution that is stuck in a local minimum, randomly generated noise β, which is

drawn from CCGR distribution, is added at every iteration.
Step 3. Find the i-th vector that maximizes the log-likelihood function:

i0 = max
i

{ln P(L|S
q

trial,(i=1:2M,j=1:M)
)} (A11)
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The updated solution vector for the q-th iteration then is:

p
q
j = p

q

trial,(j,i0)
(A12)

This is the end of the q-th iteration. Repeat Steps 2–3 until the value of the maximum

likelihood function converges. The maximum likelihood estimate Ŝ is the one for which

ln P(L|S) is the maximum over all iterations. At this value, the estimated beamformed

intensity also converges to W in the least square sense [22,23].

In all examples shown, a large number of azimuthal directions M, typically 5–9-times the number

of scan angles J, is used to make the distribution approximately continuous in the azimuth.
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